SlideShare a Scribd company logo
The Application of Internet Of
Things (IOT) on Microfluidic
Devices
Chia Xun Nian
Mok Yan Ni
Teo Jin Wei
Content Page
01 Healthcare 4.0 & the Important of IoT on Microfluidics
02 Principle of IoT in Microfluidics & Key Developments
03 Conventional vs Digital Microfluidics & System Design on Internet of
Microfluidic Things
04 Results and discussion (Applications of Microfluidics based IOT)
05 Problems encountered
06 Conclusion and future work
Healthcare 4.0
Wearable & Point of Care
IOT
Capture & Processing of Biological
Data in Real Time
Ambient IOT
Sensor Detection for Non Intrusive
observation of individuals
Healthcare Digitalisation
Cloud and Storage
Healthcare 2.0
Healthcare 3.0
Healthcare 4.0
Healthcare 1.0
Chen, C., Loh, E.-W., Kuo, K. N., & Tam, K.-W. (2019). The Times they Are a-Changin’ – Healthcare 4.0 Is Coming! Journal of Medical Systems, 44(2). doi:10.1007/s10916-019-1513-0
Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D., & Kang, Y. (2019). Healthcare 4.0: A review of frontiers in digital health. WIREs Data Mining and Knowledge Discovery. doi:10.1002/widm.1350
The Importance of IoT on Microfluidics
Conventional Microfluidic
Chemical Analysis
Integration with IoT
Big Data Analytics &
Artificial Intelligence
Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland) 2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951
Ibrahim, M.; Gorlatova, M.; Chakrabarty, K. The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper. IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD 2019, 2019-November, 1–8. https://doi.org/10.1109/ICCAD45719.2019.8942080..
Internet of Things (IOT) Hardware & Software
Microcontroller Boards/Single
Board computer
Microcontroller
Functional Module (e.g
pumps, bluetooth and Wifi)
Microfluidics
Kassis, T., Perez, P. M., Yang, C. J. W., Soenksen, L. R., TrumperPrabhu, G. R. D., & Urban, P. L. (2020). Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical Reviews. doi:10.1021/acs.chemrev.0c00206
, D. L., & Griffith, L. G. (2018). PiFlow: A biocompatible low-cost programmable dynamic flow pumping system utilizing a Raspberry Pi Zero and commercial piezoelectric pumps. HardwareX, 4, e00034.
Complementary Metal Oxide Semiconductor
(CMOS) Chip
Interface
● Processor
● Noise Removal
● Signal amplification
● Actuator controller
Sensors
● Image sensor
● Particle/Cells detection
● pH sensor
● DNA analysis
Actuators
● Particle Actuators
● Microheater
● Flow control
Khan, S. M., Gumus, A., Nassar, J. M., & Hussain, M. M. (2018). CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Advanced Materials, 30(16), 1705759. doi:10.1002/adma.201705759
Complementary Metal Oxide Semiconductor
(CMOS) Chip
A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1-
μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS
Khan, S. M., Gumus, A., Nassar, J. M., & Hussain, M. M. (2018). CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Advanced Materials, 30(16), 1705759. doi:10.1002/adma.201705759
Liu, X.; Huang, X.; Jiang, Y.; Xu, H.; Guo, J.; Hou, H. W.; Yan, M.; Yu, H. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- Μm-Pitch Super-Resolution Image Sensor in 65-Nm BSI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11 (4), 794–803. https://doi.org/10.1109/TBCAS.2017.2697451.
Conventional vs Digital Microfluidics
Digital Microfluidics
Conventional Microfluidics
Flow controlled by voltage or pressure
Utilizes small droplets as on chip analyte carrier
Manipulation of the droplets done by an array of
electrodes that are electrically controllable
Droplet handling mechanism - Electrowetting on
Dielectric (EWOD)
Digital Microfluidics - reconfigurable technology
● Cyber-Physical System
● Real-time decision making
Nguyen, N.-T., Hejazian, M., Ooi, C., & Kashaninejad, N. (2017). Recent Advances and Future Perspectives on Microfluidic Liquid Handling. Micromachines, 8(6), 186. doi:10.3390/mi8060186
Internet of Microfluidic Things (IoMT) System Design
5 Layer Architecture
M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
Perception Layer
Consists of microfluidic sensors and actuators that
interact with biochemical substances
Universal control interface has to be designed and
customised to act as “adapters”
Adapters are capable of digitizing and transferring data
to abstraction layer
Abstraction Layer
Implements coordination protocol among
Microfluidic Things
Data transferred to data storage (Middleware Layer)
5 Layer Architecture
M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
Middleware Layer
Stores real-time streaming data
Implements procedures based on specific
identification information (protocol name &
microfluidic device address)
Monitors the progress of biochemical service
Application Layer
Map user’s application specification to
unique biochemical services
Transmit sensor measurement back to
users
Semantics Layer
Manage performance metrics and
data collected
Build decision model, graphs and
flowchart
Creates a negative feedback loop
5 Layer Architecture
M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
Application of Internet of things (IOT) on
Microfluidic Devices In Healthcare
Microfluidic-based
Wearables
Microfluidic-based Point
of Care (POC) Devices
Wearable Microfluidics devices (Biofluid)
Biofluid Sweat Analysis
Skin Patch pH analysis
Yeo, J. C., Kenry, K., & Lim, C. T. (2016). Emergence of microfluidic wearable technologies. Lab on a Chip, 16(21), 4082–4090. doi:10.1039/c6lc00926c
Wearable Microfluidics Devices (Mechanotransduction
Force)
Foot Pressure
Wrist PressureVocal Cords
Yeo, J. C., Kenry, K., & Lim, C. T. (2016). Emergence of microfluidic wearable technologies. Lab on a Chip, 16(21), 4082–4090. doi:10.1039/c6lc00926c
Liu, Y., Yang, T., Zhang, Y., Qu, G., Wei, S., Liu, Z., Kong, T., Ultrastretchable and Wireless Bioelectronics Based on All‐Hydrogel Microfluidics. Adv. Mater. 2019, 31, 1902783. https://doi.org/10.1002/adma.201902783
Microfluidic-based Point of Care (POC) Devices
Electrochemical microfluidic paper-based
immunosensor device (E-μPADs)
Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland) 2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951.
Zhou, J.; Tao, F.; Zhu, J.; Lin, S.; Wang, Z.; Wang, X.; Ou, J. Y.; Li, Y.; Liu, Q. H. Portable Tumor Biosensing of Serum by Plasmonic Biochips in Combination with Nanoimprint and Microfluidics. Nanophotonics 2019, 8 (2), 307–316. https://doi.org/10.1515/nanoph-2018-0173
Microfluidic-based Point of Care (POC) Devices
IoT lab chip on monitoring Ebola Virus
Diseases
Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L.; Stevens, M. M. A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano 2018, 12 (1), 63–73. https://doi.org/10.1021/acsnano.7b07021
Application of Internet of things (IOT) on Microfluidic
Devices In Research and Drug Development
Research & Development Drug Development
IoT and Microfluidics Aiding in Research and
Development
micrIO: an open-source autosampler and fraction
collector for automated microfluidic input–output
Longwell, S. A., & Fordyce, P. M. (2019). micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output. Lab on a Chip. doi:10.1039/c9lc00512a
IoT and Microfluidics in Pharmaceutical
AI Aided Synthesis of Personalised Drugs
Herbal Medicine
Chemical Based
Pharmaceuticals
Protein based
Pharmaceuticals
Personalised Drugs
Zhong, J.; Riordon, J.; Wu, T. C.; Edwards, H.; Wheeler, A. R.; Pardee, K.; Aspuru-Guzik, A.; Sinton, D. When Robotics Met Fluidics. Lab Chip 2020, 20 (4), 709–716. https://doi.org/10.1039/c9lc01042d
Security of
Internet
Prevent hacking or
leaking of sensitive
data
Materials
Technology
Limited by the
capabilities of current
available materials
Multidisciplinary
Efforts
Incorporation of
Hardware and
Software requires
multiple skill sets
Problems and Challenges
Conclusion and Future Work
Incorporation of
acoustic levitation
Samples and analytes
will not touch the
surface
Reduce any chance
possible
contamination
Open Source and 3D
printing
Integration of Open Source
Platforms and 3D printing
Higher accessibility
contributes to lower cost
Synergy of IoT and
microfluidics
Effectiveness of integrating IoT
into mircofludics
Give rise to potential solution
to upgrade quality of life
Eg. wearable IoT, healthcare
4.0, personalised
pharmaceuticals
Brangel, P., Sobarzo, A., Parolo, C., Miller, B. S., Howes, P. D., Gelkop, S., … Stevens, M. M. (2018). A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano, 12(1), 63–73. doi:10.1021/acsnano.7b07021
Question and Answers
References
1. Chen, C., Loh, E.-W., Kuo, K. N., & Tam, K.-W. (2019). The Times they Are a-Changin’ – Healthcare 4.0 Is Coming! Journal of Medical Systems, 44(2). doi:10.1007/s10916-019-1513-0
2. Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D., & Kang, Y. (2019). Healthcare 4.0: A review of frontiers in digital health. WIREs Data Mining and Knowledge Discovery.
doi:10.1002/widm.1350
3. Liu, X.; Huang, X.; Jiang, Y.; Xu, H.; Guo, J.; Hou, H. W.; Yan, M.; Yu, H. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- Μm-Pitch Super-Resolution Image
Sensor in 65-Nm BSI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11 (4), 794–803. https://doi.org/10.1109/TBCAS.2017.2697451.
4. Zhao, C.; Liu, X. A Portable Paper-Based Microfluidic Platform for Multiplexed Electrochemical Detection of Human Immunodeficiency Virus and Hepatitis C Virus Antibodies in Serum.
Biomicrofluidics 2016, 10 (2). https://doi.org/10.1063/1.4945311.
5. Ibrahim, M.; Gorlatova, M.; Chakrabarty, K. The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper. IEEE/ACM Int. Conf. Comput.
Des. Dig. Tech. Pap. ICCAD 2019, 2019-November, 1–8. https://doi.org/10.1109/ICCAD45719.2019.8942080.
6. Liu, Y.; Yang, T.; Zhang, Y.; Qu, G.; Wei, S.; Liu, Z.; Kong, T. Ultrastretchable and Wireless Bioelectronics Based on All-Hydrogel Microfluidics. Adv. Mater. 2019, 31 (39), 1–7.
https://doi.org/10.1002/adma.201902783.
7. Zhong, J.; Riordon, J.; Wu, T. C.; Edwards, H.; Wheeler, A. R.; Pardee, K.; Aspuru-Guzik, A.; Sinton, D. When Robotics Met Fluidics. Lab Chip 2020, 20 (4), 709–716.
https://doi.org/10.1039/c9lc01042d.
8. Jha, A. K.; Akhter, Z.; Tiwari, N.; Muhammed Shafi, K. T.; Samant, H.; Jaleel Akhtar, M.; Cifra, M. Broadband Wireless Sensing System for Non-Invasive Testing of Biological Samples. IEEE
J. Emerg. Sel. Top. Circuits Syst. 2018, 8 (2), 251–259. https://doi.org/10.1109/JETCAS.2018.2829205.
9. Khan, S. M.; Gumus, A.; Nassar, J. M.; Hussain, M. M. CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Adv. Mater. 2018, 30 (16), 1–26.
https://doi.org/10.1002/adma.201705759.
10. (Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chem. Rev. 2020, 120 (17), 9482–9553. https://doi.org/10.1021/acs.chemrev.0c00206.
11. Kulkarni, M. B.; Yashas; Enaganti, P. K.; Amreen, K.; Goel, S. Internet of Things Enabled Portable Thermal Management System with Microfluidic Platform to Synthesize
MnO2nanoparticles for Electrochemical Sensing. Nanotechnology 2020, 31 (42). https://doi.org/10.1088/1361-6528/ab9ed8.
12. Longwell, S. A.; Fordyce, P. M. MicrIO: An Open-Source Autosampler and Fraction Collector for Automated Microfluidic Input-Output. Lab Chip 2020, 20 (1), 93–106.
https://doi.org/10.1039/c9lc00512a.
13. Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland)
2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951.
14. Lin, S.; Wang, B.; Zhao, Y.; Shih, R.; Cheng, X.; Yu, W.; Hojaiji, H.; Lin, H.; Hoffman, C.; Ly, D.; Tan, J.; Chen, Y.; Di Carlo, D.; Milla, C.; Emaminejad, S. Natural Perspiration Sampling and in Situ
Electrochemical Analysis with Hydrogel Micropatches for User-Identifiable and Wireless Chemo/Biosensing. ACS Sensors 2020, 5 (1), 93–102.
https://doi.org/10.1021/acssensors.9b01727.
15. Zhou, J.; Tao, F.; Zhu, J.; Lin, S.; Wang, Z.; Wang, X.; Ou, J. Y.; Li, Y.; Liu, Q. H. Portable Tumor Biosensing of Serum by Plasmonic Biochips in Combination with Nanoimprint and
Microfluidics. Nanophotonics 2019, 8 (2), 307–316. https://doi.org/10.1515/nanoph-2018-0173.
16. Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L.; Stevens, M. M. A Serological Point-of-Care Test for the
Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano 2018, 12 (1), 63–73. https://doi.org/10.1021/acsnano.7b07021.
17. Edris S. (2019) Paradigm Change in the History of the Pharmaceutical Industry. In: Cantwell J., Hayashi T. (eds) Paradigm Shift in Technologies and Innovation Systems. Springer,
Singapore. https://doi.org/10.1007/978-981-32-9350-2_9

More Related Content

DOCX
The future of IoT paper
PPTX
Challenges and application of Internet of Things
PPTX
Micro Electronic capsule
PDF
Iot for smart agriculture
PDF
IRJET - Women’s Safety System using IoT
PDF
Artificial intelligence and IoT
DOC
Near Field Communication (NFC) technology
The future of IoT paper
Challenges and application of Internet of Things
Micro Electronic capsule
Iot for smart agriculture
IRJET - Women’s Safety System using IoT
Artificial intelligence and IoT
Near Field Communication (NFC) technology

What's hot (20)

PPTX
micro Electric pill
PPTX
Gesture recognition technology ppt
PPTX
drone technology
PDF
Transforming enterprise and industry with 5G private networks
PPTX
Drone’s
PPTX
Ppt of nanocomputing
PPTX
Application of Artificial Intelligence (AI) in UAV Design Training
PPTX
Internet of nano things
PPTX
PDF
The Internet of Nano Things (IoNT)
PPTX
Eye phone
PPTX
NANO TECHNOLOGY FOR AEROSPACE
PPTX
CAPSULE ENDOSCOPY
PPTX
Drone delivery project proposal
PDF
The many faces of IoT (Internet of Things) in Healthcare
PPSX
Aerospace Nanotechnology
PDF
A Software Defined WAN Architecture
PPTX
Nano ppt
PDF
Why Drones are the Future of IoT
PPTX
micro Electric pill
Gesture recognition technology ppt
drone technology
Transforming enterprise and industry with 5G private networks
Drone’s
Ppt of nanocomputing
Application of Artificial Intelligence (AI) in UAV Design Training
Internet of nano things
The Internet of Nano Things (IoNT)
Eye phone
NANO TECHNOLOGY FOR AEROSPACE
CAPSULE ENDOSCOPY
Drone delivery project proposal
The many faces of IoT (Internet of Things) in Healthcare
Aerospace Nanotechnology
A Software Defined WAN Architecture
Nano ppt
Why Drones are the Future of IoT
Ad

Similar to The Application of Internet of Things (IoT) on Microfluidic Devices (20)

PPTX
The Application of Internet of Things on Microfluidic Devices
PDF
Microfluidics: Advancements in Point-Of-Care Testing (www.kiu.ac.ug)
PDF
Microfluidic Biosensors Wing Cheung Mak Aaron Ho Pui Ho
PDF
Chinese Microfluidics Industry 2018 Report by Yole Developpement
PPTX
esra research seminar of the chemistry pptx
PDF
Integrated Microfabricated Biodevices 1st Edition Andras Guttman
PPTX
Biochip
PDF
Integrated Microfabricated Biodevices 1st Edition Andras Guttman
PDF
Microfluidic Applications 2015 Report by Yole Developpement
PDF
Microfluidic Diagnostics Methods And Protocols 1st Edition Lawrence Kulinsky
PPTX
null.pptx
PDF
Microscale bioprocessing
PPTX
Fundamentals and applications of microfluidics - ch1
PDF
Microfluidic technologies for diagnostic applications - Sample
PDF
Sackmann 2014
PDF
Bp32849856
PPTX
An Overview of Microfluidics
PDF
Status of the Microfluidics Industry 2019 report by Yole Développement
PDF
C4 cs00371c
PPT
Wheeler
The Application of Internet of Things on Microfluidic Devices
Microfluidics: Advancements in Point-Of-Care Testing (www.kiu.ac.ug)
Microfluidic Biosensors Wing Cheung Mak Aaron Ho Pui Ho
Chinese Microfluidics Industry 2018 Report by Yole Developpement
esra research seminar of the chemistry pptx
Integrated Microfabricated Biodevices 1st Edition Andras Guttman
Biochip
Integrated Microfabricated Biodevices 1st Edition Andras Guttman
Microfluidic Applications 2015 Report by Yole Developpement
Microfluidic Diagnostics Methods And Protocols 1st Edition Lawrence Kulinsky
null.pptx
Microscale bioprocessing
Fundamentals and applications of microfluidics - ch1
Microfluidic technologies for diagnostic applications - Sample
Sackmann 2014
Bp32849856
An Overview of Microfluidics
Status of the Microfluidics Industry 2019 report by Yole Développement
C4 cs00371c
Wheeler
Ad

Recently uploaded (20)

PPTX
Cell Types and Its function , kingdom of life
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Computing-Curriculum for Schools in Ghana
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Pharma ospi slides which help in ospi learning
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Pre independence Education in Inndia.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
01-Introduction-to-Information-Management.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Cell Types and Its function , kingdom of life
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Abdominal Access Techniques with Prof. Dr. R K Mishra
Computing-Curriculum for Schools in Ghana
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
RMMM.pdf make it easy to upload and study
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
human mycosis Human fungal infections are called human mycosis..pptx
GDM (1) (1).pptx small presentation for students
Pharma ospi slides which help in ospi learning
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Pre independence Education in Inndia.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
01-Introduction-to-Information-Management.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
PPH.pptx obstetrics and gynecology in nursing
VCE English Exam - Section C Student Revision Booklet
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student

The Application of Internet of Things (IoT) on Microfluidic Devices

  • 1. The Application of Internet Of Things (IOT) on Microfluidic Devices Chia Xun Nian Mok Yan Ni Teo Jin Wei
  • 2. Content Page 01 Healthcare 4.0 & the Important of IoT on Microfluidics 02 Principle of IoT in Microfluidics & Key Developments 03 Conventional vs Digital Microfluidics & System Design on Internet of Microfluidic Things 04 Results and discussion (Applications of Microfluidics based IOT) 05 Problems encountered 06 Conclusion and future work
  • 3. Healthcare 4.0 Wearable & Point of Care IOT Capture & Processing of Biological Data in Real Time Ambient IOT Sensor Detection for Non Intrusive observation of individuals Healthcare Digitalisation Cloud and Storage Healthcare 2.0 Healthcare 3.0 Healthcare 4.0 Healthcare 1.0 Chen, C., Loh, E.-W., Kuo, K. N., & Tam, K.-W. (2019). The Times they Are a-Changin’ – Healthcare 4.0 Is Coming! Journal of Medical Systems, 44(2). doi:10.1007/s10916-019-1513-0 Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D., & Kang, Y. (2019). Healthcare 4.0: A review of frontiers in digital health. WIREs Data Mining and Knowledge Discovery. doi:10.1002/widm.1350
  • 4. The Importance of IoT on Microfluidics Conventional Microfluidic Chemical Analysis Integration with IoT Big Data Analytics & Artificial Intelligence Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland) 2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951 Ibrahim, M.; Gorlatova, M.; Chakrabarty, K. The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper. IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD 2019, 2019-November, 1–8. https://doi.org/10.1109/ICCAD45719.2019.8942080..
  • 5. Internet of Things (IOT) Hardware & Software Microcontroller Boards/Single Board computer Microcontroller Functional Module (e.g pumps, bluetooth and Wifi) Microfluidics Kassis, T., Perez, P. M., Yang, C. J. W., Soenksen, L. R., TrumperPrabhu, G. R. D., & Urban, P. L. (2020). Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical Reviews. doi:10.1021/acs.chemrev.0c00206 , D. L., & Griffith, L. G. (2018). PiFlow: A biocompatible low-cost programmable dynamic flow pumping system utilizing a Raspberry Pi Zero and commercial piezoelectric pumps. HardwareX, 4, e00034.
  • 6. Complementary Metal Oxide Semiconductor (CMOS) Chip Interface ● Processor ● Noise Removal ● Signal amplification ● Actuator controller Sensors ● Image sensor ● Particle/Cells detection ● pH sensor ● DNA analysis Actuators ● Particle Actuators ● Microheater ● Flow control Khan, S. M., Gumus, A., Nassar, J. M., & Hussain, M. M. (2018). CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Advanced Materials, 30(16), 1705759. doi:10.1002/adma.201705759
  • 7. Complementary Metal Oxide Semiconductor (CMOS) Chip A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS Khan, S. M., Gumus, A., Nassar, J. M., & Hussain, M. M. (2018). CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Advanced Materials, 30(16), 1705759. doi:10.1002/adma.201705759 Liu, X.; Huang, X.; Jiang, Y.; Xu, H.; Guo, J.; Hou, H. W.; Yan, M.; Yu, H. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- Μm-Pitch Super-Resolution Image Sensor in 65-Nm BSI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11 (4), 794–803. https://doi.org/10.1109/TBCAS.2017.2697451.
  • 8. Conventional vs Digital Microfluidics Digital Microfluidics Conventional Microfluidics Flow controlled by voltage or pressure Utilizes small droplets as on chip analyte carrier Manipulation of the droplets done by an array of electrodes that are electrically controllable Droplet handling mechanism - Electrowetting on Dielectric (EWOD) Digital Microfluidics - reconfigurable technology ● Cyber-Physical System ● Real-time decision making Nguyen, N.-T., Hejazian, M., Ooi, C., & Kashaninejad, N. (2017). Recent Advances and Future Perspectives on Microfluidic Liquid Handling. Micromachines, 8(6), 186. doi:10.3390/mi8060186
  • 9. Internet of Microfluidic Things (IoMT) System Design 5 Layer Architecture M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
  • 10. Perception Layer Consists of microfluidic sensors and actuators that interact with biochemical substances Universal control interface has to be designed and customised to act as “adapters” Adapters are capable of digitizing and transferring data to abstraction layer Abstraction Layer Implements coordination protocol among Microfluidic Things Data transferred to data storage (Middleware Layer) 5 Layer Architecture M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
  • 11. Middleware Layer Stores real-time streaming data Implements procedures based on specific identification information (protocol name & microfluidic device address) Monitors the progress of biochemical service Application Layer Map user’s application specification to unique biochemical services Transmit sensor measurement back to users Semantics Layer Manage performance metrics and data collected Build decision model, graphs and flowchart Creates a negative feedback loop 5 Layer Architecture M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
  • 12. Application of Internet of things (IOT) on Microfluidic Devices In Healthcare Microfluidic-based Wearables Microfluidic-based Point of Care (POC) Devices
  • 13. Wearable Microfluidics devices (Biofluid) Biofluid Sweat Analysis Skin Patch pH analysis Yeo, J. C., Kenry, K., & Lim, C. T. (2016). Emergence of microfluidic wearable technologies. Lab on a Chip, 16(21), 4082–4090. doi:10.1039/c6lc00926c
  • 14. Wearable Microfluidics Devices (Mechanotransduction Force) Foot Pressure Wrist PressureVocal Cords Yeo, J. C., Kenry, K., & Lim, C. T. (2016). Emergence of microfluidic wearable technologies. Lab on a Chip, 16(21), 4082–4090. doi:10.1039/c6lc00926c Liu, Y., Yang, T., Zhang, Y., Qu, G., Wei, S., Liu, Z., Kong, T., Ultrastretchable and Wireless Bioelectronics Based on All‐Hydrogel Microfluidics. Adv. Mater. 2019, 31, 1902783. https://doi.org/10.1002/adma.201902783
  • 15. Microfluidic-based Point of Care (POC) Devices Electrochemical microfluidic paper-based immunosensor device (E-μPADs) Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland) 2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951. Zhou, J.; Tao, F.; Zhu, J.; Lin, S.; Wang, Z.; Wang, X.; Ou, J. Y.; Li, Y.; Liu, Q. H. Portable Tumor Biosensing of Serum by Plasmonic Biochips in Combination with Nanoimprint and Microfluidics. Nanophotonics 2019, 8 (2), 307–316. https://doi.org/10.1515/nanoph-2018-0173
  • 16. Microfluidic-based Point of Care (POC) Devices IoT lab chip on monitoring Ebola Virus Diseases Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L.; Stevens, M. M. A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano 2018, 12 (1), 63–73. https://doi.org/10.1021/acsnano.7b07021
  • 17. Application of Internet of things (IOT) on Microfluidic Devices In Research and Drug Development Research & Development Drug Development
  • 18. IoT and Microfluidics Aiding in Research and Development micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output Longwell, S. A., & Fordyce, P. M. (2019). micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output. Lab on a Chip. doi:10.1039/c9lc00512a
  • 19. IoT and Microfluidics in Pharmaceutical AI Aided Synthesis of Personalised Drugs Herbal Medicine Chemical Based Pharmaceuticals Protein based Pharmaceuticals Personalised Drugs Zhong, J.; Riordon, J.; Wu, T. C.; Edwards, H.; Wheeler, A. R.; Pardee, K.; Aspuru-Guzik, A.; Sinton, D. When Robotics Met Fluidics. Lab Chip 2020, 20 (4), 709–716. https://doi.org/10.1039/c9lc01042d
  • 20. Security of Internet Prevent hacking or leaking of sensitive data Materials Technology Limited by the capabilities of current available materials Multidisciplinary Efforts Incorporation of Hardware and Software requires multiple skill sets Problems and Challenges
  • 21. Conclusion and Future Work Incorporation of acoustic levitation Samples and analytes will not touch the surface Reduce any chance possible contamination Open Source and 3D printing Integration of Open Source Platforms and 3D printing Higher accessibility contributes to lower cost Synergy of IoT and microfluidics Effectiveness of integrating IoT into mircofludics Give rise to potential solution to upgrade quality of life Eg. wearable IoT, healthcare 4.0, personalised pharmaceuticals Brangel, P., Sobarzo, A., Parolo, C., Miller, B. S., Howes, P. D., Gelkop, S., … Stevens, M. M. (2018). A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano, 12(1), 63–73. doi:10.1021/acsnano.7b07021
  • 23. References 1. Chen, C., Loh, E.-W., Kuo, K. N., & Tam, K.-W. (2019). The Times they Are a-Changin’ – Healthcare 4.0 Is Coming! Journal of Medical Systems, 44(2). doi:10.1007/s10916-019-1513-0 2. Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D., & Kang, Y. (2019). Healthcare 4.0: A review of frontiers in digital health. WIREs Data Mining and Knowledge Discovery. doi:10.1002/widm.1350 3. Liu, X.; Huang, X.; Jiang, Y.; Xu, H.; Guo, J.; Hou, H. W.; Yan, M.; Yu, H. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- Μm-Pitch Super-Resolution Image Sensor in 65-Nm BSI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11 (4), 794–803. https://doi.org/10.1109/TBCAS.2017.2697451. 4. Zhao, C.; Liu, X. A Portable Paper-Based Microfluidic Platform for Multiplexed Electrochemical Detection of Human Immunodeficiency Virus and Hepatitis C Virus Antibodies in Serum. Biomicrofluidics 2016, 10 (2). https://doi.org/10.1063/1.4945311. 5. Ibrahim, M.; Gorlatova, M.; Chakrabarty, K. The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper. IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD 2019, 2019-November, 1–8. https://doi.org/10.1109/ICCAD45719.2019.8942080. 6. Liu, Y.; Yang, T.; Zhang, Y.; Qu, G.; Wei, S.; Liu, Z.; Kong, T. Ultrastretchable and Wireless Bioelectronics Based on All-Hydrogel Microfluidics. Adv. Mater. 2019, 31 (39), 1–7. https://doi.org/10.1002/adma.201902783. 7. Zhong, J.; Riordon, J.; Wu, T. C.; Edwards, H.; Wheeler, A. R.; Pardee, K.; Aspuru-Guzik, A.; Sinton, D. When Robotics Met Fluidics. Lab Chip 2020, 20 (4), 709–716. https://doi.org/10.1039/c9lc01042d. 8. Jha, A. K.; Akhter, Z.; Tiwari, N.; Muhammed Shafi, K. T.; Samant, H.; Jaleel Akhtar, M.; Cifra, M. Broadband Wireless Sensing System for Non-Invasive Testing of Biological Samples. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8 (2), 251–259. https://doi.org/10.1109/JETCAS.2018.2829205. 9. Khan, S. M.; Gumus, A.; Nassar, J. M.; Hussain, M. M. CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Adv. Mater. 2018, 30 (16), 1–26. https://doi.org/10.1002/adma.201705759. 10. (Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chem. Rev. 2020, 120 (17), 9482–9553. https://doi.org/10.1021/acs.chemrev.0c00206. 11. Kulkarni, M. B.; Yashas; Enaganti, P. K.; Amreen, K.; Goel, S. Internet of Things Enabled Portable Thermal Management System with Microfluidic Platform to Synthesize MnO2nanoparticles for Electrochemical Sensing. Nanotechnology 2020, 31 (42). https://doi.org/10.1088/1361-6528/ab9ed8. 12. Longwell, S. A.; Fordyce, P. M. MicrIO: An Open-Source Autosampler and Fraction Collector for Automated Microfluidic Input-Output. Lab Chip 2020, 20 (1), 93–106. https://doi.org/10.1039/c9lc00512a. 13. Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland) 2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951. 14. Lin, S.; Wang, B.; Zhao, Y.; Shih, R.; Cheng, X.; Yu, W.; Hojaiji, H.; Lin, H.; Hoffman, C.; Ly, D.; Tan, J.; Chen, Y.; Di Carlo, D.; Milla, C.; Emaminejad, S. Natural Perspiration Sampling and in Situ Electrochemical Analysis with Hydrogel Micropatches for User-Identifiable and Wireless Chemo/Biosensing. ACS Sensors 2020, 5 (1), 93–102. https://doi.org/10.1021/acssensors.9b01727. 15. Zhou, J.; Tao, F.; Zhu, J.; Lin, S.; Wang, Z.; Wang, X.; Ou, J. Y.; Li, Y.; Liu, Q. H. Portable Tumor Biosensing of Serum by Plasmonic Biochips in Combination with Nanoimprint and Microfluidics. Nanophotonics 2019, 8 (2), 307–316. https://doi.org/10.1515/nanoph-2018-0173. 16. Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L.; Stevens, M. M. A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano 2018, 12 (1), 63–73. https://doi.org/10.1021/acsnano.7b07021. 17. Edris S. (2019) Paradigm Change in the History of the Pharmaceutical Industry. In: Cantwell J., Hayashi T. (eds) Paradigm Shift in Technologies and Innovation Systems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9350-2_9