Vidya Bharti Educational Institutions
Trigonometry Basics
Right Triangle Trigonometry
Trignometry vbei
Sine FunctionSine Function
 When you talk about the sin of an angle,
that means you are working with the
opposite side, and the hypotenuse of a
right triangle.
Sine functionSine function
 Given a right triangle, and reference angle A:
sin A =
hypotenuse
opposite
A
opposite
hypotenuse
The sin function specifies
these two sides of the
triangle, and they must be
arranged as shown.
Sine FunctionSine Function
 For example to evaluate sin 40°…
 Type-in 40 on your calculator (make sure
the calculator is in degree mode), then
press the sin key.
 It should show a result of 0.642787…
 Note: If this did not work on your calculator,Note: If this did not work on your calculator,
try pressing thetry pressing the sinsin key first, then type-in 40.key first, then type-in 40.
Press the = key to get the answer.Press the = key to get the answer.
Sine Function
 Try each of these on your calculator:
 sin 55°
 sin 10°
 sin 87°
Sine FunctionSine Function
Sine Function
 Try each of these on your calculator:
 sin 55° = 0.819
 sin 10° = 0.174
 sin 87° = 0.999
Sine FunctionSine Function
Inverse Sine FunctionInverse Sine Function
 Using sin-1
(inverse sin):
If 0.7315 = sin θ
then sin-1
(0.7315) = θ
 Solve for θ if sin θ = 0.2419
Inverse Sine FunctionInverse Sine Function
Cosine function
 The next trig function you need to know
is the cosine function (cos):
cos A =
hypotenuse
adjacent
A
adjacent
hypotenuse
Cosine FunctionCosine Function
Cosine Function
 Use your calculator to determine cos 50°
 First, type-in 50…
 …then press the cos key.
 You should get an answer of 0.642787...
Note: If this did not work on your calculator,
try pressing the cos key first, then type-in 50.
Press the = key to get the answer.
Cosine FunctionCosine Function
Cosine Function
 Try these on your calculator:
 cos 25°
 cos 0°
 cos 90°
 cos 45°
Cosine FunctionCosine Function
Cosine Function
 Try these on your calculator:
 cos 25° = 0.906
 cos 0° = 1
 cos 90° = 0
 cos 45° = 0.707
Cosine FunctionCosine Function
 Using cos-1
(inverse cosine):
If 0.9272 = cos θ
then cos-1
(0.9272) = θ
 Solve for θ if cos θ = 0.5150
Inverse Cosine FunctionInverse Cosine Function
Tangent function
 The last trig function you need to know
is the tangent function (tan):
tan A =
adjacent
opposite
A
adjacent
opposite
Tangent FunctionTangent Function
Tangent FunctionTangent Function
 Use your calculator to determine tan
40°
 First, type-in 40…
 …then press the tan key.
 You should get an answer of 0.839...
Note: If this did not work on your
calculator, try pressing the tan key first,
then type-in 40. Press the = key to get the
answer.
Tangent Function
 Try these on your calculator:
 tan 5°
 tan 30°
 tan 80°
 tan 85°
Tangent FunctionTangent Function
Tangent Function
 Try these on your calculator:
 tan 5° = 0.087
 tan 30° = 0.577
 tan 80° = 5.671
 tan 85° = 11.430
Tangent FunctionTangent Function
 Using tan-1
(inverse tangent):
If 0.5543 = tan θ
then tan-1
(0.5543) = θ
 Solve for θ if tan θ = 28.64
Inverse Tangent FunctionInverse Tangent Function
Review
 These are the only trig functions you will
be using in this course.
 You need to memorize each one.
 Use the memory device: SOH CAH TOA
adj
opp
A
hyp
adj
A
hyp
opp
A
=
=
=
tan
cos
sin
Review
Review
 The sin function:
sin A =
hypotenuse
opposite
A
opposite
hypotenuse
Review
 The cosine function.
cos A =
hypotenuse
adjacent
A
adjacent
hypotenuse
Review
Review
 The tangent function.
tan A =
adjacent
opposite
A
adjacent
opposite
Review
Most Common Application:
2 2
1
cos
sin
tan
r x y
x r
y r
y
x
θ
θ
θ −
= +
=
=
 
=  ÷
 
x
y
r
θ
Review
 Solve for x:
x = sin 30°
x = cos 45°
x = tan 20°
Review
Review
 Solve for θ:
0.7987 = sin θ
0.9272 = cos θ
2.145 = tan θ
Review
What if it’s not a right triangle?
- Use the Law of Cosines:
The Law of Cosines
In any triangle ABC, with sides a, b, and c,
.cos2
cos2
cos2
222
222
222
Cabbac
Baccab
Abccba
−+=
−+=
−+=
What if it’s not a right triangle?
 Law of Cosines - The square of the magnitude
of the resultant vector is equal to the sum of the
magnitude of the squares of the two vectors, minus two
times the product of the magnitudes of the vectors,
multiplied by the cosine of the angle between them.
R2
= A2
+ B2
– 2AB cosθ
θ
Vidya Bharti Educational Institutions

More Related Content

PPT
Trig right triangle trig
PPTX
Trig overview
PPT
Algebra 2 unit 9.7
DOCX
ALGORITHM DEVELOPMENT CHART - Temp_Pos_Neg_Amplitude_Area_Feature
PPT
Right triangle trigonometry
PDF
5.4 Solving Right Triangles
PPT
Trigonometry ratios in right triangle
PDF
Right triangle problems
Trig right triangle trig
Trig overview
Algebra 2 unit 9.7
ALGORITHM DEVELOPMENT CHART - Temp_Pos_Neg_Amplitude_Area_Feature
Right triangle trigonometry
5.4 Solving Right Triangles
Trigonometry ratios in right triangle
Right triangle problems

What's hot (20)

RTF
Exam 6232 A
PDF
Digital length measuring
PPTX
Right triangle trigonometry
PPT
Algebra 2 unit 10.1
PPTX
Powerpoint(pythagorean theorem)
PPTX
Trigonometric functions
PPT
Algebra 2 unit 10.2
PPT
Right triangle trigonometry
PPTX
4.1 trig ratios
PPTX
The Tangent Ratio
PPT
Algebra 2 unit 10.3
PPTX
Trigonometryandtriangles 110929154951-phpapp02
PPS
M2 vector math
PPT
presentation
PPT
Trigonometry 2
PPTX
7.7 solve right triangles
PPTX
Lay out an angle using the chordal method
PPT
Solution of triangle
PPTX
5.2.1 trigonometric functions
PPT
Law of sines-1
Exam 6232 A
Digital length measuring
Right triangle trigonometry
Algebra 2 unit 10.1
Powerpoint(pythagorean theorem)
Trigonometric functions
Algebra 2 unit 10.2
Right triangle trigonometry
4.1 trig ratios
The Tangent Ratio
Algebra 2 unit 10.3
Trigonometryandtriangles 110929154951-phpapp02
M2 vector math
presentation
Trigonometry 2
7.7 solve right triangles
Lay out an angle using the chordal method
Solution of triangle
5.2.1 trigonometric functions
Law of sines-1
Ad

Similar to Trignometry vbei (20)

PPT
Section 4.3 MA.pptSection 4.3 MA.pptSection 4.3 MA.ppt
PPT
abc ejhjew kjhfje jhfhj jf jbfj math.ppt
PPT
trig_functions_pp.ppt
PPT
Trig Interactive Powerpoint
PPT
Sine, cosine, tangent and cotangent of an angle and their measure.ppt
PPTX
Introduction-to SAT math Trigonometry.pptx
PDF
4.12.1 Trigonometry
PPTX
SYLLABUS FOR UNIT TEST- II TRIGONOMETRY-TRIGONOMETRIC RATIOS, SINE RULE, C...
PPTX
SYLLABUS FOR UNIT TEST- II TRIGONOMETRY-TRIGONOMETRIC RATIOS, SINE RULE, C...
PPTX
TRIGONOMETRY-TRIGONOMETRIC RATIOS, SINE RULE, COSINE RULE, AREA OFTRIANGLE...
PDF
4.12.1 Trigonometry
PPT
Geom9point5and 6
PPTX
Right triangles day2
PPT
PPTX
Trigonometry and trigonometric ratios angles
PPTX
Introduction to trigonometry
PDF
An Introduction to Trigonometry.pdf
PPT
Algebra 2 unit 9.8
PPTX
ANGLE OF ELEVATION AND DEPRESSION PPT XX
DOC
Trigonometry docs
Section 4.3 MA.pptSection 4.3 MA.pptSection 4.3 MA.ppt
abc ejhjew kjhfje jhfhj jf jbfj math.ppt
trig_functions_pp.ppt
Trig Interactive Powerpoint
Sine, cosine, tangent and cotangent of an angle and their measure.ppt
Introduction-to SAT math Trigonometry.pptx
4.12.1 Trigonometry
SYLLABUS FOR UNIT TEST- II TRIGONOMETRY-TRIGONOMETRIC RATIOS, SINE RULE, C...
SYLLABUS FOR UNIT TEST- II TRIGONOMETRY-TRIGONOMETRIC RATIOS, SINE RULE, C...
TRIGONOMETRY-TRIGONOMETRIC RATIOS, SINE RULE, COSINE RULE, AREA OFTRIANGLE...
4.12.1 Trigonometry
Geom9point5and 6
Right triangles day2
Trigonometry and trigonometric ratios angles
Introduction to trigonometry
An Introduction to Trigonometry.pdf
Algebra 2 unit 9.8
ANGLE OF ELEVATION AND DEPRESSION PPT XX
Trigonometry docs
Ad

More from Vidya Bharti (20)

PPTX
Draw 'N' Win Competition at VBEI
PPSX
HUMAN RIGHTS
PPTX
Brands That are actually Indian
PPTX
Gandhi Jayanti
PPTX
Alcoholism, drug abuse and corruption
PPTX
Crime, criminal, criminology and juvenile delinquency. latest
PPTX
Ideal teacher
PPTX
Ideal student
PPTX
Illiteracy,poverty,unemployment,population growth ppt (2)
PPTX
Seasons
PPTX
Poverty and its causes
PPTX
Levels of court
PPTX
Impact of green revolution in india
PPTX
Nation development
PPTX
Social issue
PPTX
Federalism
PPTX
Applet programming in java
PPTX
Transportation in plants
PPTX
PPTX
Tree transplantation
Draw 'N' Win Competition at VBEI
HUMAN RIGHTS
Brands That are actually Indian
Gandhi Jayanti
Alcoholism, drug abuse and corruption
Crime, criminal, criminology and juvenile delinquency. latest
Ideal teacher
Ideal student
Illiteracy,poverty,unemployment,population growth ppt (2)
Seasons
Poverty and its causes
Levels of court
Impact of green revolution in india
Nation development
Social issue
Federalism
Applet programming in java
Transportation in plants
Tree transplantation

Recently uploaded (20)

PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
Complications of Minimal Access-Surgery.pdf
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
Empowerment Technology for Senior High School Guide
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Complications of Minimal Access-Surgery.pdf
Core Concepts of Personalized Learning and Virtual Learning Environments
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Virtual and Augmented Reality in Current Scenario
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Environmental Education MCQ BD2EE - Share Source.pdf
Empowerment Technology for Senior High School Guide
Share_Module_2_Power_conflict_and_negotiation.pptx

Trignometry vbei

  • 4. Sine FunctionSine Function  When you talk about the sin of an angle, that means you are working with the opposite side, and the hypotenuse of a right triangle.
  • 5. Sine functionSine function  Given a right triangle, and reference angle A: sin A = hypotenuse opposite A opposite hypotenuse The sin function specifies these two sides of the triangle, and they must be arranged as shown.
  • 6. Sine FunctionSine Function  For example to evaluate sin 40°…  Type-in 40 on your calculator (make sure the calculator is in degree mode), then press the sin key.  It should show a result of 0.642787…  Note: If this did not work on your calculator,Note: If this did not work on your calculator, try pressing thetry pressing the sinsin key first, then type-in 40.key first, then type-in 40. Press the = key to get the answer.Press the = key to get the answer.
  • 7. Sine Function  Try each of these on your calculator:  sin 55°  sin 10°  sin 87° Sine FunctionSine Function
  • 8. Sine Function  Try each of these on your calculator:  sin 55° = 0.819  sin 10° = 0.174  sin 87° = 0.999 Sine FunctionSine Function
  • 9. Inverse Sine FunctionInverse Sine Function  Using sin-1 (inverse sin): If 0.7315 = sin θ then sin-1 (0.7315) = θ  Solve for θ if sin θ = 0.2419 Inverse Sine FunctionInverse Sine Function
  • 10. Cosine function  The next trig function you need to know is the cosine function (cos): cos A = hypotenuse adjacent A adjacent hypotenuse Cosine FunctionCosine Function
  • 11. Cosine Function  Use your calculator to determine cos 50°  First, type-in 50…  …then press the cos key.  You should get an answer of 0.642787... Note: If this did not work on your calculator, try pressing the cos key first, then type-in 50. Press the = key to get the answer. Cosine FunctionCosine Function
  • 12. Cosine Function  Try these on your calculator:  cos 25°  cos 0°  cos 90°  cos 45° Cosine FunctionCosine Function
  • 13. Cosine Function  Try these on your calculator:  cos 25° = 0.906  cos 0° = 1  cos 90° = 0  cos 45° = 0.707 Cosine FunctionCosine Function
  • 14.  Using cos-1 (inverse cosine): If 0.9272 = cos θ then cos-1 (0.9272) = θ  Solve for θ if cos θ = 0.5150 Inverse Cosine FunctionInverse Cosine Function
  • 15. Tangent function  The last trig function you need to know is the tangent function (tan): tan A = adjacent opposite A adjacent opposite Tangent FunctionTangent Function
  • 16. Tangent FunctionTangent Function  Use your calculator to determine tan 40°  First, type-in 40…  …then press the tan key.  You should get an answer of 0.839... Note: If this did not work on your calculator, try pressing the tan key first, then type-in 40. Press the = key to get the answer.
  • 17. Tangent Function  Try these on your calculator:  tan 5°  tan 30°  tan 80°  tan 85° Tangent FunctionTangent Function
  • 18. Tangent Function  Try these on your calculator:  tan 5° = 0.087  tan 30° = 0.577  tan 80° = 5.671  tan 85° = 11.430 Tangent FunctionTangent Function
  • 19.  Using tan-1 (inverse tangent): If 0.5543 = tan θ then tan-1 (0.5543) = θ  Solve for θ if tan θ = 28.64 Inverse Tangent FunctionInverse Tangent Function
  • 20. Review  These are the only trig functions you will be using in this course.  You need to memorize each one.  Use the memory device: SOH CAH TOA adj opp A hyp adj A hyp opp A = = = tan cos sin Review
  • 21. Review  The sin function: sin A = hypotenuse opposite A opposite hypotenuse
  • 22. Review  The cosine function. cos A = hypotenuse adjacent A adjacent hypotenuse Review
  • 23. Review  The tangent function. tan A = adjacent opposite A adjacent opposite Review
  • 24. Most Common Application: 2 2 1 cos sin tan r x y x r y r y x θ θ θ − = + = =   =  ÷   x y r θ
  • 25. Review  Solve for x: x = sin 30° x = cos 45° x = tan 20° Review
  • 26. Review  Solve for θ: 0.7987 = sin θ 0.9272 = cos θ 2.145 = tan θ Review
  • 27. What if it’s not a right triangle? - Use the Law of Cosines: The Law of Cosines In any triangle ABC, with sides a, b, and c, .cos2 cos2 cos2 222 222 222 Cabbac Baccab Abccba −+= −+= −+=
  • 28. What if it’s not a right triangle?  Law of Cosines - The square of the magnitude of the resultant vector is equal to the sum of the magnitude of the squares of the two vectors, minus two times the product of the magnitudes of the vectors, multiplied by the cosine of the angle between them. R2 = A2 + B2 – 2AB cosθ θ
  • 29. Vidya Bharti Educational Institutions