SlideShare a Scribd company logo
Circuit Theorems 1
Circuit Theorems
REDDYPRASAD REDDIVARI
Chap. 4 Circuit Theorems
Introduction
Linearity property
Superposition
Source transformations
Thevenin’s theorem
Norton’s theorem
Maximum power transfer
Circuit Theorems 2
4.1 Introduction
Circuit Theorems 3
A large
complex circuits
Simplify
circuit analysis
Circuit Theorems
‧Thevenin’s theorem ‧ Norton theorem
‧Circuit linearity ‧ Superposition
‧source transformation ‧ max. power transfer
4.2 Linearity Property
Circuit Theorems 4
Homogeneity property (Scaling)
iR
v
i 

kiR
kv
ki 

Additivity property
R
i
v
i 2
2
2 

R
i
v
i 1
1
1 

2
1
2
1
2
1
2
1 )
( v
v
R
i
R
i
R
i
i
i
i 






A linear circuit is one whose output is linearly
related (or directly proportional) to its input
Fig. 4.1
Circuit Theorems 5
V0
I0
i
Linear circuit consist of
● linear elements
● linear dependent sources
● independent sources

Circuit Theorems 6
mA
1
mV
5
A
2
.
0
V
1
A
2
V
10









i
v
i
v
i
v
s
s
s
nonlinear
R
v
R
i
p :
2
2


Example 4.1
For the circuit in fig 4.2 find I0 when vs=12V and
vs=24V.
Circuit Theorems 7
Eastern Meiterranean University
Example 4.1
KVL
Eqs(4.1.1) and (4.1.3) we get
Circuit Theorems 8
0
4
12 2
1 

 s
v
i
i
0
3
16
4 2
1 



 s
x v
v
i
i
1
2i
vx 
becomes
)
2
.
1
.
4
(
0
16
10 2
1 


 s
v
i
i
(4.1.1)
(4.1.2)
(4.1.3)
2
1
2
1 6
0
12
2 i
i
i
i 




Example 4.1
Eq(4.1.1), we get
When
When
Showing that when the source value is doubled, I0
doubles.
Circuit Theorems 9
76
0
76 2
2
s
s
v
i
v
i 




A
76
12
2
0 
 i
I
V
12

s
v
A
76
24
2
0 
 i
I
V
24

s
v
Example 4.2
Assume I0 = 1 A and use linearity to find the
actual value of I0 in the circuit in fig 4.4.
Circuit Theorems 10
Example 4.2
Circuit Theorems 11
A,
2
4
/
V
8
)
5
3
(
then
A,
1
If
1
1
0
1
0






v
I
I
v
I
A
3
0
1
2 

 I
I
I
A
2
7
,
V
14
6
8
2 2
3
2
1
2 






V
I
I
V
V



 A
5
2
3
4 I
I
I A
5

S
I
A
5
1
0 

 S
I
A
I
A
15
A
3
0 

 S
I
I
4.3 Superposition
The superposition principle states that the voltage
across (or current through) an element in a linear
circuit is the algebraic sum of the voltages across
(or currents through) that element due to each
independent source acting alone.
Turn off, killed, inactive source:
● independent voltage source: 0 V (short circuit)
● independent current source: 0 A (open circuit)
Dependent sources are left intact.
Circuit Theorems 12
 Steps to apply superposition principle:
1. Turn off all independent sources except one source.
Find the output (voltage or current) due to that active
source using nodal or mesh analysis.
2. Repeat step 1 for each of the other independent
sources.
3. Find the total contribution by adding algebraically all
the contributions due to the independent sources.
Circuit Theorems 13
Eastern Mediterranean University
How to turn off independent sources
Turn off voltages sources = short voltage sources;
make it equal to zero voltage
Turn off current sources = open current sources;
make it equal to zero current
Circuit Theorems 14
Eastern Mediterranean University
Superposition involves more work but simpler
circuits.
Superposition is not applicable to the effect on
power.
Circuit Theorems 15
Eastern Mediterranean University
Example 4.3
Use the superposition theorem to find in the
circuit in Fig.4.6.
Circuit Theorems 16
Example 4.3
Since there are two sources,
let
Voltage division to get
Current division, to get
Hence
And we find
Circuit Theorems 17
2
1 V
V
V 

V
2
)
6
(
8
4
4
1 


V
A
2
)
3
(
8
4
8
3 


i
V
8
4 3
2 
 i
v
V
10
8
2
2
1 



 v
v
v
Example 4.4
Find I0 in the circuit in Fig.4.9 using superposition.
Circuit Theorems 18
Example 4.4
Circuit Theorems 19
Fig. 4.10
Example 4.4
Circuit Theorems 20
Fig. 4.10
4.5 Source Transformation
A source transformation is the process of replacing
a voltage source vs in series with a resistor R by a
current source is in parallel with a resistor R, or
vice versa
Circuit Theorems 21
Eastern Mediterranean University
Fig. 4.15 & 4.16
R
v
i
R
i
v s
s
s
s 
 or
Circuit Theorems 22
Eastern Mediterranean University
Equivalent Circuits
R
v
R
v
i
v
iR
v
s
s




Circuit Theorems 23
i i
+
+
-
-
v
v
v
i
vs
-is
Arrow of the current source
positive terminal of voltage source
Impossible source Transformation
● ideal voltage source (R = 0)
● ideal current source (R=)
Circuit Theorems 24
Example 4.6
Use source transformation to find vo in the circuit
in Fig 4.17.
Circuit Theorems 25
Example 4.6
Circuit Theorems 26
Fig 4.18
Example 4.6
we use current division in Fig.4.18(c) to get
and
Circuit Theorems 27
A
4
.
0
)
2
(
8
2
2



i
V
2
.
3
)
4
.
0
(
8
8 

 i
vo
Example 4.7
Find vx in Fig.4.20 using source transformation
Circuit Theorems 28
Example 4.7
Applying KVL around the loop in Fig 4.21(b) gives
(4.7.1)
Appling KVL to the loop containing only the 3V
voltage source, the resistor, and vx yields
(4.7.2)
Circuit Theorems 29
0
18
5
3 



 x
v
i

1
i
v
v
i x
x 





 3
0
1
3
Example 4.7
Substituting this into Eq.(4.7.1), we obtain
Alternatively
thus
Circuit Theorems 30
A
5
.
4
0
3
5
15 




 i
i
A
5
.
4
0
18
4 






 i
v
i
v x
x
V
5
.
7
3 

 i
vx
4.5 Thevenin’s Theorem
Thevenin’s theorem states that a linear two-
terminal circuit can be replaced by an equivalent
circuit consisting of a voltage source VTh in series
with a resistor RTh where VTh is the open circuit
voltage at the terminals and RTh is the input or
equivalent resistance at the terminals when the
independent source are turn off.
Circuit Theorems 31
Property of Linear Circuits
Circuit Theorems 32
i
v
v
i
Any two-terminal
Linear Circuits
+
-
Vth
Isc
Slope=1/Rth
Fig. 4.23
Circuit Theorems 33
How to Find Thevenin’s Voltage
Equivalent circuit: same voltage-current relation
at the terminals.

Circuit Theorems 34
:
Th oc
v
V  b
a 
at
ltage
circuit vo
open
How to Find Thevenin’s Resistance

Circuit Theorems 35
:
in
Th R
R 
b.
a 
 at
circuit
dead
the
of
resistance
input
circuited
open
b
a 

sources
t
independen
all
off
Turn

CASE 1
 If the network has no dependent sources:
● Turn off all independent source.
● RTH: can be obtained via simplification of either parallel
or series connection seen from a-b
Circuit Theorems 36
Fig. 4.25
CASE 2
If the network has dependent
sources
● Turn off all independent sources.
● Apply a voltage source vo at a-b
● Alternatively, apply a current
source io at a-b
Circuit Theorems 37
o
o
i
v
R 
Th
o
o
Th
i
v
R 
The Thevenin’s resistance may be negative,
indicating that the circuit has ability providing
power
Circuit Theorems 38
Fig. 4.26
Simplified circuit
Voltage divider
Circuit Theorems 39
L
L
R
R
V
I


Th
Th
Th
Th
V
R
R
R
I
R
V
L
L
L
L
L



Example 4.8
Find the Thevenin’s equivalent circuit of the
circuit shown in Fig 4.27, to the left of the
terminals a-b. Then find the current through RL =
6,16,and 36 .
Circuit Theorems 40
Find Rth
Circuit Theorems 41
short
source
voltage
V
32
:
Th 
R
open
source
current
A
2 






 4
1
16
12
4
1
12
||
4
Th
R
Find Vth
Circuit Theorems 42
analysis
Mesh
)
1
(
:
Th
V
A
2
,
0
)
(
12
4
32 2
2
1
1 





 i
i
i
i
A
5
.
0
1 
i
V
30
)
0
.
2
5
.
0
(
12
)
(
12 2
1
Th 



 i
i
V
Analysis
Nodal
ely,
Alternativ
)
2
(
12
/
2
4
/
)
32
( Th
Th V
V 


V
30
Th 
V
Example 4.8
Circuit Theorems 43
Fig. 4.29
transform
source
ely,
Alternativ
)
3
(
V
30
24
3
96
12
2
4
32
TH
TH
TH
TH
TH








V
V
V
V
V
Example 4.8
Circuit Theorems 44
:
get
To L
i
L
L
L
R
R
R
V
i




4
30
Th
Th
6

L
R A
3
10
/
30 

L
I
16

L
R A
5
.
1
20
/
30 

L
I
A
75
.
0
40
/
30 

L
I
36

L
R



Example 4.9
Find the Thevenin’s equivalent of the circuit in Fig.
4.31 at terminals a-b.
Circuit Theorems 45
Example 4.9
(independent + dependent source case)
Circuit Theorems 46
Fig(a)
:
find
To Th
R
0
source
t
independen 
intact

source
dependent
,
V
1

o
v
o
o
o
i
i
v
R
1
Th 

Example 4.9
For loop 1,
Circuit Theorems 47
2
1
2
1 or
0
)
(
2
2 i
i
v
i
i
v x
x 





2
1
4
But i
i
v
i x 



2
1 3i
i 


Example 4.9
Circuit Theorems 48
:
3
and
2
Loop
0
)
(
6
)
(
2
4 3
2
1
2
2 



 i
i
i
i
i
0
1
2
)
(
6 3
2
3 


 i
i
i
gives
equations
these
Solving
.
A
6
/
1
3 

i
A
6
1
But 3 

 i
io



 6
1
Th
o
i
V
R
Example 4.9
Circuit Theorems 49




 0
)
(
2
2 2
3 i
i
vx
5
1 
i
Fig(b)
:
get
To Th
V
2
3 i
i
vx 

analysis
Mesh





 0
6
)
(
2
)
(
4 2
1
2
1
2 i
i
i
i
i 0
2
4
12 3
1
2 

 i
i
i
.
3
/
10
2 
i
V
20
6 2
Th 

 i
v
V oc
x
v
i
i 
 )
(
4
But 2
1
Example 4.10
Determine the Thevenin’s
equivalent circuit in
Fig.4.35(a).
Solution
Circuit Theorems 50
)
case
only
source
dependent
(
o
o
i
v
R 
Th
0
Th 
V
:
anaysis
Nodal
4
/
2 o
x
x
o v
i
i
i 


Example 4.10
Circuit Theorems 51
2
2
0 o
o
x
v
v
i 



But
4
4
2
4
o
o
o
o
x
o
v
v
v
v
i
i 





 o
o i
v 4
or 

:
4
Thus Th 



o
o
i
v
R power
Supplying
Example 4.10
Circuit Theorems 52
Example 4.10
Circuit Theorems 53
4.6 Norton’s Theorem
Norton’s theorem states that a linear two-terminal
circuit can be replaced by equivalent circuit
consisting of a current source IN in parallel with a
resistor RN where IN is the short-circuit current
through the terminals and RN is the input or
equivalent resistance at the terminals when the
independent source are turn off.
Circuit Theorems 54
Eastern Mediterranean University
Fig. 4.37
Circuit Theorems 55
v
i
Vth
-IN
Slope=1/RN
Eastern Mediterranean University
How to Find Norton Current
Thevenin and Norton
resistances are equal:
Short circuit current
from a to b :
Circuit Theorems 56
Th
R
RN 
Th
Th
R
V
i
I sc
N 

Thevenin or Norton equivalent circuit :
The open circuit voltage voc across terminals a and
b
The short circuit current isc at terminals a and b
The equivalent or input resistance Rin at terminals
a and b when all independent source are turn off.
Circuit Theorems 57
oc
Th v
V 
N
I
Th
Th N
Th
V
R R
R
 
 sc
i
Example 4.11
Find the Norton equivalent circuit of the circuit in
Fig 4.39.
Circuit Theorems 58
Example 4.11
Circuit Theorems 59
:
)
(
40
.
4
Fig a








4
25
5
20
20
||
5
)
8
4
8
(
|
|
5
N
R
N
R
find
To
Example 4.11
Circuit Theorems 60
N
i
find
To
.
and
terminals
circuit
short b
a

))
(
40
.
4
.
Fig
( b
:
Mesh 0
4
20
,
A
2 2
1
2
1 


 i
i
i
i
N
sc I
i
i 

 A
1
2
Example 4.11
Circuit Theorems 61
N
I
for
method
e
Alternativ
Th
Th
N
R
V
I 
voltage
circuit
open
: 
Th
V b
a and
:
))
(
40
.
4
( c
Fig
:
analysis
Mesh
0
12
4
25
,
2 3
4
3 


 i
i
A
i
A
8
.
0
4 
 i
terminals
across
V
4
5 4 


 i
V
v Th
oc
Example 4.11
Circuit Theorems 62
,
Hence
A
1
4
/
4 


Th
Th
N
R
V
I
Example 4.12
Using Norton’s theorem, find RN and IN of the
circuit in Fig 4.43 at terminals a-b.
Circuit Theorems 63
Example 4.12
Circuit Theorems 64
N
R
find
To )
(
44
.
4
. a
Fig
shorted
resistor
4

Parallel
:
2
||
||
5 x
o i
v

Hence, 2
.
0
5
/
1
5
/ 

 o
x v
i





 5
2
.
0
1
o
o
N
i
v
R
Example 4.12
Circuit Theorems 65
N
I
find
To )
(
44
.
4
. b
Fig
x
i
v 2
||
5
||
10
||
4 

 Parallel
:
.5A,
2
4
0
10



x
i
A
7
2(2.5)
5
10
2 



 x
x
sc i
i
i
7A

 N
I
4.8 Maximum Power Trandfer
Circuit Theorems 66
L
L R
R
R
V
R
i
p
2
L
TH
TH
2









Fig 4.48
Fig. 4.49
Maximum power is transferred to the load when
the load resistance equals the Thevenin resistance
as seen the load (RL = RTH).
Circuit Theorems 67
Circuit Theorems 68
TH
TH
TH
L
L
TH
L
L
TH
L
TH
L
L
TH
TH
L
TH
L
TH
L
L
TH
TH
L
R
V
p
R
R
R
R
R
R
R
R
R
R
R
R
V
R
R
R
R
R
R
R
V
dR
dp
4
)
(
)
2
(
0
0
)
(
)
2
(
)
(
)
(
2
)
(
2
max
3
2
4
2
2





























Example 4.13
Find the value of RL for maximum power transfer
in the circuit of Fig. 4.50. Find the maximum
power.
Circuit Theorems 69
Example 4.13
Circuit Theorems 70







 9
18
12
6
5
12
6
3
2
TH
R
Example 4.13
Circuit Theorems 71
W
R
V
p
R
R
V
V
V
i
i
A
i
i
i
L
TH
TH
L
TH
TH
i
44
.
13
9
4
22
4
9
22
0
)
0
(
2
3
1
6
12
2
,
12
18
12
2
2
max
2
2
2
1




















Homework Problems
Problems 6, 10, 21, 28, 33, 40, 47, 52, 71
Circuit Theorems 72
Eastern Mediterranean University
Circuit Theorems 73 /
THANK YOU

More Related Content

PPT
Chap3
PPTX
sinusoids and phasors in AC circuits.pptx
PPTX
Thevenin’s theorem (East West University)
PPTX
Gradient divergence curl
PPTX
Second Order Differential Circuits
PPTX
Orthogonal coordinate systems- Cartesian ,Cylindrical ,Spherical
POT
2 port network
Chap3
sinusoids and phasors in AC circuits.pptx
Thevenin’s theorem (East West University)
Gradient divergence curl
Second Order Differential Circuits
Orthogonal coordinate systems- Cartesian ,Cylindrical ,Spherical
2 port network

What's hot (20)

PPTX
Norton's theorem
PPTX
Newton raphson method
PDF
Electrical Circuit.pdf
PPTX
Transistor as a voltage regulation
PPT
ECA - Source Transformation
PDF
Thevenin's theorem
PPT
Network Theorems.ppt
PPTX
Le triphase
PPTX
Chapter 4 Boylstead DC Biasing-BJTs.pptx
PPT
01.MULTI STAGE AMPLIFIER (L 1).ppt
PPT
INCIDENCE MATRIX
PPT
Circuits Chp.3 RéGime SinusoïDal Permanent
PDF
introduction_antennes.pdf
PDF
BuckPFC
PDF
5 slides
PPTX
Load line analysis
PDF
PDF
introduction to high voltage engineering.pdf
PPTX
Dc load line fixed biasing
Norton's theorem
Newton raphson method
Electrical Circuit.pdf
Transistor as a voltage regulation
ECA - Source Transformation
Thevenin's theorem
Network Theorems.ppt
Le triphase
Chapter 4 Boylstead DC Biasing-BJTs.pptx
01.MULTI STAGE AMPLIFIER (L 1).ppt
INCIDENCE MATRIX
Circuits Chp.3 RéGime SinusoïDal Permanent
introduction_antennes.pdf
BuckPFC
5 slides
Load line analysis
introduction to high voltage engineering.pdf
Dc load line fixed biasing
Ad

Similar to Unit3&4 network theorams.ppt (20)

PPT
Circuit analysis involves studying an electrical circuit to determine various...
PPT
PPT
chap4 having circuits kirchoffs current law.ppt
PPT
Jnatn_Cicuits Theory and Practices of .ppt
PPT
Circuit Theorems
PPTX
Linear circuit analysis Lecture 05 -1.pptx
PDF
neub-cse-121-lec-4.pdf Basic-Electric-and-Circuit
PPTX
EECE 101- CL 13-15 LINEARITY PROPERTY, THEVENIN'S THEOREM, NORTON'S THEOREM, ...
PPTX
Lca Linearity property Lecture 005 .pptx
PPTX
Network theorems
PPT
Lesson 10 Thevenin and Norton.ppt
PPTX
CN_2130901_circuit_theorems
PDF
Lecture 03-04 EEN13401 Networks and Systems.pdf
PPTX
thevenins theorem.pptx
PDF
Lectures on Network Theorems (Circuits )
PPTX
BEEE Unit for engineers electrical introducing to theorems
PPT
Thévenin’s Theorems
PDF
thevenins theorem.pdf
PDF
NAS-Ch2-Network-Theorems
PPT
Star delta
Circuit analysis involves studying an electrical circuit to determine various...
chap4 having circuits kirchoffs current law.ppt
Jnatn_Cicuits Theory and Practices of .ppt
Circuit Theorems
Linear circuit analysis Lecture 05 -1.pptx
neub-cse-121-lec-4.pdf Basic-Electric-and-Circuit
EECE 101- CL 13-15 LINEARITY PROPERTY, THEVENIN'S THEOREM, NORTON'S THEOREM, ...
Lca Linearity property Lecture 005 .pptx
Network theorems
Lesson 10 Thevenin and Norton.ppt
CN_2130901_circuit_theorems
Lecture 03-04 EEN13401 Networks and Systems.pdf
thevenins theorem.pptx
Lectures on Network Theorems (Circuits )
BEEE Unit for engineers electrical introducing to theorems
Thévenin’s Theorems
thevenins theorem.pdf
NAS-Ch2-Network-Theorems
Star delta
Ad

Recently uploaded (20)

PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
Current and future trends in Computer Vision.pptx
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
Design Guidelines and solutions for Plastics parts
PDF
737-MAX_SRG.pdf student reference guides
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PPTX
Software Engineering and software moduleing
PPTX
Feature types and data preprocessing steps
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Fundamentals of safety and accident prevention -final (1).pptx
Current and future trends in Computer Vision.pptx
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
Safety Seminar civil to be ensured for safe working.
Design Guidelines and solutions for Plastics parts
737-MAX_SRG.pdf student reference guides
Information Storage and Retrieval Techniques Unit III
Automation-in-Manufacturing-Chapter-Introduction.pdf
Visual Aids for Exploratory Data Analysis.pdf
III.4.1.2_The_Space_Environment.p pdffdf
Soil Improvement Techniques Note - Rabbi
Nature of X-rays, X- Ray Equipment, Fluoroscopy
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Software Engineering and software moduleing
Feature types and data preprocessing steps
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
August 2025 - Top 10 Read Articles in Network Security & Its Applications

Unit3&4 network theorams.ppt

  • 1. Circuit Theorems 1 Circuit Theorems REDDYPRASAD REDDIVARI
  • 2. Chap. 4 Circuit Theorems Introduction Linearity property Superposition Source transformations Thevenin’s theorem Norton’s theorem Maximum power transfer Circuit Theorems 2
  • 3. 4.1 Introduction Circuit Theorems 3 A large complex circuits Simplify circuit analysis Circuit Theorems ‧Thevenin’s theorem ‧ Norton theorem ‧Circuit linearity ‧ Superposition ‧source transformation ‧ max. power transfer
  • 4. 4.2 Linearity Property Circuit Theorems 4 Homogeneity property (Scaling) iR v i   kiR kv ki   Additivity property R i v i 2 2 2   R i v i 1 1 1   2 1 2 1 2 1 2 1 ) ( v v R i R i R i i i i       
  • 5. A linear circuit is one whose output is linearly related (or directly proportional) to its input Fig. 4.1 Circuit Theorems 5 V0 I0 i
  • 6. Linear circuit consist of ● linear elements ● linear dependent sources ● independent sources  Circuit Theorems 6 mA 1 mV 5 A 2 . 0 V 1 A 2 V 10          i v i v i v s s s nonlinear R v R i p : 2 2  
  • 7. Example 4.1 For the circuit in fig 4.2 find I0 when vs=12V and vs=24V. Circuit Theorems 7 Eastern Meiterranean University
  • 8. Example 4.1 KVL Eqs(4.1.1) and (4.1.3) we get Circuit Theorems 8 0 4 12 2 1    s v i i 0 3 16 4 2 1      s x v v i i 1 2i vx  becomes ) 2 . 1 . 4 ( 0 16 10 2 1     s v i i (4.1.1) (4.1.2) (4.1.3) 2 1 2 1 6 0 12 2 i i i i     
  • 9. Example 4.1 Eq(4.1.1), we get When When Showing that when the source value is doubled, I0 doubles. Circuit Theorems 9 76 0 76 2 2 s s v i v i      A 76 12 2 0   i I V 12  s v A 76 24 2 0   i I V 24  s v
  • 10. Example 4.2 Assume I0 = 1 A and use linearity to find the actual value of I0 in the circuit in fig 4.4. Circuit Theorems 10
  • 11. Example 4.2 Circuit Theorems 11 A, 2 4 / V 8 ) 5 3 ( then A, 1 If 1 1 0 1 0       v I I v I A 3 0 1 2    I I I A 2 7 , V 14 6 8 2 2 3 2 1 2        V I I V V     A 5 2 3 4 I I I A 5  S I A 5 1 0    S I A I A 15 A 3 0    S I I
  • 12. 4.3 Superposition The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone. Turn off, killed, inactive source: ● independent voltage source: 0 V (short circuit) ● independent current source: 0 A (open circuit) Dependent sources are left intact. Circuit Theorems 12
  • 13.  Steps to apply superposition principle: 1. Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using nodal or mesh analysis. 2. Repeat step 1 for each of the other independent sources. 3. Find the total contribution by adding algebraically all the contributions due to the independent sources. Circuit Theorems 13 Eastern Mediterranean University
  • 14. How to turn off independent sources Turn off voltages sources = short voltage sources; make it equal to zero voltage Turn off current sources = open current sources; make it equal to zero current Circuit Theorems 14 Eastern Mediterranean University
  • 15. Superposition involves more work but simpler circuits. Superposition is not applicable to the effect on power. Circuit Theorems 15 Eastern Mediterranean University
  • 16. Example 4.3 Use the superposition theorem to find in the circuit in Fig.4.6. Circuit Theorems 16
  • 17. Example 4.3 Since there are two sources, let Voltage division to get Current division, to get Hence And we find Circuit Theorems 17 2 1 V V V   V 2 ) 6 ( 8 4 4 1    V A 2 ) 3 ( 8 4 8 3    i V 8 4 3 2   i v V 10 8 2 2 1      v v v
  • 18. Example 4.4 Find I0 in the circuit in Fig.4.9 using superposition. Circuit Theorems 18
  • 21. 4.5 Source Transformation A source transformation is the process of replacing a voltage source vs in series with a resistor R by a current source is in parallel with a resistor R, or vice versa Circuit Theorems 21 Eastern Mediterranean University
  • 22. Fig. 4.15 & 4.16 R v i R i v s s s s   or Circuit Theorems 22 Eastern Mediterranean University
  • 24. Arrow of the current source positive terminal of voltage source Impossible source Transformation ● ideal voltage source (R = 0) ● ideal current source (R=) Circuit Theorems 24
  • 25. Example 4.6 Use source transformation to find vo in the circuit in Fig 4.17. Circuit Theorems 25
  • 27. Example 4.6 we use current division in Fig.4.18(c) to get and Circuit Theorems 27 A 4 . 0 ) 2 ( 8 2 2    i V 2 . 3 ) 4 . 0 ( 8 8    i vo
  • 28. Example 4.7 Find vx in Fig.4.20 using source transformation Circuit Theorems 28
  • 29. Example 4.7 Applying KVL around the loop in Fig 4.21(b) gives (4.7.1) Appling KVL to the loop containing only the 3V voltage source, the resistor, and vx yields (4.7.2) Circuit Theorems 29 0 18 5 3      x v i  1 i v v i x x        3 0 1 3
  • 30. Example 4.7 Substituting this into Eq.(4.7.1), we obtain Alternatively thus Circuit Theorems 30 A 5 . 4 0 3 5 15       i i A 5 . 4 0 18 4         i v i v x x V 5 . 7 3    i vx
  • 31. 4.5 Thevenin’s Theorem Thevenin’s theorem states that a linear two- terminal circuit can be replaced by an equivalent circuit consisting of a voltage source VTh in series with a resistor RTh where VTh is the open circuit voltage at the terminals and RTh is the input or equivalent resistance at the terminals when the independent source are turn off. Circuit Theorems 31
  • 32. Property of Linear Circuits Circuit Theorems 32 i v v i Any two-terminal Linear Circuits + - Vth Isc Slope=1/Rth
  • 34. How to Find Thevenin’s Voltage Equivalent circuit: same voltage-current relation at the terminals.  Circuit Theorems 34 : Th oc v V  b a  at ltage circuit vo open
  • 35. How to Find Thevenin’s Resistance  Circuit Theorems 35 : in Th R R  b. a   at circuit dead the of resistance input circuited open b a   sources t independen all off Turn 
  • 36. CASE 1  If the network has no dependent sources: ● Turn off all independent source. ● RTH: can be obtained via simplification of either parallel or series connection seen from a-b Circuit Theorems 36
  • 37. Fig. 4.25 CASE 2 If the network has dependent sources ● Turn off all independent sources. ● Apply a voltage source vo at a-b ● Alternatively, apply a current source io at a-b Circuit Theorems 37 o o i v R  Th o o Th i v R 
  • 38. The Thevenin’s resistance may be negative, indicating that the circuit has ability providing power Circuit Theorems 38
  • 39. Fig. 4.26 Simplified circuit Voltage divider Circuit Theorems 39 L L R R V I   Th Th Th Th V R R R I R V L L L L L   
  • 40. Example 4.8 Find the Thevenin’s equivalent circuit of the circuit shown in Fig 4.27, to the left of the terminals a-b. Then find the current through RL = 6,16,and 36 . Circuit Theorems 40
  • 41. Find Rth Circuit Theorems 41 short source voltage V 32 : Th  R open source current A 2         4 1 16 12 4 1 12 || 4 Th R
  • 42. Find Vth Circuit Theorems 42 analysis Mesh ) 1 ( : Th V A 2 , 0 ) ( 12 4 32 2 2 1 1        i i i i A 5 . 0 1  i V 30 ) 0 . 2 5 . 0 ( 12 ) ( 12 2 1 Th      i i V Analysis Nodal ely, Alternativ ) 2 ( 12 / 2 4 / ) 32 ( Th Th V V    V 30 Th  V
  • 43. Example 4.8 Circuit Theorems 43 Fig. 4.29 transform source ely, Alternativ ) 3 ( V 30 24 3 96 12 2 4 32 TH TH TH TH TH         V V V V V
  • 44. Example 4.8 Circuit Theorems 44 : get To L i L L L R R R V i     4 30 Th Th 6  L R A 3 10 / 30   L I 16  L R A 5 . 1 20 / 30   L I A 75 . 0 40 / 30   L I 36  L R   
  • 45. Example 4.9 Find the Thevenin’s equivalent of the circuit in Fig. 4.31 at terminals a-b. Circuit Theorems 45
  • 46. Example 4.9 (independent + dependent source case) Circuit Theorems 46 Fig(a) : find To Th R 0 source t independen  intact  source dependent , V 1  o v o o o i i v R 1 Th  
  • 47. Example 4.9 For loop 1, Circuit Theorems 47 2 1 2 1 or 0 ) ( 2 2 i i v i i v x x       2 1 4 But i i v i x     2 1 3i i   
  • 48. Example 4.9 Circuit Theorems 48 : 3 and 2 Loop 0 ) ( 6 ) ( 2 4 3 2 1 2 2      i i i i i 0 1 2 ) ( 6 3 2 3     i i i gives equations these Solving . A 6 / 1 3   i A 6 1 But 3    i io     6 1 Th o i V R
  • 49. Example 4.9 Circuit Theorems 49      0 ) ( 2 2 2 3 i i vx 5 1  i Fig(b) : get To Th V 2 3 i i vx   analysis Mesh       0 6 ) ( 2 ) ( 4 2 1 2 1 2 i i i i i 0 2 4 12 3 1 2    i i i . 3 / 10 2  i V 20 6 2 Th    i v V oc x v i i   ) ( 4 But 2 1
  • 50. Example 4.10 Determine the Thevenin’s equivalent circuit in Fig.4.35(a). Solution Circuit Theorems 50 ) case only source dependent ( o o i v R  Th 0 Th  V : anaysis Nodal 4 / 2 o x x o v i i i   
  • 51. Example 4.10 Circuit Theorems 51 2 2 0 o o x v v i     But 4 4 2 4 o o o o x o v v v v i i        o o i v 4 or   : 4 Thus Th     o o i v R power Supplying
  • 54. 4.6 Norton’s Theorem Norton’s theorem states that a linear two-terminal circuit can be replaced by equivalent circuit consisting of a current source IN in parallel with a resistor RN where IN is the short-circuit current through the terminals and RN is the input or equivalent resistance at the terminals when the independent source are turn off. Circuit Theorems 54 Eastern Mediterranean University
  • 55. Fig. 4.37 Circuit Theorems 55 v i Vth -IN Slope=1/RN Eastern Mediterranean University
  • 56. How to Find Norton Current Thevenin and Norton resistances are equal: Short circuit current from a to b : Circuit Theorems 56 Th R RN  Th Th R V i I sc N  
  • 57. Thevenin or Norton equivalent circuit : The open circuit voltage voc across terminals a and b The short circuit current isc at terminals a and b The equivalent or input resistance Rin at terminals a and b when all independent source are turn off. Circuit Theorems 57 oc Th v V  N I Th Th N Th V R R R    sc i
  • 58. Example 4.11 Find the Norton equivalent circuit of the circuit in Fig 4.39. Circuit Theorems 58
  • 59. Example 4.11 Circuit Theorems 59 : ) ( 40 . 4 Fig a         4 25 5 20 20 || 5 ) 8 4 8 ( | | 5 N R N R find To
  • 60. Example 4.11 Circuit Theorems 60 N i find To . and terminals circuit short b a  )) ( 40 . 4 . Fig ( b : Mesh 0 4 20 , A 2 2 1 2 1     i i i i N sc I i i    A 1 2
  • 61. Example 4.11 Circuit Theorems 61 N I for method e Alternativ Th Th N R V I  voltage circuit open :  Th V b a and : )) ( 40 . 4 ( c Fig : analysis Mesh 0 12 4 25 , 2 3 4 3     i i A i A 8 . 0 4   i terminals across V 4 5 4     i V v Th oc
  • 62. Example 4.11 Circuit Theorems 62 , Hence A 1 4 / 4    Th Th N R V I
  • 63. Example 4.12 Using Norton’s theorem, find RN and IN of the circuit in Fig 4.43 at terminals a-b. Circuit Theorems 63
  • 64. Example 4.12 Circuit Theorems 64 N R find To ) ( 44 . 4 . a Fig shorted resistor 4  Parallel : 2 || || 5 x o i v  Hence, 2 . 0 5 / 1 5 /    o x v i       5 2 . 0 1 o o N i v R
  • 65. Example 4.12 Circuit Theorems 65 N I find To ) ( 44 . 4 . b Fig x i v 2 || 5 || 10 || 4    Parallel : .5A, 2 4 0 10    x i A 7 2(2.5) 5 10 2      x x sc i i i 7A   N I
  • 66. 4.8 Maximum Power Trandfer Circuit Theorems 66 L L R R R V R i p 2 L TH TH 2          Fig 4.48
  • 67. Fig. 4.49 Maximum power is transferred to the load when the load resistance equals the Thevenin resistance as seen the load (RL = RTH). Circuit Theorems 67
  • 69. Example 4.13 Find the value of RL for maximum power transfer in the circuit of Fig. 4.50. Find the maximum power. Circuit Theorems 69
  • 70. Example 4.13 Circuit Theorems 70         9 18 12 6 5 12 6 3 2 TH R
  • 71. Example 4.13 Circuit Theorems 71 W R V p R R V V V i i A i i i L TH TH L TH TH i 44 . 13 9 4 22 4 9 22 0 ) 0 ( 2 3 1 6 12 2 , 12 18 12 2 2 max 2 2 2 1                    
  • 72. Homework Problems Problems 6, 10, 21, 28, 33, 40, 47, 52, 71 Circuit Theorems 72
  • 73. Eastern Mediterranean University Circuit Theorems 73 / THANK YOU