SlideShare a Scribd company logo
2
Most read
3
Most read
4
Most read
Branch - Electronics Engineering & Related Branches
Microwave Engineering
UNIT – 2
Waveguide: Rectangular Waveguide and their Applications, Modes,
Propagation constant and Cut-off Frequency
Presented By
Avishisht Kumar
Learning outcomes
• What are Waveguides and its types?
• Rectangular Waveguides: Fields Inside
• Modes of Propagation
• Transverse Magnetic Mode (TM-Mode). E = (Ex; Ey; Ez) and H = (Hx; Hy; 0).
• Transverse Electric Mode (TE-Mode). E = (Ex; Ey; 0) and H = (Hx; Hy; Hz).
• Cut-off frequency and Propagation Constant
• Field Views inside Rectangular Waveguide
• A waveguide is a structure that guides waves, such as electromagnetic
waves or sound, with minimal loss of energy by restricting the
transmission of energy to one direction.
• A hollow metallic tube of the uniform cross section for transmitting
electromagnetic waves by successive reflections from the inner walls
of the tube is called as a Waveguide
• There are five types of waveguides are:
What are Waveguides and its types?
1. Rectangular waveguide
2. Circular waveguide
3. Elliptical waveguide
4. Single ridged waveguide
5. Double ridged waveguide
Rectangular Waveguides:
Fields inside
Using phasors & assuming waveguide
filled with
• lossless dielectric material and
• walls of perfect conductor,
the wave inside should obey…
∇2
𝐸 + 𝑘2
𝐸 = 0
∇2 𝐻 + 𝑘2 𝐻 = 0
where 𝑘2
= 𝜔2 𝜇𝜀 𝑐
Then applying on the z-component…
𝜕2
𝐸𝑧
𝜕𝑥2
+
𝜕2
𝐸𝑧
𝜕𝑦2
+
𝜕2
𝐸𝑧
𝜕𝑧2
+ 𝑘2 𝐸𝑧 = 0
Solving by method of Separation of
Variables:
𝐸𝑧(𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧)
from where we obtain:
𝑋′′
𝑋
+
𝑌′′
𝑌
+
𝑍′′
𝑍
= −𝑘2
𝛻2
𝐸𝑧 + 𝑘2
𝐸𝑧
= 0
𝑋(𝑥) = 𝑐1 cos 𝑘 𝑥 𝑥 + 𝑐2 sin 𝑘 𝑥 𝑥
𝑌(𝑦) = 𝑐3 cos 𝑘 𝑦 𝑦 + 𝑐4 sin 𝑘 𝑦 𝑦
𝑍(𝑧) = 𝑐5 𝑒 𝛾𝑧
+ 𝑐6 𝑒−𝛾𝑧
ℎ2 = 𝛾2 + 𝑘2 = 𝑘 𝑥
2 + 𝑘 𝑦
2
Rectangular Waveguides: Fields inside
𝑋′′
𝑋
+
𝑌′′
𝑌
+
𝑍′′
𝑍
= −𝑘2
−𝑘 𝑥
2 − 𝑘 𝑦
2 + 𝛾2
= −𝑘2
which results in the expressions:
𝑋′′ + 𝑘 𝑥
2 𝑋 = 0
𝑌′′ + 𝑘 𝑦
2 𝑌 = 0
𝑍′′
− 𝛾2
𝑍 = 0
   
  
   z
yyxxz
z
yyxxz
zz
yyxxz
eykBykBxkBxkBH
eykAykAxkAxkAE
z
ececykcykcxkcxkcE










sincossincos
,fieldmagneticfor theSimilarly
sincossincos
:direction-intravelingwaveat thelookingonlyIf
sincossincos
4321
4321
654321
From the previous slide equations we can conclude:
TEM (Ez=Hz=0) can’t propagate.
TE (Ez=0) transverse electric
In TE mode, the electric lines of flux are perpendicular to the axis of the
waveguide
TM (Hz=0) transverse magnetic, Ez exists
In TM mode, the magnetic lines of flux are perpendicular to the axis of the
waveguide.
HE hybrid modes in which all components exists
Modes of Propagation
   z
yyxxz eykAykAxkAxkAE 
 sincossincos 4321
,axE
,byE
z
z
0at0
0at0

TM Mode
Boundary Conditions
z
oy
z
ox
z
oy
z
ox
e
b
yn
a
xm
E
a
m
h
j
H
e
b
yn
a
xm
E
b
n
h
j
H
e
b
yn
a
xm
E
b
n
h
E
e
b
yn
a
xm
E
a
m
h
E
























































































sincos
cossin
cossin
sincos
2
2
2
2
0
sinsin













 
z
zj
oz
H
ey
b
n
x
a
m
EE 
𝐸 𝑥 = −
𝛾
ℎ2
𝜕𝐸 𝑧
𝜕𝑥
𝐻 𝑥 =
𝑗𝜔𝜀
ℎ2
𝜕𝐸 𝑧
𝜕𝑦
𝐸 𝑦 = −
𝛾
ℎ2
𝜕𝐸 𝑧
𝜕𝑦
𝐻 𝑦 = −
𝑗𝜔𝜀
ℎ2
𝜕𝐸 𝑧
𝜕𝑥
TM Mode
,axE
,byE
y
x
0at0
0at0


   z
yyxxz eykBykBxkBxkBH 
 sincossincos 4321
TE Mode
Boundary Conditions
z
oy
z
ox
z
oy
z
ox
e
b
yn
a
xm
H
b
n
h
j
H
e
b
yn
a
xm
H
a
m
h
j
H
e
b
yn
a
xm
H
a
m
h
j
E
e
b
yn
a
xm
H
b
n
h
j
E
























































































sincos
cossin
cossin
sincos
2
2
2
2
0
coscos













 
z
zj
oz
E
ey
b
n
x
a
m
HH 
𝐸 𝑥 = −
𝑗𝜔𝜇
ℎ2
𝜕𝐻 𝑧
𝜕𝑦
𝐻 𝑥 = −
𝛾
ℎ2
𝜕𝐻 𝑧
𝜕𝑥
𝐸 𝑦 = −
𝑗𝜔𝜇
ℎ2
𝜕𝐻 𝑧
𝜕𝑥
𝐻 𝑦 = −
𝛾
ℎ2
𝜕𝐻 𝑧
𝜕𝑦
TE Mode
Cut-off Frequency and propagation Constant
• The cutoff frequency occurs when
• Evanescent:
• Means no propagation, everything is attenuated
• Propagation:
• This is the case we are interested since is when the wave is allowed to
travel through the guide.
 



2
22
222














b
n
a
m
kkk yx
When 𝜔𝑐
2 𝜇𝜀 =
𝑚𝜋
𝑎
2
+
𝑛𝜋
𝑏
2
then 𝛾 = 𝛼 + 𝑗𝛽 = 0
or 𝑓𝑐 =
1
2𝜋
1
𝜇𝜀
𝑚𝜋
𝑎
2
+
𝑛𝜋
𝑏
2
When 𝜔2
𝜇𝜀 <
𝑚𝜋
𝑎
2
+
𝑛𝜋
𝑏
2
𝛾 = 𝛼 and 𝛽 = 0
When 𝜔2
𝜇𝜀 >
𝑚𝜋
𝑎
2
+
𝑛𝜋
𝑏
2
𝛾 = 𝑗𝛽 and 𝛼 = 0
TE mode E and H Field particle View
TE mode E and H Field Wave Vectors
Figure showing the particle view of the fields
Left side- Electric Field
Right Side- Magnetic Field
Figure showing the Vector view of the fields
Left side- Electric Field
Right Side- Magnetic Field
Field Views inside
Rectangular Waveguide
E Field 3D View
Field Views inside
Rectangular Waveguide
TE12 Mode E Field Vectors
TE Mode E and H Field
combined View
TE32 Mode E and H Field
Radiation View
Field Views inside
Rectangular Waveguide
References
1- commons.wikimedia.org
2- https://www.wikipedia.org
3- documents.pub_rectangular-wave-guides
4- physics stackexchange com
5- manson.gmu.edu
6- http://www.falstad.com/embox/guide.html

More Related Content

PPT
Ppt presentation on FET
PPTX
Polarization mode dispersion(pmd)
PDF
RF Circuit Design - [Ch1-2] Transmission Line Theory
PPSX
PPT
Chapter-4 FET (1).ppt
PPTX
AM diode envelope demodulator
PPTX
Single Sideband Suppressed Carrier (SSB-SC)
PPTX
Introduction to rf and microwave circuits
Ppt presentation on FET
Polarization mode dispersion(pmd)
RF Circuit Design - [Ch1-2] Transmission Line Theory
Chapter-4 FET (1).ppt
AM diode envelope demodulator
Single Sideband Suppressed Carrier (SSB-SC)
Introduction to rf and microwave circuits

What's hot (20)

PPTX
Microwave waveguides 1st 1
PPT
Microwave Coupler
PPTX
Pass Transistor Logic
PPTX
Chapter 2b
PPTX
Two port network
PPT
Chapter 6m
PDF
Frequency Shit Keying(FSK) modulation project report
PDF
Dsp U Lec10 DFT And FFT
PPTX
Generation of DSB-SC using Diode Ring Modulator or chopper Modulator.pptx
PDF
Impedance in transmission line
PPTX
Gunn Diode
PDF
ANALOG TO DIGITAL CONVERTOR
PPTX
Silicon controlled rectifier ( SCR )
PDF
Linear modulation
PPT
PDF
Class a power amplifiers
PPTX
EC8352-Signals and Systems - Laplace transform
PPT
Introduction to microwaves
PPTX
Short channel effects
PPTX
Overview of sampling
Microwave waveguides 1st 1
Microwave Coupler
Pass Transistor Logic
Chapter 2b
Two port network
Chapter 6m
Frequency Shit Keying(FSK) modulation project report
Dsp U Lec10 DFT And FFT
Generation of DSB-SC using Diode Ring Modulator or chopper Modulator.pptx
Impedance in transmission line
Gunn Diode
ANALOG TO DIGITAL CONVERTOR
Silicon controlled rectifier ( SCR )
Linear modulation
Class a power amplifiers
EC8352-Signals and Systems - Laplace transform
Introduction to microwaves
Short channel effects
Overview of sampling
Ad

Similar to Waveguides and its Types Field view and structures (20)

PDF
Rectangular_waveguide_description and equation
PPTX
The presence of material bodies complicates Maxwell’s equations. The fields i...
PPTX
The presence of material bodies complicates Maxwell’s equations. The fields i...
PPT
transmission-line-and-waveguide-ppt
PPTX
Mcrowave and Radar engineering
PPT
Microwave PPT.ppt
PPTX
Waveguiding Structures Part 3 (Parallel Plates).pptx
PPTX
Waveguiding Structures Part 4 (Rectangular and Circular Waveguide).pptx
PDF
Solved problems in waveguides
DOCX
Waveguides
PPT
Rectangular waveguides
PPTX
Notes 12 - Surface waves.pptx Notes 12 - Surface waves.pptx
PPTX
Waveguiding Structures Part 1 (General Theory).pptx
PPTX
Waveguides12
PPT
Slide of computer networks introduction to computer networks
PDF
Microwave Engineering
PPT
Waveguides.ppt
PPTX
finite element method for waveguide
PPTX
Anuj 10mar2016
Rectangular_waveguide_description and equation
The presence of material bodies complicates Maxwell’s equations. The fields i...
The presence of material bodies complicates Maxwell’s equations. The fields i...
transmission-line-and-waveguide-ppt
Mcrowave and Radar engineering
Microwave PPT.ppt
Waveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 4 (Rectangular and Circular Waveguide).pptx
Solved problems in waveguides
Waveguides
Rectangular waveguides
Notes 12 - Surface waves.pptx Notes 12 - Surface waves.pptx
Waveguiding Structures Part 1 (General Theory).pptx
Waveguides12
Slide of computer networks introduction to computer networks
Microwave Engineering
Waveguides.ppt
finite element method for waveguide
Anuj 10mar2016
Ad

Recently uploaded (20)

PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Geodesy 1.pptx...............................................
PPTX
Welding lecture in detail for understanding
PDF
Digital Logic Computer Design lecture notes
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
DOCX
573137875-Attendance-Management-System-original
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
web development for engineering and engineering
PDF
PPT on Performance Review to get promotions
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Internet of Things (IOT) - A guide to understanding
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
OOP with Java - Java Introduction (Basics)
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Geodesy 1.pptx...............................................
Welding lecture in detail for understanding
Digital Logic Computer Design lecture notes
Foundation to blockchain - A guide to Blockchain Tech
Model Code of Practice - Construction Work - 21102022 .pdf
CYBER-CRIMES AND SECURITY A guide to understanding
573137875-Attendance-Management-System-original
R24 SURVEYING LAB MANUAL for civil enggi
Embodied AI: Ushering in the Next Era of Intelligent Systems
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
web development for engineering and engineering
PPT on Performance Review to get promotions
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Internet of Things (IOT) - A guide to understanding
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
OOP with Java - Java Introduction (Basics)

Waveguides and its Types Field view and structures

  • 1. Branch - Electronics Engineering & Related Branches Microwave Engineering UNIT – 2 Waveguide: Rectangular Waveguide and their Applications, Modes, Propagation constant and Cut-off Frequency Presented By Avishisht Kumar
  • 2. Learning outcomes • What are Waveguides and its types? • Rectangular Waveguides: Fields Inside • Modes of Propagation • Transverse Magnetic Mode (TM-Mode). E = (Ex; Ey; Ez) and H = (Hx; Hy; 0). • Transverse Electric Mode (TE-Mode). E = (Ex; Ey; 0) and H = (Hx; Hy; Hz). • Cut-off frequency and Propagation Constant • Field Views inside Rectangular Waveguide
  • 3. • A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. • A hollow metallic tube of the uniform cross section for transmitting electromagnetic waves by successive reflections from the inner walls of the tube is called as a Waveguide • There are five types of waveguides are: What are Waveguides and its types? 1. Rectangular waveguide 2. Circular waveguide 3. Elliptical waveguide 4. Single ridged waveguide 5. Double ridged waveguide
  • 4. Rectangular Waveguides: Fields inside Using phasors & assuming waveguide filled with • lossless dielectric material and • walls of perfect conductor, the wave inside should obey… ∇2 𝐸 + 𝑘2 𝐸 = 0 ∇2 𝐻 + 𝑘2 𝐻 = 0 where 𝑘2 = 𝜔2 𝜇𝜀 𝑐 Then applying on the z-component… 𝜕2 𝐸𝑧 𝜕𝑥2 + 𝜕2 𝐸𝑧 𝜕𝑦2 + 𝜕2 𝐸𝑧 𝜕𝑧2 + 𝑘2 𝐸𝑧 = 0 Solving by method of Separation of Variables: 𝐸𝑧(𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧) from where we obtain: 𝑋′′ 𝑋 + 𝑌′′ 𝑌 + 𝑍′′ 𝑍 = −𝑘2 𝛻2 𝐸𝑧 + 𝑘2 𝐸𝑧 = 0
  • 5. 𝑋(𝑥) = 𝑐1 cos 𝑘 𝑥 𝑥 + 𝑐2 sin 𝑘 𝑥 𝑥 𝑌(𝑦) = 𝑐3 cos 𝑘 𝑦 𝑦 + 𝑐4 sin 𝑘 𝑦 𝑦 𝑍(𝑧) = 𝑐5 𝑒 𝛾𝑧 + 𝑐6 𝑒−𝛾𝑧 ℎ2 = 𝛾2 + 𝑘2 = 𝑘 𝑥 2 + 𝑘 𝑦 2 Rectangular Waveguides: Fields inside 𝑋′′ 𝑋 + 𝑌′′ 𝑌 + 𝑍′′ 𝑍 = −𝑘2 −𝑘 𝑥 2 − 𝑘 𝑦 2 + 𝛾2 = −𝑘2 which results in the expressions: 𝑋′′ + 𝑘 𝑥 2 𝑋 = 0 𝑌′′ + 𝑘 𝑦 2 𝑌 = 0 𝑍′′ − 𝛾2 𝑍 = 0           z yyxxz z yyxxz zz yyxxz eykBykBxkBxkBH eykAykAxkAxkAE z ececykcykcxkcxkcE           sincossincos ,fieldmagneticfor theSimilarly sincossincos :direction-intravelingwaveat thelookingonlyIf sincossincos 4321 4321 654321
  • 6. From the previous slide equations we can conclude: TEM (Ez=Hz=0) can’t propagate. TE (Ez=0) transverse electric In TE mode, the electric lines of flux are perpendicular to the axis of the waveguide TM (Hz=0) transverse magnetic, Ez exists In TM mode, the magnetic lines of flux are perpendicular to the axis of the waveguide. HE hybrid modes in which all components exists Modes of Propagation
  • 7.    z yyxxz eykAykAxkAxkAE   sincossincos 4321 ,axE ,byE z z 0at0 0at0  TM Mode Boundary Conditions z oy z ox z oy z ox e b yn a xm E a m h j H e b yn a xm E b n h j H e b yn a xm E b n h E e b yn a xm E a m h E                                                                                         sincos cossin cossin sincos 2 2 2 2 0 sinsin                z zj oz H ey b n x a m EE  𝐸 𝑥 = − 𝛾 ℎ2 𝜕𝐸 𝑧 𝜕𝑥 𝐻 𝑥 = 𝑗𝜔𝜀 ℎ2 𝜕𝐸 𝑧 𝜕𝑦 𝐸 𝑦 = − 𝛾 ℎ2 𝜕𝐸 𝑧 𝜕𝑦 𝐻 𝑦 = − 𝑗𝜔𝜀 ℎ2 𝜕𝐸 𝑧 𝜕𝑥 TM Mode
  • 8. ,axE ,byE y x 0at0 0at0      z yyxxz eykBykBxkBxkBH   sincossincos 4321 TE Mode Boundary Conditions z oy z ox z oy z ox e b yn a xm H b n h j H e b yn a xm H a m h j H e b yn a xm H a m h j E e b yn a xm H b n h j E                                                                                         sincos cossin cossin sincos 2 2 2 2 0 coscos                z zj oz E ey b n x a m HH  𝐸 𝑥 = − 𝑗𝜔𝜇 ℎ2 𝜕𝐻 𝑧 𝜕𝑦 𝐻 𝑥 = − 𝛾 ℎ2 𝜕𝐻 𝑧 𝜕𝑥 𝐸 𝑦 = − 𝑗𝜔𝜇 ℎ2 𝜕𝐻 𝑧 𝜕𝑥 𝐻 𝑦 = − 𝛾 ℎ2 𝜕𝐻 𝑧 𝜕𝑦 TE Mode
  • 9. Cut-off Frequency and propagation Constant • The cutoff frequency occurs when • Evanescent: • Means no propagation, everything is attenuated • Propagation: • This is the case we are interested since is when the wave is allowed to travel through the guide.      2 22 222               b n a m kkk yx When 𝜔𝑐 2 𝜇𝜀 = 𝑚𝜋 𝑎 2 + 𝑛𝜋 𝑏 2 then 𝛾 = 𝛼 + 𝑗𝛽 = 0 or 𝑓𝑐 = 1 2𝜋 1 𝜇𝜀 𝑚𝜋 𝑎 2 + 𝑛𝜋 𝑏 2 When 𝜔2 𝜇𝜀 < 𝑚𝜋 𝑎 2 + 𝑛𝜋 𝑏 2 𝛾 = 𝛼 and 𝛽 = 0 When 𝜔2 𝜇𝜀 > 𝑚𝜋 𝑎 2 + 𝑛𝜋 𝑏 2 𝛾 = 𝑗𝛽 and 𝛼 = 0
  • 10. TE mode E and H Field particle View TE mode E and H Field Wave Vectors Figure showing the particle view of the fields Left side- Electric Field Right Side- Magnetic Field Figure showing the Vector view of the fields Left side- Electric Field Right Side- Magnetic Field Field Views inside Rectangular Waveguide
  • 11. E Field 3D View Field Views inside Rectangular Waveguide TE12 Mode E Field Vectors
  • 12. TE Mode E and H Field combined View TE32 Mode E and H Field Radiation View Field Views inside Rectangular Waveguide
  • 13. References 1- commons.wikimedia.org 2- https://www.wikipedia.org 3- documents.pub_rectangular-wave-guides 4- physics stackexchange com 5- manson.gmu.edu 6- http://www.falstad.com/embox/guide.html

Editor's Notes

  • #5: Electromagnetics, waveguides
  • #8: Electromagnetics, waveguides
  • #9: Electromagnetics, waveguides