Trig Integrals
Trig Integrals
(1) Standard Integrals

                  1
    sin axdx   a cos ax  c
Trig Integrals
(1) Standard Integrals

                  1
    sin axdx   a cos ax  c
                1
    cos axdx  a sin ax  c
Trig Integrals
(1) Standard Integrals

                   1
    sin axdx   a cos ax  c
                 1
    cos axdx  a sin ax  c
                 1
    sec 2 axdx  tan ax  c
                 a
Trig Integrals
(1) Standard Integrals

                   1
    sin axdx   a cos ax  c
                 1
    cos axdx  a sin ax  c
                  1
    sec 2 axdx  tan ax  c
                  a
                   sin ax
     tan axdx   cos ax dx
Trig Integrals
(1) Standard Integrals

                   1
    sin axdx   a cos ax  c
                 1
    cos axdx  a sin ax  c
                  1
    sec 2 axdx  tan ax  c
                  a
                   sin ax
     tan axdx   cos ax dx
                    1                    1
                 log cos ax  c   OR     log sec ax  c
                    a                    a
2 sin n x or cos n x
2 sin n x or cos n x
  sin xdx     cos x  c
2 sin n x or cos n x
  sin xdx       cos x  c

  sin 2 xdx
2 sin n x or cos n x
  sin xdx     cos x  c
             1
  sin xdx  2  1  cos 2 x dx
      2
2 sin n x or cos n x
  sin xdx     cos x  c
             1
  sin xdx  2  1  cos 2 x dx
      2



             1      1         
             x  sin 2 x   c
             2      2         
2 sin n x or cos n x
  sin xdx       cos x  c
             1
  sin xdx  2  1  cos 2 x dx
      2



             1      1         
             x  sin 2 x   c
             2      2         

  sin 3 xdx
2 sin n x or cos n x
  sin xdx     cos x  c
             1
  sin xdx  2  1  cos 2 x dx
      2



             1      1         
             x  sin 2 x   c
             2      2         

  sin 3 xdx   sin x sin xdx
                          2
2 sin n x or cos n x
  sin xdx     cos x  c
             1
  sin xdx  2  1  cos 2 x dx
      2



             1      1         
             x  sin 2 x   c
             2      2         

  sin 3 xdx   sin x sin xdx
                          2



               sin x1  cos 2 x dx
2 sin n x or cos n x
  sin xdx     cos x  c
             1
  sin xdx  2  1  cos 2 x dx
      2



             1      1         
             x  sin 2 x   c
             2      2         

  sin 3 xdx   sin x sin xdx
                          2



               sin x1  cos 2 x dx    u  cos x
                                         du   sin xdx
2 sin n x or cos n x
  sin xdx     cos x  c
             1
  sin xdx  2  1  cos 2 x dx
      2



             1      1         
             x  sin 2 x   c
             2      2         

  sin 3 xdx   sin x sin xdx
                          2



               sin x1  cos 2 x dx    u  cos x
                                         du   sin xdx
                1  u 2 du
2 sin n x or cos n x
  sin xdx     cos x  c
             1
  sin xdx  2  1  cos 2 x dx
      2



             1      1         
             x  sin 2 x   c
             2      2         

  sin 3 xdx   sin x sin xdx
                          2



               sin x1  cos 2 x dx    u  cos x
                                         du   sin xdx
                1  u 2 du
              1 3
              u u c
              3
              1 3
              cos x  cos x  c
              3
2 sin n x or cos n x
  sin xdx     cos x  c
             1
  sin xdx  2  1  cos 2 x dx
      2



             1      1         
             x  sin 2 x   c
             2      2         

  sin 3 xdx   sin x sin xdx
                          2



               sin x1  cos 2 x dx      u  cos x
                                           du   sin xdx
                1  u 2 du
                                         Odd Power
              1 3
              u u c                   Factorise as sin xsin x 
                                                                 2   some power
              3
              1 3                        Substitute sin 2 x  1  cos 2 x
              cos x  cos x  c
              3                          Use u  cos x
 sin 4 xdx
 sin       xdx   sin x  dx
        4               2   2
 sin       xdx   sin x  dx
        4               2   2



                 1
                  1  cos 2 x  dx
                                  2

                 4
 sin       xdx   sin x  dx
        4               2   2



                 1
                  1  cos 2 x  dx
                                  2

                 4
                  1  2 cos 2 x  cos 2 2 x dx
                 1
                 4
 sin       xdx   sin x  dx
        4               2   2



                 1
                  1  cos 2 x  dx
                                  2

                 4
                  1  2 cos 2 x  cos 2 2 x dx
                 1
                 4
                  1  2 cos 2 x  1  cos 4 x  dx
                 1                   1
                 4                   2            
                                                   
 sin       xdx   sin x  dx
        4               2   2



                 1
                  1  cos 2 x  dx
                                  2

                 4
                  1  2 cos 2 x  cos 2 2 x dx
                 1
                 4
                  1  2 cos 2 x  1  cos 4 x  dx
                 1                   1
                 4                   2            
                                                   

                    2 cos 2 x  cos 4 x dx
                 1 3              1
                                            
                 4 2              2        
 sin       xdx   sin x  dx
        4               2   2



                 1
                  1  cos 2 x  dx
                                  2

                 4
                  1  2 cos 2 x  cos 2 2 x dx
                 1
                 4
                  1  2 cos 2 x  1  cos 4 x  dx
                 1                   1
                 4                   2            
                                                   

                    2 cos 2 x  cos 4 x dx
                 1 3              1
                                            
                 4 2              2        

                  x  sin 2 x  sin 4 x   c
                 13             1
                                          
                 42             8        
xdx   sin x  dx
                                                Even Power
 sin
        4               2   2

                                                Factorise as sin x 
                                                                 2   some power

                 1
                  1  cos 2 x  dx
                                  2
                                                                    1
                 4                              Substitute sin x  1  cos 2 x 
                                                              2

                                                                    2
                  1  2 cos 2 x  cos 2 2 x dx
                 1
                 4
                  1  2 cos 2 x  1  cos 4 x  dx
                 1                   1
                 4                   2            
                                                   

                    2 cos 2 x  cos 4 x dx
                 1 3              1
                                            
                 4 2              2        

                  x  sin 2 x  sin 4 x   c
                 13             1
                                          
                 42             8        
 sin 5 xdx
 sin       xdx   sin xsin x  dx
        5                   2   2
 sin       xdx   sin xsin x  dx
        5                    2   2




                  sin x1  cos x  dx
                                 2   2
 sin       xdx   sin xsin x  dx
        5                    2   2




                  sin x1  cos x  dx    u  cos x
                                 2   2


                                           du   sin xdx
 sin       xdx   sin xsin x  dx
        5                        2   2




                  sin x1  cos x  dx      u  cos x
                                     2   2


                                             du   sin xdx
                   1  u     du
                               2 2



                   1  2u 2  u 4 du
 sin       xdx   sin xsin x  dx
        5                        2   2




                  sin x1  cos x  dx        u  cos x
                                     2   2


                                               du   sin xdx
                   1  u     du
                               2 2



                   1  2u 2  u 4 du

                    u  2 u3  1 u5   c
                                  
                        3      5 
                            2           1
                  cos x  cos3 x  cos 5 x  c
                            3           5
3 sin n x and cos n x
3 sin n x and cos n x
 Usually done by substitution u  sin x or u  cos x
3 sin n x and cos n x
 Usually done by substitution u  sin x or u  cos x
 e.g. i  cos 5 x sin 3 xdx
3 sin n x and cos n x
 Usually done by substitution u  sin x or u  cos x
 e.g. i  cos 5 x sin 3 xdx

           cos5 x1  cos 2 x sin xdx
3 sin n x and cos n x
 Usually done by substitution u  sin x or u  cos x
 e.g. i  cos 5 x sin 3 xdx

           cos5 x1  cos 2 x sin xdx    u  cos x
                                           du   sin xdx
3 sin n x and cos n x
 Usually done by substitution u  sin x or u  cos x
 e.g. i  cos 5 x sin 3 xdx

           cos5 x1  cos 2 x sin xdx    u  cos x

            u 5 1  u 2 du
                                           du   sin xdx

           u 7  u 5 du
3 sin n x and cos n x
 Usually done by substitution u  sin x or u  cos x
 e.g. i  cos 5 x sin 3 xdx

           cos5 x1  cos 2 x sin xdx    u  cos x

            u 5 1  u 2 du
                                           du   sin xdx

           u 7  u 5 du
          1 8 1 6
          u  u c
          8    6
          1 8     1
          cos x  cos 6 x  c
          8       6
3 sin n x and cos n x
 Usually done by substitution u  sin x or u  cos x
 e.g. i  cos 5 x sin 3 xdx

           cos5 x1  cos 2 x sin xdx      u  cos x

            u 5 1  u 2 du
                                             du   sin xdx

           u 7  u 5 du
                                           Both powers odd
          1 8 1 6
          u  u c                        Choose either as u
          8    6
                                           Usually the higher power
          1 8     1
          cos x  cos 6 x  c
          8       6
ii  sin 6 x cos3 xdx
ii  sin 6 x cos3 xdx
      sin 6 x1  sin 2 x cos xdx
ii  sin 6 x cos3 xdx
      sin 6 x1  sin 2 x cos xdx    u  sin x
                                       du  cos xdx
ii  sin 6 x cos3 xdx
      sin 6 x1  sin 2 x cos xdx    u  sin x
      u 6 1  u 2 du               du  cos xdx

      u 6  u 8 du
ii  sin 6 x cos3 xdx
      sin 6 x1  sin 2 x cos xdx    u  sin x
      u 6 1  u 2 du               du  cos xdx

      u 6  u 8 du
    1 7 1 9
    u  u c
    7    9
    1 7     1 9
    sin x  sin x  c
    7       9
ii  sin 6 x cos3 xdx
      sin 6 x1  sin 2 x cos xdx           u  sin x
      u 6 1  u 2 du                      du  cos xdx

      u 6  u 8 du
                                       One power odd & one power even
    1 7 1 9
    u  u c                          Choose even as u
    7    9
    1 7     1 9
    sin x  sin x  c
    7       9
ii  sin 6 x cos3 xdx
      sin 6 x1  sin 2 x cos xdx           u  sin x
      u 6 1  u 2 du                      du  cos xdx

      u 6  u 8 du
                                       One power odd & one power even
     1 7 1 9
     u  u c                         Choose even as u
     7    9
     1 7     1 9
     sin x  sin x  c
     7       9
 iii  sin 2 x cos 2 xdx
ii  sin 6 x cos3 xdx
      sin 6 x1  sin 2 x cos xdx                u  sin x
      u 6 1  u 2 du                           du  cos xdx

      u 6  u 8 du
                                        One power odd & one power even
        1 7 1 9
     u  u c                          Choose even as u
        7       9
        1 7        1 9
     sin x  sin x  c
        7          9
 iii  sin 2 x cos 2 xdx   sin 2 x1  sin 2 x dx
ii  sin 6 x cos3 xdx
      sin 6 x1  sin 2 x cos xdx                u  sin x
      u 6 1  u 2 du                           du  cos xdx

      u 6  u 8 du
                                        One power odd & one power even
        1 7 1 9
     u  u c                          Choose even as u
        7       9
        1 7        1 9
     sin x  sin x  c
        7          9
 iii  sin 2 x cos 2 xdx   sin 2 x1  sin 2 x dx
                              sin 2 x  sin 4 x dx
ii  sin 6 x cos3 xdx
      sin 6 x1  sin 2 x cos xdx                u  sin x
      u 6 1  u 2 du                           du  cos xdx

      u 6  u 8 du
                                        One power odd & one power even
        1 7 1 9
     u  u c                          Choose even as u
        7       9
        1 7        1 9
     sin x  sin x  c
        7          9
 iii  sin 2 x cos 2 xdx   sin 2 x1  sin 2 x dx
                              sin 2 x  sin 4 x dx
                             1   1         3   1          1
                             x  sin 2 x  x  sin 2 x  sin 4 x  c
                             2   4         8   4         32
ii  sin 6 x cos3 xdx
      sin 6 x1  sin 2 x cos xdx                u  sin x
      u 6 1  u 2 du                           du  cos xdx

      u 6  u 8 du
                                        One power odd & one power even
        1 7 1 9
     u  u c                          Choose even as u
        7       9
        1 7        1 9
     sin x  sin x  c
        7          9
 iii  sin 2 x cos 2 xdx   sin 2 x1  sin 2 x dx
                              sin 2 x  sin 4 x dx
                             1   1         3   1          1
                             x  sin 2 x  x  sin 2 x  sin 4 x  c
                             2   4         8   4         32
                             1    1
                             x  sin 4 x  c
                             8   32
ii  sin 6 x cos3 xdx
        sin 6 x1  sin 2 x cos xdx                u  sin x
        u 6 1  u 2 du                           du  cos xdx

        u 6  u 8 du
                                          One power odd & one power even
          1 7 1 9
       u  u c                          Choose even as u
          7       9
          1 7        1 9
       sin x  sin x  c
          7          9
   iii  sin 2 x cos 2 xdx   sin 2 x1  sin 2 x dx
                                sin 2 x  sin 4 x dx
Both powers even
                               1   1         3   1          1
Use sin x  1  cos x
          2             2      x  sin 2 x  x  sin 2 x  sin 4 x  c
                               2   4         8   4         32
or cos 2 x  1  sin 2 x       1    1
                               x  sin 4 x  c
                               8   32
4 tan n x or cot n x
4 tan n x or cot n x
  tan xdx   log cos x  c
4 tan n x or cot n x
  tan xdx   log cos x  c
  tan xdx
      2
4 tan n x or cot n x
  tan xdx   log cos x  c
  tan xdx   sec x  1dx
      2            2
4 tan n x or cot n x
  tan xdx   log cos x  c
  tan xdx   sec x  1dx
      2             2


             tan x  x  c
4 tan n x or cot n x
  tan xdx   log cos x  c
  tan xdx   sec x  1dx
      2                2


                tan x  x  c

  tan 3 xdx
4 tan n x or cot n x
  tan xdx   log cos x  c
  tan xdx   sec x  1dx
      2              2


              tan x  x  c

  tan 3 xdx   tan xsec 2 x  1dx

               tan x sec 2 xdx   tan xdx
4 tan n x or cot n x
  tan xdx   log cos x  c
  tan xdx   sec x  1dx
      2              2


              tan x  x  c

  tan 3 xdx   tan xsec 2 x  1dx

               tan x sec 2 xdx   tan xdx    u  tan x
                                               du  sec 2 xdx
4 tan n x or cot n x
  tan xdx   log cos x  c
  tan xdx   sec x  1dx
      2              2


              tan x  x  c

  tan 3 xdx   tan xsec 2 x  1dx

               tan x sec 2 xdx   tan xdx    u  tan x

               udu   tan xdx               du  sec 2 xdx
4 tan n x or cot n x
  tan xdx   log cos x  c
  tan xdx   sec x  1dx
      2              2


              tan x  x  c

  tan 3 xdx   tan xsec 2 x  1dx

               tan x sec 2 xdx   tan xdx    u  tan x

               udu   tan xdx               du  sec 2 xdx

             1
             u 2  log cos x  c
             2
             1 2
             tan x  log cos x  c
             2
 tan 4 xdx
 tan 4 xdx   tan 2 xsec 2 x  1dx

              tan 2 x sec 2 xdx   tan 2 xdx
 tan 4 xdx   tan 2 xsec 2 x  1dx

              tan 2 x sec 2 xdx   tan 2 xdx    u  tan x
                                                  du  sec 2 xdx
 tan 4 xdx   tan 2 xsec 2 x  1dx

              tan 2 x sec 2 xdx   tan 2 xdx    u  tan x

              u du   tan xdx
                  2           2                   du  sec 2 xdx
 tan 4 xdx   tan 2 xsec 2 x  1dx

              tan 2 x sec 2 xdx   tan 2 xdx    u  tan x

              u du   tan xdx
                  2           2                   du  sec 2 xdx

             1 3
             u  tan x  x  c
             3
             1 3
             tan x  tan x  x  c
             3
5 sec n x or cosecn x
5 sec n x or cosecn x
  sec xdx
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                   sec x  tan x
                                       dx
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                  sec x  tan x
                                       dx
               sec 2 x  sec x tan x
                                   dx
                  sec x  tan x
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                   sec x  tan x
                                       dx
                sec 2 x  sec x tan x
                                    dx
                   sec x  tan x
             logsec x  tan x   c
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx    
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx   sec x sec 2 xdx
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx   sec x sec 2 xdx            u  sec x
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx   sec x sec 2 xdx             u  sec x
                                            du  sec x tan xdx
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx   sec x sec 2 xdx             u  sec x
                                            du  sec x tan xdx dv  sec 2 xdx
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx   sec x sec 2 xdx             u  sec x          v  tan x
                                            du  sec x tan xdx dv  sec 2 xdx
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx   sec x sec 2 xdx             u  sec x          v  tan x
   sec x tan x   sec x tan 2 xdx         du  sec x tan xdx dv  sec 2 xdx
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx   sec x sec 2 xdx             u  sec x          v  tan x
   sec x tan x   sec x tan 2 xdx         du  sec x tan xdx dv  sec 2 xdx
   sec x tan x   sec xsec 2 x  1dx

   sec x tan x   sec3 xdx   sec xdx

   sec x tan x   sec3 xdx  logsec x  tan x 
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx 
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx   sec x sec 2 xdx             u  sec x          v  tan x
   sec x tan x   sec x tan 2 xdx         du  sec x tan xdx dv  sec 2 xdx
   sec x tan x   sec xsec 2 x  1dx

   sec x tan x   sec3 xdx   sec xdx

  sec x tan x   sec3 xdx  logsec x  tan x 
 2  sec3 xdx  sec x tan x  logsec x  tan x   c
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx  
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx   sec x sec 2 xdx             u  sec x          v  tan x
   sec x tan x   sec x tan 2 xdx         du  sec x tan xdx dv  sec 2 xdx
   sec x tan x   sec xsec 2 x  1dx

   sec x tan x   sec3 xdx   sec xdx

    sec x tan x   sec3 xdx  logsec x  tan x 
 2  sec3 xdx  sec x tan x  logsec x  tan x   c
             1               1
 sec3 xdx  sec x tan x  logsec x  tan x   c
              2              2
5 sec n x or cosecn x
               sec xsec x  tan x 
   sec xdx  
                    sec x  tan x
                                       dx
                 sec 2 x  sec x tan x
                                     dx
                    sec x  tan x
              logsec x  tan x   c
   sec 2 xdx  tan x  c

   sec3 xdx   sec x sec 2 xdx             u  sec x          v  tan x
   sec x tan x   sec x tan 2 xdx         du  sec x tan xdx dv  sec 2 xdx
   sec x tan x   sec xsec 2 x  1dx
                                                         Odd powers
   sec x tan x   sec xdx   sec xdx
                       3

                                                         Done by parts
    sec x tan x   sec3 xdx  logsec x  tan x 
 2  sec3 xdx  sec x tan x  logsec x  tan x   c
             1               1
 sec3 xdx  sec x tan x  logsec x  tan x   c
              2              2
 sec 4 xdx
 sec 4 xdx   sec 2 x1  tan 2 x dx
 sec 4 xdx   sec 2 x1  tan 2 x dx    u  tan x
                                          du  sec 2 xdx
 sec 4 xdx   sec 2 x1  tan 2 x dx    u  tan x

               1  u du
                       2                  du  sec 2 xdx
 sec 4 xdx   sec 2 x1  tan 2 x dx    u  tan x

               1  u du
                       2                  du  sec 2 xdx
                   1 3
             u u c
                   3
                      1 3
              tan x  tan x  c
                      3
 sec 4 xdx   sec 2 x1  tan 2 x dx         u  tan x

               1  u du
                       2                      du  sec 2 xdx
                   1 3                    Even Power
             u u c
                                          Factorise as sec xsec x 
                   3                                        2      2   some power

                      1 3
              tan x  tan x  c          Substitute sec 2 x  1  tan 2 x
                      3
                                          Use u  tan x
 sec 4 xdx   sec 2 x1  tan 2 x dx         u  tan x

               1  u du
                       2                      du  sec 2 xdx
                   1 3                    Even Power
             u u c
                                          Factorise as sec xsec x 
                   3                                        2      2   some power

                      1 3
              tan x  tan x  c          Substitute sec 2 x  1  tan 2 x
                      3
                                          Use u  tan x




         Exercise 2C; 1, 2, 4, 5, 7, 8, 10, 12, 14, 16, 17, 18

More Related Content

PDF
X2 T05 02 trig integrals (2010)
PDF
X2 T05 05 trig substitutions (2010)
PDF
12X1 T05 04 differentiating inverse trig (2010)
PDF
12X1 T03 04 integrating trig functions
PPT
Toan 1 bai_07_kynang_taylor - bookbooming
PDF
X2 T05 01 by parts (2010)
PDF
X2 T04 01 integration by parts (12)
PDF
X2 T01 11 locus & complex numbers 2
X2 T05 02 trig integrals (2010)
X2 T05 05 trig substitutions (2010)
12X1 T05 04 differentiating inverse trig (2010)
12X1 T03 04 integrating trig functions
Toan 1 bai_07_kynang_taylor - bookbooming
X2 T05 01 by parts (2010)
X2 T04 01 integration by parts (12)
X2 T01 11 locus & complex numbers 2

Viewers also liked (7)

PDF
12X1 T03 01 arcs & sectors
PPT
AllegroGraph - AGWebView
PDF
11X1 T14 06 sum of a geometric series (2011)
PDF
12 x1 t03 04 integrating trig (2012)
PDF
12 x1 t03 01 arcs & sectors (2012)
PDF
12 x1 t03 03 differentiating trig (2013)
PPT
Goodbye slideshare UPDATE
12X1 T03 01 arcs & sectors
AllegroGraph - AGWebView
11X1 T14 06 sum of a geometric series (2011)
12 x1 t03 04 integrating trig (2012)
12 x1 t03 01 arcs & sectors (2012)
12 x1 t03 03 differentiating trig (2013)
Goodbye slideshare UPDATE
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
11 x1 t16 01 area under curve (2013)
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
11 x1 t16 01 area under curve (2013)
Ad

Recently uploaded (6)

PPTX
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
PDF
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
PDF
فورمولر عمومی مضمون فزیک برای همه انجنیران
PPTX
Presentation on chemistry class 11 and class 12
PDF
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
PDF
کاریگەری دەربرێنی خۆش و دەربڕێنی ناخۆش لەسەر خوێندکار لە چووارچێوەی بەرێوەبرد...
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
فورمولر عمومی مضمون فزیک برای همه انجنیران
Presentation on chemistry class 11 and class 12
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
کاریگەری دەربرێنی خۆش و دەربڕێنی ناخۆش لەسەر خوێندکار لە چووارچێوەی بەرێوەبرد...

X2 t04 02 trig integrals (2012)

  • 2. Trig Integrals (1) Standard Integrals 1  sin axdx   a cos ax  c
  • 3. Trig Integrals (1) Standard Integrals 1  sin axdx   a cos ax  c 1  cos axdx  a sin ax  c
  • 4. Trig Integrals (1) Standard Integrals 1  sin axdx   a cos ax  c 1  cos axdx  a sin ax  c 1  sec 2 axdx  tan ax  c a
  • 5. Trig Integrals (1) Standard Integrals 1  sin axdx   a cos ax  c 1  cos axdx  a sin ax  c 1  sec 2 axdx  tan ax  c a sin ax  tan axdx   cos ax dx
  • 6. Trig Integrals (1) Standard Integrals 1  sin axdx   a cos ax  c 1  cos axdx  a sin ax  c 1  sec 2 axdx  tan ax  c a sin ax  tan axdx   cos ax dx 1 1   log cos ax  c OR log sec ax  c a a
  • 7. 2 sin n x or cos n x
  • 8. 2 sin n x or cos n x  sin xdx   cos x  c
  • 9. 2 sin n x or cos n x  sin xdx   cos x  c  sin 2 xdx
  • 10. 2 sin n x or cos n x  sin xdx   cos x  c 1  sin xdx  2  1  cos 2 x dx 2
  • 11. 2 sin n x or cos n x  sin xdx   cos x  c 1  sin xdx  2  1  cos 2 x dx 2 1 1    x  sin 2 x   c 2 2 
  • 12. 2 sin n x or cos n x  sin xdx   cos x  c 1  sin xdx  2  1  cos 2 x dx 2 1 1    x  sin 2 x   c 2 2   sin 3 xdx
  • 13. 2 sin n x or cos n x  sin xdx   cos x  c 1  sin xdx  2  1  cos 2 x dx 2 1 1    x  sin 2 x   c 2 2   sin 3 xdx   sin x sin xdx 2
  • 14. 2 sin n x or cos n x  sin xdx   cos x  c 1  sin xdx  2  1  cos 2 x dx 2 1 1    x  sin 2 x   c 2 2   sin 3 xdx   sin x sin xdx 2   sin x1  cos 2 x dx
  • 15. 2 sin n x or cos n x  sin xdx   cos x  c 1  sin xdx  2  1  cos 2 x dx 2 1 1    x  sin 2 x   c 2 2   sin 3 xdx   sin x sin xdx 2   sin x1  cos 2 x dx u  cos x du   sin xdx
  • 16. 2 sin n x or cos n x  sin xdx   cos x  c 1  sin xdx  2  1  cos 2 x dx 2 1 1    x  sin 2 x   c 2 2   sin 3 xdx   sin x sin xdx 2   sin x1  cos 2 x dx u  cos x du   sin xdx    1  u 2 du
  • 17. 2 sin n x or cos n x  sin xdx   cos x  c 1  sin xdx  2  1  cos 2 x dx 2 1 1    x  sin 2 x   c 2 2   sin 3 xdx   sin x sin xdx 2   sin x1  cos 2 x dx u  cos x du   sin xdx    1  u 2 du 1 3  u u c 3 1 3  cos x  cos x  c 3
  • 18. 2 sin n x or cos n x  sin xdx   cos x  c 1  sin xdx  2  1  cos 2 x dx 2 1 1    x  sin 2 x   c 2 2   sin 3 xdx   sin x sin xdx 2   sin x1  cos 2 x dx u  cos x du   sin xdx    1  u 2 du Odd Power 1 3  u u c Factorise as sin xsin x  2 some power 3 1 3 Substitute sin 2 x  1  cos 2 x  cos x  cos x  c 3 Use u  cos x
  • 19.  sin 4 xdx
  • 20.  sin xdx   sin x  dx 4 2 2
  • 21.  sin xdx   sin x  dx 4 2 2 1   1  cos 2 x  dx 2 4
  • 22.  sin xdx   sin x  dx 4 2 2 1   1  cos 2 x  dx 2 4   1  2 cos 2 x  cos 2 2 x dx 1 4
  • 23.  sin xdx   sin x  dx 4 2 2 1   1  cos 2 x  dx 2 4   1  2 cos 2 x  cos 2 2 x dx 1 4   1  2 cos 2 x  1  cos 4 x  dx 1  1 4  2  
  • 24.  sin xdx   sin x  dx 4 2 2 1   1  cos 2 x  dx 2 4   1  2 cos 2 x  cos 2 2 x dx 1 4   1  2 cos 2 x  1  cos 4 x  dx 1  1 4  2       2 cos 2 x  cos 4 x dx 1 3 1  4 2 2 
  • 25.  sin xdx   sin x  dx 4 2 2 1   1  cos 2 x  dx 2 4   1  2 cos 2 x  cos 2 2 x dx 1 4   1  2 cos 2 x  1  cos 4 x  dx 1  1 4  2       2 cos 2 x  cos 4 x dx 1 3 1  4 2 2    x  sin 2 x  sin 4 x   c 13 1  42 8 
  • 26. xdx   sin x  dx Even Power  sin 4 2 2 Factorise as sin x  2 some power 1   1  cos 2 x  dx 2 1 4 Substitute sin x  1  cos 2 x  2 2   1  2 cos 2 x  cos 2 2 x dx 1 4   1  2 cos 2 x  1  cos 4 x  dx 1  1 4  2       2 cos 2 x  cos 4 x dx 1 3 1  4 2 2    x  sin 2 x  sin 4 x   c 13 1  42 8 
  • 27.  sin 5 xdx
  • 28.  sin xdx   sin xsin x  dx 5 2 2
  • 29.  sin xdx   sin xsin x  dx 5 2 2   sin x1  cos x  dx 2 2
  • 30.  sin xdx   sin xsin x  dx 5 2 2   sin x1  cos x  dx u  cos x 2 2 du   sin xdx
  • 31.  sin xdx   sin xsin x  dx 5 2 2   sin x1  cos x  dx u  cos x 2 2 du   sin xdx    1  u  du 2 2    1  2u 2  u 4 du
  • 32.  sin xdx   sin xsin x  dx 5 2 2   sin x1  cos x  dx u  cos x 2 2 du   sin xdx    1  u  du 2 2    1  2u 2  u 4 du  u  2 u3  1 u5   c     3 5  2 1   cos x  cos3 x  cos 5 x  c 3 5
  • 33. 3 sin n x and cos n x
  • 34. 3 sin n x and cos n x Usually done by substitution u  sin x or u  cos x
  • 35. 3 sin n x and cos n x Usually done by substitution u  sin x or u  cos x e.g. i  cos 5 x sin 3 xdx
  • 36. 3 sin n x and cos n x Usually done by substitution u  sin x or u  cos x e.g. i  cos 5 x sin 3 xdx   cos5 x1  cos 2 x sin xdx
  • 37. 3 sin n x and cos n x Usually done by substitution u  sin x or u  cos x e.g. i  cos 5 x sin 3 xdx   cos5 x1  cos 2 x sin xdx u  cos x du   sin xdx
  • 38. 3 sin n x and cos n x Usually done by substitution u  sin x or u  cos x e.g. i  cos 5 x sin 3 xdx   cos5 x1  cos 2 x sin xdx u  cos x    u 5 1  u 2 du du   sin xdx   u 7  u 5 du
  • 39. 3 sin n x and cos n x Usually done by substitution u  sin x or u  cos x e.g. i  cos 5 x sin 3 xdx   cos5 x1  cos 2 x sin xdx u  cos x    u 5 1  u 2 du du   sin xdx   u 7  u 5 du 1 8 1 6  u  u c 8 6 1 8 1  cos x  cos 6 x  c 8 6
  • 40. 3 sin n x and cos n x Usually done by substitution u  sin x or u  cos x e.g. i  cos 5 x sin 3 xdx   cos5 x1  cos 2 x sin xdx u  cos x    u 5 1  u 2 du du   sin xdx   u 7  u 5 du Both powers odd 1 8 1 6  u  u c Choose either as u 8 6 Usually the higher power 1 8 1  cos x  cos 6 x  c 8 6
  • 41. ii  sin 6 x cos3 xdx
  • 42. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx
  • 43. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx u  sin x du  cos xdx
  • 44. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx u  sin x   u 6 1  u 2 du du  cos xdx   u 6  u 8 du
  • 45. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx u  sin x   u 6 1  u 2 du du  cos xdx   u 6  u 8 du 1 7 1 9  u  u c 7 9 1 7 1 9  sin x  sin x  c 7 9
  • 46. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx u  sin x   u 6 1  u 2 du du  cos xdx   u 6  u 8 du One power odd & one power even 1 7 1 9  u  u c Choose even as u 7 9 1 7 1 9  sin x  sin x  c 7 9
  • 47. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx u  sin x   u 6 1  u 2 du du  cos xdx   u 6  u 8 du One power odd & one power even 1 7 1 9  u  u c Choose even as u 7 9 1 7 1 9  sin x  sin x  c 7 9 iii  sin 2 x cos 2 xdx
  • 48. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx u  sin x   u 6 1  u 2 du du  cos xdx   u 6  u 8 du One power odd & one power even 1 7 1 9  u  u c Choose even as u 7 9 1 7 1 9  sin x  sin x  c 7 9 iii  sin 2 x cos 2 xdx   sin 2 x1  sin 2 x dx
  • 49. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx u  sin x   u 6 1  u 2 du du  cos xdx   u 6  u 8 du One power odd & one power even 1 7 1 9  u  u c Choose even as u 7 9 1 7 1 9  sin x  sin x  c 7 9 iii  sin 2 x cos 2 xdx   sin 2 x1  sin 2 x dx   sin 2 x  sin 4 x dx
  • 50. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx u  sin x   u 6 1  u 2 du du  cos xdx   u 6  u 8 du One power odd & one power even 1 7 1 9  u  u c Choose even as u 7 9 1 7 1 9  sin x  sin x  c 7 9 iii  sin 2 x cos 2 xdx   sin 2 x1  sin 2 x dx   sin 2 x  sin 4 x dx 1 1 3 1 1  x  sin 2 x  x  sin 2 x  sin 4 x  c 2 4 8 4 32
  • 51. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx u  sin x   u 6 1  u 2 du du  cos xdx   u 6  u 8 du One power odd & one power even 1 7 1 9  u  u c Choose even as u 7 9 1 7 1 9  sin x  sin x  c 7 9 iii  sin 2 x cos 2 xdx   sin 2 x1  sin 2 x dx   sin 2 x  sin 4 x dx 1 1 3 1 1  x  sin 2 x  x  sin 2 x  sin 4 x  c 2 4 8 4 32 1 1  x  sin 4 x  c 8 32
  • 52. ii  sin 6 x cos3 xdx   sin 6 x1  sin 2 x cos xdx u  sin x   u 6 1  u 2 du du  cos xdx   u 6  u 8 du One power odd & one power even 1 7 1 9  u  u c Choose even as u 7 9 1 7 1 9  sin x  sin x  c 7 9 iii  sin 2 x cos 2 xdx   sin 2 x1  sin 2 x dx   sin 2 x  sin 4 x dx Both powers even 1 1 3 1 1 Use sin x  1  cos x 2 2  x  sin 2 x  x  sin 2 x  sin 4 x  c 2 4 8 4 32 or cos 2 x  1  sin 2 x 1 1  x  sin 4 x  c 8 32
  • 53. 4 tan n x or cot n x
  • 54. 4 tan n x or cot n x  tan xdx   log cos x  c
  • 55. 4 tan n x or cot n x  tan xdx   log cos x  c  tan xdx 2
  • 56. 4 tan n x or cot n x  tan xdx   log cos x  c  tan xdx   sec x  1dx 2 2
  • 57. 4 tan n x or cot n x  tan xdx   log cos x  c  tan xdx   sec x  1dx 2 2  tan x  x  c
  • 58. 4 tan n x or cot n x  tan xdx   log cos x  c  tan xdx   sec x  1dx 2 2  tan x  x  c  tan 3 xdx
  • 59. 4 tan n x or cot n x  tan xdx   log cos x  c  tan xdx   sec x  1dx 2 2  tan x  x  c  tan 3 xdx   tan xsec 2 x  1dx   tan x sec 2 xdx   tan xdx
  • 60. 4 tan n x or cot n x  tan xdx   log cos x  c  tan xdx   sec x  1dx 2 2  tan x  x  c  tan 3 xdx   tan xsec 2 x  1dx   tan x sec 2 xdx   tan xdx u  tan x du  sec 2 xdx
  • 61. 4 tan n x or cot n x  tan xdx   log cos x  c  tan xdx   sec x  1dx 2 2  tan x  x  c  tan 3 xdx   tan xsec 2 x  1dx   tan x sec 2 xdx   tan xdx u  tan x   udu   tan xdx du  sec 2 xdx
  • 62. 4 tan n x or cot n x  tan xdx   log cos x  c  tan xdx   sec x  1dx 2 2  tan x  x  c  tan 3 xdx   tan xsec 2 x  1dx   tan x sec 2 xdx   tan xdx u  tan x   udu   tan xdx du  sec 2 xdx 1  u 2  log cos x  c 2 1 2  tan x  log cos x  c 2
  • 63.  tan 4 xdx
  • 64.  tan 4 xdx   tan 2 xsec 2 x  1dx   tan 2 x sec 2 xdx   tan 2 xdx
  • 65.  tan 4 xdx   tan 2 xsec 2 x  1dx   tan 2 x sec 2 xdx   tan 2 xdx u  tan x du  sec 2 xdx
  • 66.  tan 4 xdx   tan 2 xsec 2 x  1dx   tan 2 x sec 2 xdx   tan 2 xdx u  tan x   u du   tan xdx 2 2 du  sec 2 xdx
  • 67.  tan 4 xdx   tan 2 xsec 2 x  1dx   tan 2 x sec 2 xdx   tan 2 xdx u  tan x   u du   tan xdx 2 2 du  sec 2 xdx 1 3  u  tan x  x  c 3 1 3  tan x  tan x  x  c 3
  • 68. 5 sec n x or cosecn x
  • 69. 5 sec n x or cosecn x  sec xdx
  • 70. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx
  • 71. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x
  • 72. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c
  • 73. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c
  • 74. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx
  • 75. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx   sec x sec 2 xdx
  • 76. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx   sec x sec 2 xdx u  sec x
  • 77. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx   sec x sec 2 xdx u  sec x du  sec x tan xdx
  • 78. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx   sec x sec 2 xdx u  sec x du  sec x tan xdx dv  sec 2 xdx
  • 79. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx   sec x sec 2 xdx u  sec x v  tan x du  sec x tan xdx dv  sec 2 xdx
  • 80. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx   sec x sec 2 xdx u  sec x v  tan x  sec x tan x   sec x tan 2 xdx du  sec x tan xdx dv  sec 2 xdx
  • 81. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx   sec x sec 2 xdx u  sec x v  tan x  sec x tan x   sec x tan 2 xdx du  sec x tan xdx dv  sec 2 xdx  sec x tan x   sec xsec 2 x  1dx  sec x tan x   sec3 xdx   sec xdx  sec x tan x   sec3 xdx  logsec x  tan x 
  • 82. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx   sec x sec 2 xdx u  sec x v  tan x  sec x tan x   sec x tan 2 xdx du  sec x tan xdx dv  sec 2 xdx  sec x tan x   sec xsec 2 x  1dx  sec x tan x   sec3 xdx   sec xdx  sec x tan x   sec3 xdx  logsec x  tan x   2  sec3 xdx  sec x tan x  logsec x  tan x   c
  • 83. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx   sec x sec 2 xdx u  sec x v  tan x  sec x tan x   sec x tan 2 xdx du  sec x tan xdx dv  sec 2 xdx  sec x tan x   sec xsec 2 x  1dx  sec x tan x   sec3 xdx   sec xdx  sec x tan x   sec3 xdx  logsec x  tan x   2  sec3 xdx  sec x tan x  logsec x  tan x   c 1 1  sec3 xdx  sec x tan x  logsec x  tan x   c 2 2
  • 84. 5 sec n x or cosecn x sec xsec x  tan x   sec xdx  sec x  tan x dx sec 2 x  sec x tan x  dx sec x  tan x  logsec x  tan x   c  sec 2 xdx  tan x  c  sec3 xdx   sec x sec 2 xdx u  sec x v  tan x  sec x tan x   sec x tan 2 xdx du  sec x tan xdx dv  sec 2 xdx  sec x tan x   sec xsec 2 x  1dx Odd powers  sec x tan x   sec xdx   sec xdx 3 Done by parts  sec x tan x   sec3 xdx  logsec x  tan x   2  sec3 xdx  sec x tan x  logsec x  tan x   c 1 1  sec3 xdx  sec x tan x  logsec x  tan x   c 2 2
  • 85.  sec 4 xdx
  • 86.  sec 4 xdx   sec 2 x1  tan 2 x dx
  • 87.  sec 4 xdx   sec 2 x1  tan 2 x dx u  tan x du  sec 2 xdx
  • 88.  sec 4 xdx   sec 2 x1  tan 2 x dx u  tan x   1  u du 2 du  sec 2 xdx
  • 89.  sec 4 xdx   sec 2 x1  tan 2 x dx u  tan x   1  u du 2 du  sec 2 xdx 1 3 u u c 3 1 3  tan x  tan x  c 3
  • 90.  sec 4 xdx   sec 2 x1  tan 2 x dx u  tan x   1  u du 2 du  sec 2 xdx 1 3 Even Power u u c Factorise as sec xsec x  3 2 2 some power 1 3  tan x  tan x  c Substitute sec 2 x  1  tan 2 x 3 Use u  tan x
  • 91.  sec 4 xdx   sec 2 x1  tan 2 x dx u  tan x   1  u du 2 du  sec 2 xdx 1 3 Even Power u u c Factorise as sec xsec x  3 2 2 some power 1 3  tan x  tan x  c Substitute sec 2 x  1  tan 2 x 3 Use u  tan x Exercise 2C; 1, 2, 4, 5, 7, 8, 10, 12, 14, 16, 17, 18