SlideShare a Scribd company logo
CLASS XI TRIGONOMETRIC FUNCTIONS AND IDENTITIES WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
Q 1. If tan  =
1
a
4a
 then sec  - tan  is equal to
(a)
1
2a,
2a
 (b)
1
,2a
2a
 (c) 2a (d)
1
,2a
2a
Q 2. sec2  = 2
4xy
(x y)

, where x  R, y  R, is true if and only if
(a) x + y  0 (b) x = y, x  0 (c) x = y (d) x  0, y  0
Q 3. sin2 
2
(x y)
4xy

 , where x  R, gives real  if and only if
(a) x + y = 0 (b) x = y (c) |x| = |y|  0 (d) none of these
Q 4. cosec 
2 2
2 2
x y
x y



, where x  R, y  R, gives real  if and only if
(a) x = y  0 (b) |x| = |y|  0 (c) x + y = 0, x  0 (d) none of these
Q 5. If sin  + cosec  = 2 then the value of sin8 + cosec8 is equal to
(a) 2 (b) 28 (c) 24 (d) none of these
Q 6. If x = rsin .cos , y = rsin  . sin  and z = rcos  then the value of x2 + y2 + z2 is independent
of
(a) ,  (b) r,  (c) r,  (d) r
Q 7. Let p = a cos  - b sin . Then for all real 
(a) 2 2
p a b
  (b) 2 2
p a b
   (c) 2 2 2 2
a b p a b
     (d) none of
these
Q 8. If 0 <  < 180 then
2 2 2 ..... 2(1 cos )
      ,
there being n number of 2’s, is equal to
(a) n
2cos
2

(b) n 1
2cos
2 

(c) n 1
2cos
2 

(d) none of these
Q 9. The value of tan 2tan
16 8
 
 + 4 is equal to
(a) cot
8

(b) cot
16

(c) cot 4
16

 (d) none of these
Q 10. The value of sin 78 - sin 66 - sin 42 + sin 6 is
CLASS XI TRIGONOMETRIC FUNCTIONS AND IDENTITIES WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
(a)
1
2
(b) 
1
2
(c) -1 (d) none of these
Q 11. The value of 3 cosec 20 - sec 20 is equal to
(a) 2 (b) 4 (c)
o
o
sin20
2.
sin40
(d)
o
o
sin20
4.
sin40
Q 12. The maximum value of 1 sin 2cos
4 4
 
   
     
   
   
for real values of  is
(a) 3 (b) 5 (c) 4 (d) none of these
Q 13. The minimum value of cos 2 + cos  of real values of  is
(a)
9
8
 (b) 0 (c) -2 (d) none of these
Q 14. The value of cosec 10 - o
3 sec10 is equal to
(a)
1
2
(b) 2 (c) 4 (d) 8
Q 15. The least value of cos2 - 6 sin . cos  + 3 sin2  + 2 is
(a) 4 10
 (b) 4 10
 (c) 0 (d) none of these
Q 16. If cos4  . sec2 ,
1
2
and sin4  .cosec2  are in AP then
cos8  . cos6 ,
1
2
and sin8  . cosec6  are in
(a) AP (b) GP (c) HP (d) none of these
Q 17. If tan ,
9

x and
5
tan
18

are in AP and tan
9

, y and
7
tan
18

are also in AP then
(a) 2x = y (b) x > y (c) x = y (d) none of these
Q 18. If cos(x – y), cos x and cos(x + y) are in HP then
y
cosx.sec
2
equals
(a) 1 (b) 2 (c) 2 (d) none of these
Q 19. If 2 sin . cos  . sin  = sin  . sin( + ) then tan , tan  and tan  are in
(a) AP (b) GP (c) HP (d) none of these
Q 20. If tan  = a , where a is a rational number which is not a perfect square, then which of the
following is a rational number ?
CLASS XI TRIGONOMETRIC FUNCTIONS AND IDENTITIES WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
(a) sin 2 (b) tan 2 (c) cos 2 (d) none of these
Q 21. Let f() =
cot
1 cot

 
and
5
4

    . Then the value of f() . f() is
(a) 2 (b)
1
2
 (c)
1
2
(d) none of these
Q 22. If tan
2

and tan
2

are the roots of the equation 8x2 – 26x + 15 = 0 then cos( + ) is equal to
(a)
627
725
 (b)
627
725
(c) -1 (d) none of these
Q 23. If sin  + sin  = a and cos  –  = b then tan
2
  
is equal to
(a)
a
b
 (b)
b
a
 (c) 2 2
a b
 (d) none of these
Q 24. If 0 <   <
4

, cos ( + ) =
3
5
and ( – ) =
4
5
then sin 2 is equal to
(a) 1 (b) 0 (c) 2 (d) none of these
Q 25. If cos
1 1 1 1
x ,cos y
2 x 2 y
 
 
     
 
 
   
then cos( – ) is equal to
(a)
x y
y x
 (b)
1
xy
xy
 (c)
1 x y
2 y x
 

 
 
(d) none of these
Q 26. If
2sin 1 sin cos
then
1 sin cos 1 sin
   
 
     
is equal to
(a)
1

(b)  (c) 1 –  (d) 1 + 
Q 27. If |tan A| < 1, and |A| is acute then
1 sin2A 1 sin2A
1 sin2A 1 sin2A
  
  
is equal to
(a) tan A (b) –tan 3 (c) cot A (d) –cot A
Q 28. tan .tan .tan
3 3
 
   
    
   
   
is equal to
(a) tan 2 (b) tan 3 (c) tan3  (d) none of these
CLASS XI TRIGONOMETRIC FUNCTIONS AND IDENTITIES WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
Q 29. The set of all possible values of  in [–, ] such that
1 sin
1 sin
 
 
is equal to sec  – tan  is
(a) 0,
2

 


 
(b) 0, ,
2 2
 
   
 
  

   
(c) [ –, 0] (d) ,
2 2
 
 
 
 
Q 30. For all real values of , cot  – 2cot 2 is equal to
(a) tan 2 (b) tan  (c) –cot 3 (d) none of these
Q 31. Let a = cos A + cos B – cos (A + B) and b =
A B A B
sin sin cos
2 2 2

. Then a – b is equal to
(a) 1 (b) 0 (c)  1 (d) None of these
Q 32. If tan tan tan k
3 3
 
   
       
   
   
3 then k is equal to
(a) 1 (b) 3 (c)
1
3
(d) none of these
Q 33. If asec  – ctan  = d and bsec  + dtan  = c then
(a) a2 + c2 = b2 + d2 (b) a2 + d2 = b2 + c2 (c) a2 + b2 = c2 + d2 (d) ab = cd
Q 34. If cos 20 – sin 20 = p then cos 40 is equal to
(a) 2
p 2 p
  (b) 2
p 2 p
 (c) 2
p 2 p
  (d) none of these
Q 35. If 3sin  + 4cos  = 5 then the value of 4sin  – 3cos  is
(a) 0 (b) 5 (c) 1 (d) none of these
Q 36. If cos 2x + 2cos x = 1 then sin2 x(2 – cos2x) is equal to
(a) 1 (b) –1 (c) 5
 (d) 5
1a 2b 3c 4d 5a 6a 7c 8a 9b 10b
11b 12c 13a 14c 15b 16a 17a 18c 19c 20c
21c 22a 23b 24a 25c 26b 27c 28b 29d 30b
31a 32b 33c 34b 35a 36a

More Related Content

DOCX
Functions revision worksheet (t) part 2
DOCX
Functions revision worksheet (t) part 1
DOCX
Set, relation, mapping (t)
DOCX
Class xii inverse trigonometric function worksheet (t)
DOCX
Permutation & Combination (t) Part 1
DOCX
Class xii determinants revision worksheet (t)
DOCX
Class xi binomial theorem worksheet (t)
PDF
MODULE 4- Quadratic Expression and Equations
Functions revision worksheet (t) part 2
Functions revision worksheet (t) part 1
Set, relation, mapping (t)
Class xii inverse trigonometric function worksheet (t)
Permutation & Combination (t) Part 1
Class xii determinants revision worksheet (t)
Class xi binomial theorem worksheet (t)
MODULE 4- Quadratic Expression and Equations

What's hot (20)

DOCX
CLASS XI RELATION & FUNCTION M WORKSHEET
PPT
4.1 matrices
PDF
Modul bimbingan add maths
KEY
Teknik Menjawab Kertas 1 Matematik Tambahan
DOC
Skills In Add Maths
PDF
Add maths complete f4 & f5 Notes
PDF
modul 2 add maths
PDF
Math school-books-3rd-preparatory-2nd-term-khawagah-2019
PPSX
Teknik menjawab matematik tambahan 1
PDF
Chapter 3 quadratc functions
PPT
Spm add math 2009 paper 1extra222
PDF
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
PDF
Fungsi rekursiv
PDF
MATEMATIK SEM 3 TRANSFORMASI
DOC
Final exam review #2
PDF
Add Maths 2
PDF
Add Maths Module
PDF
Chapter 4 simultaneous equations
PDF
Chapter 5 indices & logarithms
CLASS XI RELATION & FUNCTION M WORKSHEET
4.1 matrices
Modul bimbingan add maths
Teknik Menjawab Kertas 1 Matematik Tambahan
Skills In Add Maths
Add maths complete f4 & f5 Notes
modul 2 add maths
Math school-books-3rd-preparatory-2nd-term-khawagah-2019
Teknik menjawab matematik tambahan 1
Chapter 3 quadratc functions
Spm add math 2009 paper 1extra222
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
Fungsi rekursiv
MATEMATIK SEM 3 TRANSFORMASI
Final exam review #2
Add Maths 2
Add Maths Module
Chapter 4 simultaneous equations
Chapter 5 indices & logarithms
Ad

Similar to Xi trigonometric functions and identities (t) part 1 (20)

PDF
Trigonometry 10th edition larson solutions manual
PDF
Trigonometry 10th Edition Larson Solutions Manual
PDF
Trigonometry 10th edition larson solutions manual
PDF
Trigonometry class 10th PYQ 2025 board exam.pdf
PDF
Test yourself for JEE(Main)TP-2
PDF
Conceptual Short Tricks for JEE(Main and Advanced)
DOCX
Assessments for class xi
PPTX
Introduction_to_trigonometry_final ppt..pptx
PDF
Magical Short Tricks for JEE(Main).
PDF
Can someone explain 9 and 10 My teacher did one problem like this a.pdf
PDF
01 Indefinite Intergration. Module-5pdf
PPT
Section 6.3 properties of the trigonometric functions
DOCX
Question bank -xi (hots)
PDF
BITSAT 2018 Question Bank - Maths
PDF
(Www.entrance exam.net)-sail placement sample paper 5
DOCX
522020 MyOpenMathhttpswww.myopenmath.comassess2cid.docx
PPTX
IITJEE - 2009 ii - mathematics
PDF
Add math may june 2016 p1
PDF
Aieee 2012 Solved Paper by Prabhat Gaurav
DOCX
Class xi complex numbers worksheet (t) part 1
Trigonometry 10th edition larson solutions manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th edition larson solutions manual
Trigonometry class 10th PYQ 2025 board exam.pdf
Test yourself for JEE(Main)TP-2
Conceptual Short Tricks for JEE(Main and Advanced)
Assessments for class xi
Introduction_to_trigonometry_final ppt..pptx
Magical Short Tricks for JEE(Main).
Can someone explain 9 and 10 My teacher did one problem like this a.pdf
01 Indefinite Intergration. Module-5pdf
Section 6.3 properties of the trigonometric functions
Question bank -xi (hots)
BITSAT 2018 Question Bank - Maths
(Www.entrance exam.net)-sail placement sample paper 5
522020 MyOpenMathhttpswww.myopenmath.comassess2cid.docx
IITJEE - 2009 ii - mathematics
Add math may june 2016 p1
Aieee 2012 Solved Paper by Prabhat Gaurav
Class xi complex numbers worksheet (t) part 1
Ad

More from Mishal Chauhan (20)

DOCX
Trigonometry, inequality, Logarithm Revision class xi
DOCX
Complex number worksheet 2 (i)
DOCX
Complex number worksheet 1 (i)
DOCX
Trigonomerty worksheet class 11 (i)
DOCX
P&C worksheet class 11 (i)
DOCX
Relation, function worksheet class 12 (i)
DOCX
Binomial theorem worskeet (i)
DOCX
Ix x foundation inequalities - day 1
DOCX
Sets, relation, function worksheet (i)
DOCX
Series and sequence (g) worksheet easy average
DOCX
Series and sequence (d) worksheet
DOCX
Application of derivatives worksheet (s)
DOCX
Series and sequence (k) worksheet
DOCX
Application of derivatives worksheet (k)
DOCX
Series and sequence (c) worksheet
DOCX
xii application of derivatives level 1 worksheet
DOCX
Xii revision sheet 18 aug
DOCX
Ix x foundation logarithm - day 2
DOCX
IX X FOUNDATION LOGARITHM
DOCX
Logarithm practice worksheet (t)
Trigonometry, inequality, Logarithm Revision class xi
Complex number worksheet 2 (i)
Complex number worksheet 1 (i)
Trigonomerty worksheet class 11 (i)
P&C worksheet class 11 (i)
Relation, function worksheet class 12 (i)
Binomial theorem worskeet (i)
Ix x foundation inequalities - day 1
Sets, relation, function worksheet (i)
Series and sequence (g) worksheet easy average
Series and sequence (d) worksheet
Application of derivatives worksheet (s)
Series and sequence (k) worksheet
Application of derivatives worksheet (k)
Series and sequence (c) worksheet
xii application of derivatives level 1 worksheet
Xii revision sheet 18 aug
Ix x foundation logarithm - day 2
IX X FOUNDATION LOGARITHM
Logarithm practice worksheet (t)

Recently uploaded (20)

PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
RMMM.pdf make it easy to upload and study
PPTX
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
PDF
Basic Mud Logging Guide for educational purpose
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Classroom Observation Tools for Teachers
PPTX
Institutional Correction lecture only . . .
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
RMMM.pdf make it easy to upload and study
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
Basic Mud Logging Guide for educational purpose
VCE English Exam - Section C Student Revision Booklet
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PPH.pptx obstetrics and gynecology in nursing
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Final Presentation General Medicine 03-08-2024.pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
2.FourierTransform-ShortQuestionswithAnswers.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Renaissance Architecture: A Journey from Faith to Humanism
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Classroom Observation Tools for Teachers
Institutional Correction lecture only . . .
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf

Xi trigonometric functions and identities (t) part 1

  • 1. CLASS XI TRIGONOMETRIC FUNCTIONS AND IDENTITIES WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com Q 1. If tan  = 1 a 4a  then sec  - tan  is equal to (a) 1 2a, 2a  (b) 1 ,2a 2a  (c) 2a (d) 1 ,2a 2a Q 2. sec2  = 2 4xy (x y)  , where x  R, y  R, is true if and only if (a) x + y  0 (b) x = y, x  0 (c) x = y (d) x  0, y  0 Q 3. sin2  2 (x y) 4xy   , where x  R, gives real  if and only if (a) x + y = 0 (b) x = y (c) |x| = |y|  0 (d) none of these Q 4. cosec  2 2 2 2 x y x y    , where x  R, y  R, gives real  if and only if (a) x = y  0 (b) |x| = |y|  0 (c) x + y = 0, x  0 (d) none of these Q 5. If sin  + cosec  = 2 then the value of sin8 + cosec8 is equal to (a) 2 (b) 28 (c) 24 (d) none of these Q 6. If x = rsin .cos , y = rsin  . sin  and z = rcos  then the value of x2 + y2 + z2 is independent of (a) ,  (b) r,  (c) r,  (d) r Q 7. Let p = a cos  - b sin . Then for all real  (a) 2 2 p a b   (b) 2 2 p a b    (c) 2 2 2 2 a b p a b      (d) none of these Q 8. If 0 <  < 180 then 2 2 2 ..... 2(1 cos )       , there being n number of 2’s, is equal to (a) n 2cos 2  (b) n 1 2cos 2   (c) n 1 2cos 2   (d) none of these Q 9. The value of tan 2tan 16 8    + 4 is equal to (a) cot 8  (b) cot 16  (c) cot 4 16   (d) none of these Q 10. The value of sin 78 - sin 66 - sin 42 + sin 6 is
  • 2. CLASS XI TRIGONOMETRIC FUNCTIONS AND IDENTITIES WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com (a) 1 2 (b)  1 2 (c) -1 (d) none of these Q 11. The value of 3 cosec 20 - sec 20 is equal to (a) 2 (b) 4 (c) o o sin20 2. sin40 (d) o o sin20 4. sin40 Q 12. The maximum value of 1 sin 2cos 4 4                     for real values of  is (a) 3 (b) 5 (c) 4 (d) none of these Q 13. The minimum value of cos 2 + cos  of real values of  is (a) 9 8  (b) 0 (c) -2 (d) none of these Q 14. The value of cosec 10 - o 3 sec10 is equal to (a) 1 2 (b) 2 (c) 4 (d) 8 Q 15. The least value of cos2 - 6 sin . cos  + 3 sin2  + 2 is (a) 4 10  (b) 4 10  (c) 0 (d) none of these Q 16. If cos4  . sec2 , 1 2 and sin4  .cosec2  are in AP then cos8  . cos6 , 1 2 and sin8  . cosec6  are in (a) AP (b) GP (c) HP (d) none of these Q 17. If tan , 9  x and 5 tan 18  are in AP and tan 9  , y and 7 tan 18  are also in AP then (a) 2x = y (b) x > y (c) x = y (d) none of these Q 18. If cos(x – y), cos x and cos(x + y) are in HP then y cosx.sec 2 equals (a) 1 (b) 2 (c) 2 (d) none of these Q 19. If 2 sin . cos  . sin  = sin  . sin( + ) then tan , tan  and tan  are in (a) AP (b) GP (c) HP (d) none of these Q 20. If tan  = a , where a is a rational number which is not a perfect square, then which of the following is a rational number ?
  • 3. CLASS XI TRIGONOMETRIC FUNCTIONS AND IDENTITIES WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com (a) sin 2 (b) tan 2 (c) cos 2 (d) none of these Q 21. Let f() = cot 1 cot    and 5 4      . Then the value of f() . f() is (a) 2 (b) 1 2  (c) 1 2 (d) none of these Q 22. If tan 2  and tan 2  are the roots of the equation 8x2 – 26x + 15 = 0 then cos( + ) is equal to (a) 627 725  (b) 627 725 (c) -1 (d) none of these Q 23. If sin  + sin  = a and cos  –  = b then tan 2    is equal to (a) a b  (b) b a  (c) 2 2 a b  (d) none of these Q 24. If 0 <   < 4  , cos ( + ) = 3 5 and ( – ) = 4 5 then sin 2 is equal to (a) 1 (b) 0 (c) 2 (d) none of these Q 25. If cos 1 1 1 1 x ,cos y 2 x 2 y                   then cos( – ) is equal to (a) x y y x  (b) 1 xy xy  (c) 1 x y 2 y x        (d) none of these Q 26. If 2sin 1 sin cos then 1 sin cos 1 sin             is equal to (a) 1  (b)  (c) 1 –  (d) 1 +  Q 27. If |tan A| < 1, and |A| is acute then 1 sin2A 1 sin2A 1 sin2A 1 sin2A       is equal to (a) tan A (b) –tan 3 (c) cot A (d) –cot A Q 28. tan .tan .tan 3 3                    is equal to (a) tan 2 (b) tan 3 (c) tan3  (d) none of these
  • 4. CLASS XI TRIGONOMETRIC FUNCTIONS AND IDENTITIES WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com Q 29. The set of all possible values of  in [–, ] such that 1 sin 1 sin     is equal to sec  – tan  is (a) 0, 2        (b) 0, , 2 2                 (c) [ –, 0] (d) , 2 2         Q 30. For all real values of , cot  – 2cot 2 is equal to (a) tan 2 (b) tan  (c) –cot 3 (d) none of these Q 31. Let a = cos A + cos B – cos (A + B) and b = A B A B sin sin cos 2 2 2  . Then a – b is equal to (a) 1 (b) 0 (c)  1 (d) None of these Q 32. If tan tan tan k 3 3                       3 then k is equal to (a) 1 (b) 3 (c) 1 3 (d) none of these Q 33. If asec  – ctan  = d and bsec  + dtan  = c then (a) a2 + c2 = b2 + d2 (b) a2 + d2 = b2 + c2 (c) a2 + b2 = c2 + d2 (d) ab = cd Q 34. If cos 20 – sin 20 = p then cos 40 is equal to (a) 2 p 2 p   (b) 2 p 2 p  (c) 2 p 2 p   (d) none of these Q 35. If 3sin  + 4cos  = 5 then the value of 4sin  – 3cos  is (a) 0 (b) 5 (c) 1 (d) none of these Q 36. If cos 2x + 2cos x = 1 then sin2 x(2 – cos2x) is equal to (a) 1 (b) –1 (c) 5  (d) 5 1a 2b 3c 4d 5a 6a 7c 8a 9b 10b 11b 12c 13a 14c 15b 16a 17a 18c 19c 20c 21c 22a 23b 24a 25c 26b 27c 28b 29d 30b 31a 32b 33c 34b 35a 36a