SlideShare a Scribd company logo
FUNCTIONS WORKSHEET (T) PART 2
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
Q 51. Let f(x) =4, x < -1
-4x, -1 ≤ x ≤ 0.
If f(x) isan evenfunctioninRthenthe definitionof f(x) in(0,+) is
(a) f(x) = 4x, 0 < x ≤ 1 (b) f(x) = 4x,0 < x ≤ 1 (c) f(x) = 4, 0 < x ≤ 1 (d) none of these
4, x > 1 -4, x > 1 4x, x > 1
Q 52. If 2 x
f(x) x sin
2

 , |x| < 1
x |x|,|x|1 thenf(x) is
(a) an evenfunction (b) an oddfunction (c) a periodicfunction (d) none of these
Q 53. The periodof the functionf(x) =
x
sin
2
+ |cos x|is
(a) 2 (b)  (c) 4 (d) none of these
Q 54. If f(x) isa periodicfunctionof the periodkthenf(kx +a), where ais a constant,isa periodic
functionof the period
(a) k (b) 1 (c)
k
a
(d) none of these
Q 55. The periodof the functionf(x) =4cos(2x + 3) is
(a) 2 (b)
2

(c)  (d) none of these
Q 56. The periodof the functionf(x) =
x x
3sin 4cos
3 4
 
 is
(a) 6 (b) 24 (c) 8 (d) 2
Q 57. Let f(x) = cos px ,where p= [a] = the greatestintegerlessthanorequal toa. If the periodof
f(x) is  then
(a) a  [4, 5] (b) a = 4, 5 (c) a  [4,5) (d) none of these
Q 58. Let f(x) =cos 3x + sin 3x . Thenf(x) is
(a) a periodicfunctionof period2 (b) a periodicfunctionof period 3
(c) not a periodicfunction (d) none of these
FUNCTIONS WORKSHEET (T) PART 2
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
Q 59. The function
x x
f(x) sin cos
n! (n 1)!
 
 

is
(a) not periodic (b) periodic,withperiod2(n!)
(c) periodic,withperiod(n+1) (d) none of these
Q 60. The functionf(x)=x – [x] + cos x,where [x] =the greatestintegerlessthanorequal tox,is a
(a) periodicfunctionof indeterminate period (b) periodicfunctionof period2
(c) nonperiodicfunction (d) periodicfunctionof period1
Q 61. Let f(x) =nx + n – [nx + n] +
x
tan
2

, where [x] isthe greatestinteger ≤x and n  N. It is
(a) a periodicfunction of period1 (b) a periodicfunctionof period4
(c) not periodic (d) a periodicfunctionof period2
Q 62. Let f(x) =x(2 – x),0 ≤ x ≤ 2. If the definitionof f isextendedoverthe setR – [0, 2] byf(x + 2)
= f(x) the f isa
(a) periodicfunction of period1 (b) nonperiodicfunction
(c) periodicfunctionof period2 (d) periodicfunctionof period
1
2
Q 63. If 2 2 5
f(x) sin x sin x cosx.cos x and g 1
3 3 4
 
     
     
     
     
then(gof)(x) is
(a) a polynomialof the firstdegree insinx,cosx
(b) a constant function
(c) a polynomialof the seconddegree insinx,cosx
(d) none of these
Q 64. If f(x) = xn
,n  N and (gof)(x)=ng(x) theng(x) canbe
(a) n |x| (b) 3 . 3
x (c) ex
(d) log|x|
Q 65. If g{f(x)|=|sinx| and f{g(x)} = 2
(sin x) then
(a) 2
f(x) sin x,g(x) x
  (b) f(x) sinx,g(x) | x |
 
(c) 2
f(x) x ,g(x) sin x
  (d) f andg cannotbe determined
FUNCTIONS WORKSHEET (T) PART 2
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
Q 66. If
1
f(x)
1 x


, x  0, 1, thenthe graphof the functiony= f{f(f(x))},x >1, is
(a) a circle (b) an ellipse (c) a straightline (d)apair of straight
lines
Q 67. If f(x) isa polynomial functionof the seconddegree suchthatf(-3) =6, f(0) = 6 and f(2) = 11
thenthe graph of the functionf(x) cutsthe ordinate x = 1 at the point
(a) (1, 8) (b) (1, 4) (c) (1, -2) (d) none of these
Q 68. Let f(x) be afunctionwhose domainis[-5,7].Let g(x) = |2x + 5|. Thenthe domainof (fog)(x)
is
(a) [-5, 1] (b) [-4,0] (c) [-6, 1] (d) none of these
Q 69. Let f : (-,1]  (-,1] suchthat f(x) = x(2 – x).Thenf-1
(x) is
(a) 1 1 x
  (b) 1 1 x
  (c) 1 x
 (d) none of these
Q 70. If f(x) = 3x – 5 thenf-1
(x)
(a) is givenby
1
3x 5

(b) isgivenby
x 5
3

(c) doesnot existbecause f isnotone-one (d) doesnotexistbecause f isnot onto
Q 71. If the functionf:[1, +)  [1, +) is definedbyf(x)=2x(x-1)
thenf-1
(x) is
(a)
x(x 1)
1
2

 
 
 
(b) 2
1
(1 1 4log x)
2
  (c) 2
1
(1 1 1 4log x)
2
  (d) not defined
Q 72. If the functionf : R  R be suchthat f(x) = x – [x],where [y] denotesthe greatestintegerless
than or equal toy, thenf-1
(x) is
(a)
1
x [x]

(b) x – [x] (c) not defined (d) none of these
Q 73. The inverse functionof the function
x x
x x
e e
f(x)
e e





is
(a)
1 1 x
log
2 1 x


(b)
1 2 x
log
2 2 x


(c)
1 1 x
log
2 1 x


(d) none of these
Q 74. The graph of a real-valuedfunctionf(x) isthe following.
The functionis
FUNCTIONS WORKSHEET (T) PART 2
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
y = 2x
y = 0
Y
O X
(a) f(x) = x - |x| (b) f(x) = x + |x| (c) f(x) = 2x (d) none of these
Q 75. If f(x + y,x – y) = xythenthe arithmeticmeanof f(x,y) andf(y,x) is
(a) x (b) y (c) 0 (d) none of these
Q 76. The graph of the functiony= f(x) issymmetrical aboutthe linex = 2.
Then
(a) f(x + 2) = f(x – 2) (b) f(2 + x) = f(2 – x) (c) f(x) = f(-x) (d) none of these
Choose the correct options.One or more optionsmay be correct.
Q 77. Let f(x) =x2
,0 < x < 2
2x – 3, 2 ≤ x < 3
x + 2, x  3. Then
(a)
3 3
f f f f
2 2
 
 
 
   

 
 
   
   
 
 
 
(b)
5 5
1 f f f f
2 2
 
 
 
   
 
 
 
   
   
 
 
 
(c) f{f(1)} = f(1) = 1 (d) none of these
Q 78. If f(x) = cos2
x + cos2
x
3

 

 
 
- cos x . cos x
3

 

 
 
then
(a) f(x) isan evenfunction (b) f f
8 4
 
   

   
   
(c) f(x) isa constant function (d) f(x) isnotperiodicfunction
Q 79. If one of the roots of x2
+ f(a) . x + a = 0 is equal tothe thirdpowerof the otherfor real a
then
(a) the domainof the real-valuedfunctionf isthe setof non-negative real numbers
(b) 1/ 4 1/ 2
f(x) x (1 x )
   (c) 1/ 4 3/ 4
f(x) x x
  (d) none of these
FUNCTIONS WORKSHEET (T) PART 2
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
Q 80. If f is an evenfunctiondefinedonthe interval (-5,5) thena value of x satisfyingthe equation
x 1
f(x) f
x 2

 
  

 
is
(a)
1 5
2
 
(b)
2 5
2
 
(c)
1 5
2
 
(d)
3 5
2
 
Q 81. Let f(x) =[x] = the greatestintegerlessthanorequal tox and g(x) = x – [x].Thenforany two
real numbersx and y
(a) f(x + y) = f(x) +f(y) (b) g(x + y) = g(x)+g(y) (c) f(x + y) = f(x) +f{y+ g(x)} (d) none of
these
Q 82. Let x  N and letx be a perfectsquare.Letf(x) =the quotientwhenx isdividedby5and g(x)
= the remainderwhenx isdividedby5.Then x = f(x) + g(x) holdsforx equal to
(a) 0 (b) 16 (c) 25 (d) none of these
Q 83. If f(x) = 27x3
+ 3
1
x
and , are the roots of 3x +
1
x
= 2 then
(a) f() = f() (b) f() = 10 (c) f() = -10 (d) none of these
Q 84. If f(x) = sin-1
(sinx) then
(a) f(x) =  - x,0 ≤ x ≤
2

(b) f(x) =  - x,
2

≤ x ≤ 
(c) f(x) = x,0 ≤ x ≤  (d) f(x) = -x,-
2

≤x ≤ 0
Q 85. If ex
+ ef(x)
= e thenfor f(x)
(a) domain= (-,1) (b) range = (-,1) (c) domain= (-,0] (d) range = (-,1]
Q 86. If f(x) isan oddfunctionthen
(a)
f( x) f(x)
2
 
is an evenfunction
(b) [|f(x)|+1] iseven,where [x] =the greatestinteger ≤x
(c)
f(x) f( x)
2
 
is neithereve norodd (d) none of these
Q 87. Let f(x) =sec-1
[1+ cos2
x] where [.] denotesthe greatestintegerfunction.Then
(a) the domainof f is R (b) the domainof f is [1,2]
(c) the range of f is [1, 2] (d) the range of f is{sec-1
1,sec-1
2}
FUNCTIONS WORKSHEET (T) PART 2
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
Q 88. If f(x) andg(x) are twofunctionsof x such that f(x) + g(x) = ex
and g(x) – g(x) = e-x
then
(a) f(x) isan oddfunction (b) g(x) isan oddfunction
(c) f(x) isan evenfunction (d) g(x) isan evenfunction
Q 89. Let f(x) =
2
2
4cos x
9

 . Then
(a) the domainof f is ,
3

 


 
(b) the range of f is[-1, 1]
(c) the domainof f is , ,
3 3
 
   
   
 
 
   
(d) the range of f is[-4, 4]
Q 90. Let f(x + y) = f(x) + f(y) forall x,y  R. Then
(a) f(x) isan evenfunction (b) f(x) isanodd function
(c) f(0) = 0 (d) f(n) = nf(1),n  N
Q 91. Let f(x) =[x]2
+ [x + 1] – 3, where [x] =the greatestinteger ≤x.Then
(a) f(x) isa many-one andintofunction (b) f(x) = 0 for infinite numberof valuesof x
(c) f(x) = 0 for onlytworeal values (d) none of these
Q 92. Let f and g be functionsfromthe interval [0, ) tothe interval [0, ) f beinganincreasing
functionandg beinga decreasingfunction.If f{g(0)} =0 then
(a) f{g(x)} f{g(0)} (b) g{f(x)} ≤g{f(0)} (c) f{g(2)} = 0 (d) none of these
51a 52b 53a 54b 55c 56b 57c 58c 59d 60c
61d 62c 63b 64d 65a 66c 67a 68c 69b 70b
71b 72c 73a 74b 75c 76b 77abc 78abc 79ab 80abcd
81c 82bc 83ac 84b 85ab 86ab 87ad 88bc 89cd 90bcd
91ab 92bc

More Related Content

DOCX
Functions revision worksheet (t) part 1
DOCX
Xi trigonometric functions and identities (t) part 1
DOCX
Set, relation, mapping (t)
DOCX
Class xii inverse trigonometric function worksheet (t)
DOCX
Permutation & Combination (t) Part 1
DOCX
CLASS XI RELATION & FUNCTION M WORKSHEET
PDF
MODULE 4- Quadratic Expression and Equations
PDF
Modul bimbingan add maths
Functions revision worksheet (t) part 1
Xi trigonometric functions and identities (t) part 1
Set, relation, mapping (t)
Class xii inverse trigonometric function worksheet (t)
Permutation & Combination (t) Part 1
CLASS XI RELATION & FUNCTION M WORKSHEET
MODULE 4- Quadratic Expression and Equations
Modul bimbingan add maths

What's hot (20)

PPT
4.1 matrices
PDF
modul 2 add maths
PDF
Math school-books-3rd-preparatory-2nd-term-khawagah-2019
PDF
Chapter 3 quadratc functions
PPT
Spm add math 2009 paper 1extra222
PDF
MATEMATIK SEM 3 TRANSFORMASI
PDF
Add maths complete f4 & f5 Notes
DOC
Skills In Add Maths
PDF
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
KEY
Teknik Menjawab Kertas 1 Matematik Tambahan
PPSX
Teknik menjawab matematik tambahan 1
PDF
Add Maths 2
PDF
Add Maths Module
PDF
Chapter 4 simultaneous equations
PDF
Chapter 5 indices & logarithms
PDF
Form 4 add maths note
PDF
F4 02 Quadratic Expressions And
PPT
Ceramah Add Mth
PDF
Fungsi rekursiv
PDF
Core 1 revision booklet edexcel
4.1 matrices
modul 2 add maths
Math school-books-3rd-preparatory-2nd-term-khawagah-2019
Chapter 3 quadratc functions
Spm add math 2009 paper 1extra222
MATEMATIK SEM 3 TRANSFORMASI
Add maths complete f4 & f5 Notes
Skills In Add Maths
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
Teknik Menjawab Kertas 1 Matematik Tambahan
Teknik menjawab matematik tambahan 1
Add Maths 2
Add Maths Module
Chapter 4 simultaneous equations
Chapter 5 indices & logarithms
Form 4 add maths note
F4 02 Quadratic Expressions And
Ceramah Add Mth
Fungsi rekursiv
Core 1 revision booklet edexcel
Ad

Similar to Functions revision worksheet (t) part 2 (16)

DOCX
Class xii determinants revision worksheet (t)
DOCX
Logarithm practice worksheet (t)
DOCX
Class xi binomial theorem worksheet (t)
DOCX
Class xi complex numbers worksheet (t) part 1
PDF
01 sets, relations and functions
DOCX
Banco de preguntas para el ap
PDF
01. Functions-Exercise. Module-4 pdf
DOCX
Class xii matrices revision worksheet (t)
PPT
Who wants to pass this course
PDF
Introductory Mathematical Analysis for Business Economics International 13th ...
PPT
Composite functions
DOCX
Tugasmatematikakelompok
DOCX
Tugasmatematikakelompok 150715235527-lva1-app6892
PDF
Modul 1 functions
DOCX
Tugas matematika kelompok
PDF
differentiation assignment.pdf for class 11th
Class xii determinants revision worksheet (t)
Logarithm practice worksheet (t)
Class xi binomial theorem worksheet (t)
Class xi complex numbers worksheet (t) part 1
01 sets, relations and functions
Banco de preguntas para el ap
01. Functions-Exercise. Module-4 pdf
Class xii matrices revision worksheet (t)
Who wants to pass this course
Introductory Mathematical Analysis for Business Economics International 13th ...
Composite functions
Tugasmatematikakelompok
Tugasmatematikakelompok 150715235527-lva1-app6892
Modul 1 functions
Tugas matematika kelompok
differentiation assignment.pdf for class 11th
Ad

More from Mishal Chauhan (20)

DOCX
Trigonometry, inequality, Logarithm Revision class xi
DOCX
Complex number worksheet 2 (i)
DOCX
Complex number worksheet 1 (i)
DOCX
Trigonomerty worksheet class 11 (i)
DOCX
P&C worksheet class 11 (i)
DOCX
Relation, function worksheet class 12 (i)
DOCX
Binomial theorem worskeet (i)
DOCX
Ix x foundation inequalities - day 1
DOCX
Sets, relation, function worksheet (i)
DOCX
Series and sequence (g) worksheet easy average
DOCX
Series and sequence (d) worksheet
DOCX
Application of derivatives worksheet (s)
DOCX
Series and sequence (k) worksheet
DOCX
Application of derivatives worksheet (k)
DOCX
Series and sequence (c) worksheet
DOCX
xii application of derivatives level 1 worksheet
DOCX
Xii revision sheet 18 aug
DOCX
Ix x foundation logarithm - day 2
DOCX
IX X FOUNDATION LOGARITHM
DOCX
Class xi complex numbers worksheet (t) part 2
Trigonometry, inequality, Logarithm Revision class xi
Complex number worksheet 2 (i)
Complex number worksheet 1 (i)
Trigonomerty worksheet class 11 (i)
P&C worksheet class 11 (i)
Relation, function worksheet class 12 (i)
Binomial theorem worskeet (i)
Ix x foundation inequalities - day 1
Sets, relation, function worksheet (i)
Series and sequence (g) worksheet easy average
Series and sequence (d) worksheet
Application of derivatives worksheet (s)
Series and sequence (k) worksheet
Application of derivatives worksheet (k)
Series and sequence (c) worksheet
xii application of derivatives level 1 worksheet
Xii revision sheet 18 aug
Ix x foundation logarithm - day 2
IX X FOUNDATION LOGARITHM
Class xi complex numbers worksheet (t) part 2

Recently uploaded (20)

PPTX
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Basic Mud Logging Guide for educational purpose
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Pre independence Education in Inndia.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
master seminar digital applications in india
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PPTX
Institutional Correction lecture only . . .
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
01-Introduction-to-Information-Management.pdf
PPTX
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
PPTX
Pharma ospi slides which help in ospi learning
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
102 student loan defaulters named and shamed – Is someone you know on the list?
Final Presentation General Medicine 03-08-2024.pptx
Basic Mud Logging Guide for educational purpose
2.FourierTransform-ShortQuestionswithAnswers.pdf
Pre independence Education in Inndia.pdf
Renaissance Architecture: A Journey from Faith to Humanism
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
master seminar digital applications in india
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
Institutional Correction lecture only . . .
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPH.pptx obstetrics and gynecology in nursing
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
01-Introduction-to-Information-Management.pdf
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
Pharma ospi slides which help in ospi learning

Functions revision worksheet (t) part 2

  • 1. FUNCTIONS WORKSHEET (T) PART 2 STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com Q 51. Let f(x) =4, x < -1 -4x, -1 ≤ x ≤ 0. If f(x) isan evenfunctioninRthenthe definitionof f(x) in(0,+) is (a) f(x) = 4x, 0 < x ≤ 1 (b) f(x) = 4x,0 < x ≤ 1 (c) f(x) = 4, 0 < x ≤ 1 (d) none of these 4, x > 1 -4, x > 1 4x, x > 1 Q 52. If 2 x f(x) x sin 2   , |x| < 1 x |x|,|x|1 thenf(x) is (a) an evenfunction (b) an oddfunction (c) a periodicfunction (d) none of these Q 53. The periodof the functionf(x) = x sin 2 + |cos x|is (a) 2 (b)  (c) 4 (d) none of these Q 54. If f(x) isa periodicfunctionof the periodkthenf(kx +a), where ais a constant,isa periodic functionof the period (a) k (b) 1 (c) k a (d) none of these Q 55. The periodof the functionf(x) =4cos(2x + 3) is (a) 2 (b) 2  (c)  (d) none of these Q 56. The periodof the functionf(x) = x x 3sin 4cos 3 4    is (a) 6 (b) 24 (c) 8 (d) 2 Q 57. Let f(x) = cos px ,where p= [a] = the greatestintegerlessthanorequal toa. If the periodof f(x) is  then (a) a  [4, 5] (b) a = 4, 5 (c) a  [4,5) (d) none of these Q 58. Let f(x) =cos 3x + sin 3x . Thenf(x) is (a) a periodicfunctionof period2 (b) a periodicfunctionof period 3 (c) not a periodicfunction (d) none of these
  • 2. FUNCTIONS WORKSHEET (T) PART 2 STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com Q 59. The function x x f(x) sin cos n! (n 1)!      is (a) not periodic (b) periodic,withperiod2(n!) (c) periodic,withperiod(n+1) (d) none of these Q 60. The functionf(x)=x – [x] + cos x,where [x] =the greatestintegerlessthanorequal tox,is a (a) periodicfunctionof indeterminate period (b) periodicfunctionof period2 (c) nonperiodicfunction (d) periodicfunctionof period1 Q 61. Let f(x) =nx + n – [nx + n] + x tan 2  , where [x] isthe greatestinteger ≤x and n  N. It is (a) a periodicfunction of period1 (b) a periodicfunctionof period4 (c) not periodic (d) a periodicfunctionof period2 Q 62. Let f(x) =x(2 – x),0 ≤ x ≤ 2. If the definitionof f isextendedoverthe setR – [0, 2] byf(x + 2) = f(x) the f isa (a) periodicfunction of period1 (b) nonperiodicfunction (c) periodicfunctionof period2 (d) periodicfunctionof period 1 2 Q 63. If 2 2 5 f(x) sin x sin x cosx.cos x and g 1 3 3 4                           then(gof)(x) is (a) a polynomialof the firstdegree insinx,cosx (b) a constant function (c) a polynomialof the seconddegree insinx,cosx (d) none of these Q 64. If f(x) = xn ,n  N and (gof)(x)=ng(x) theng(x) canbe (a) n |x| (b) 3 . 3 x (c) ex (d) log|x| Q 65. If g{f(x)|=|sinx| and f{g(x)} = 2 (sin x) then (a) 2 f(x) sin x,g(x) x   (b) f(x) sinx,g(x) | x |   (c) 2 f(x) x ,g(x) sin x   (d) f andg cannotbe determined
  • 3. FUNCTIONS WORKSHEET (T) PART 2 STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com Q 66. If 1 f(x) 1 x   , x  0, 1, thenthe graphof the functiony= f{f(f(x))},x >1, is (a) a circle (b) an ellipse (c) a straightline (d)apair of straight lines Q 67. If f(x) isa polynomial functionof the seconddegree suchthatf(-3) =6, f(0) = 6 and f(2) = 11 thenthe graph of the functionf(x) cutsthe ordinate x = 1 at the point (a) (1, 8) (b) (1, 4) (c) (1, -2) (d) none of these Q 68. Let f(x) be afunctionwhose domainis[-5,7].Let g(x) = |2x + 5|. Thenthe domainof (fog)(x) is (a) [-5, 1] (b) [-4,0] (c) [-6, 1] (d) none of these Q 69. Let f : (-,1]  (-,1] suchthat f(x) = x(2 – x).Thenf-1 (x) is (a) 1 1 x   (b) 1 1 x   (c) 1 x  (d) none of these Q 70. If f(x) = 3x – 5 thenf-1 (x) (a) is givenby 1 3x 5  (b) isgivenby x 5 3  (c) doesnot existbecause f isnotone-one (d) doesnotexistbecause f isnot onto Q 71. If the functionf:[1, +)  [1, +) is definedbyf(x)=2x(x-1) thenf-1 (x) is (a) x(x 1) 1 2        (b) 2 1 (1 1 4log x) 2   (c) 2 1 (1 1 1 4log x) 2   (d) not defined Q 72. If the functionf : R  R be suchthat f(x) = x – [x],where [y] denotesthe greatestintegerless than or equal toy, thenf-1 (x) is (a) 1 x [x]  (b) x – [x] (c) not defined (d) none of these Q 73. The inverse functionof the function x x x x e e f(x) e e      is (a) 1 1 x log 2 1 x   (b) 1 2 x log 2 2 x   (c) 1 1 x log 2 1 x   (d) none of these Q 74. The graph of a real-valuedfunctionf(x) isthe following. The functionis
  • 4. FUNCTIONS WORKSHEET (T) PART 2 STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com y = 2x y = 0 Y O X (a) f(x) = x - |x| (b) f(x) = x + |x| (c) f(x) = 2x (d) none of these Q 75. If f(x + y,x – y) = xythenthe arithmeticmeanof f(x,y) andf(y,x) is (a) x (b) y (c) 0 (d) none of these Q 76. The graph of the functiony= f(x) issymmetrical aboutthe linex = 2. Then (a) f(x + 2) = f(x – 2) (b) f(2 + x) = f(2 – x) (c) f(x) = f(-x) (d) none of these Choose the correct options.One or more optionsmay be correct. Q 77. Let f(x) =x2 ,0 < x < 2 2x – 3, 2 ≤ x < 3 x + 2, x  3. Then (a) 3 3 f f f f 2 2                              (b) 5 5 1 f f f f 2 2                               (c) f{f(1)} = f(1) = 1 (d) none of these Q 78. If f(x) = cos2 x + cos2 x 3         - cos x . cos x 3         then (a) f(x) isan evenfunction (b) f f 8 4                (c) f(x) isa constant function (d) f(x) isnotperiodicfunction Q 79. If one of the roots of x2 + f(a) . x + a = 0 is equal tothe thirdpowerof the otherfor real a then (a) the domainof the real-valuedfunctionf isthe setof non-negative real numbers (b) 1/ 4 1/ 2 f(x) x (1 x )    (c) 1/ 4 3/ 4 f(x) x x   (d) none of these
  • 5. FUNCTIONS WORKSHEET (T) PART 2 STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com Q 80. If f is an evenfunctiondefinedonthe interval (-5,5) thena value of x satisfyingthe equation x 1 f(x) f x 2          is (a) 1 5 2   (b) 2 5 2   (c) 1 5 2   (d) 3 5 2   Q 81. Let f(x) =[x] = the greatestintegerlessthanorequal tox and g(x) = x – [x].Thenforany two real numbersx and y (a) f(x + y) = f(x) +f(y) (b) g(x + y) = g(x)+g(y) (c) f(x + y) = f(x) +f{y+ g(x)} (d) none of these Q 82. Let x  N and letx be a perfectsquare.Letf(x) =the quotientwhenx isdividedby5and g(x) = the remainderwhenx isdividedby5.Then x = f(x) + g(x) holdsforx equal to (a) 0 (b) 16 (c) 25 (d) none of these Q 83. If f(x) = 27x3 + 3 1 x and , are the roots of 3x + 1 x = 2 then (a) f() = f() (b) f() = 10 (c) f() = -10 (d) none of these Q 84. If f(x) = sin-1 (sinx) then (a) f(x) =  - x,0 ≤ x ≤ 2  (b) f(x) =  - x, 2  ≤ x ≤  (c) f(x) = x,0 ≤ x ≤  (d) f(x) = -x,- 2  ≤x ≤ 0 Q 85. If ex + ef(x) = e thenfor f(x) (a) domain= (-,1) (b) range = (-,1) (c) domain= (-,0] (d) range = (-,1] Q 86. If f(x) isan oddfunctionthen (a) f( x) f(x) 2   is an evenfunction (b) [|f(x)|+1] iseven,where [x] =the greatestinteger ≤x (c) f(x) f( x) 2   is neithereve norodd (d) none of these Q 87. Let f(x) =sec-1 [1+ cos2 x] where [.] denotesthe greatestintegerfunction.Then (a) the domainof f is R (b) the domainof f is [1,2] (c) the range of f is [1, 2] (d) the range of f is{sec-1 1,sec-1 2}
  • 6. FUNCTIONS WORKSHEET (T) PART 2 STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com Q 88. If f(x) andg(x) are twofunctionsof x such that f(x) + g(x) = ex and g(x) – g(x) = e-x then (a) f(x) isan oddfunction (b) g(x) isan oddfunction (c) f(x) isan evenfunction (d) g(x) isan evenfunction Q 89. Let f(x) = 2 2 4cos x 9   . Then (a) the domainof f is , 3        (b) the range of f is[-1, 1] (c) the domainof f is , , 3 3                   (d) the range of f is[-4, 4] Q 90. Let f(x + y) = f(x) + f(y) forall x,y  R. Then (a) f(x) isan evenfunction (b) f(x) isanodd function (c) f(0) = 0 (d) f(n) = nf(1),n  N Q 91. Let f(x) =[x]2 + [x + 1] – 3, where [x] =the greatestinteger ≤x.Then (a) f(x) isa many-one andintofunction (b) f(x) = 0 for infinite numberof valuesof x (c) f(x) = 0 for onlytworeal values (d) none of these Q 92. Let f and g be functionsfromthe interval [0, ) tothe interval [0, ) f beinganincreasing functionandg beinga decreasingfunction.If f{g(0)} =0 then (a) f{g(x)} f{g(0)} (b) g{f(x)} ≤g{f(0)} (c) f{g(2)} = 0 (d) none of these 51a 52b 53a 54b 55c 56b 57c 58c 59d 60c 61d 62c 63b 64d 65a 66c 67a 68c 69b 70b 71b 72c 73a 74b 75c 76b 77abc 78abc 79ab 80abcd 81c 82bc 83ac 84b 85ab 86ab 87ad 88bc 89cd 90bcd 91ab 92bc