SlideShare a Scribd company logo
2
Most read
CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX
WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
Q 1. The number of terms in the expansion of (1 + 3x + 3x2 + x3)6 is
(a) 18 (b) 9 (c) 19 (d) 24
Q 2. The number of distinct terms in the expansion of (x + y – z)16 is
(a) 136 (b) 153 (c) 16 (d) 17
Q 3. The number of irrational terms in the expansion of 6
8
( 5 2)
 100 is
(a) 97 (b) 98 (c) 96 (d) 99
Q 4. The number of terms whose values depend on x in the expansion of
n
2
2
1
x 2
x
 
 
 
 
is
(a) 2n + 1 (b) 2n (c) n (d) none of these
Q 5. The number of real negative terms in the binomial expansion of (1 + ix)4n-2, n  N, x > 0, is
(a) n (b) n + 1 (c) n – 1 (d) 2n
Q 6. In the expansion of 2 6 2 6
(x x 1) (x x 1)
     , the number of terms is
(a) 7 (b) 14 (c) 6 (d) 4
Q 7. The number of terms in the expansion of
n
2
2
1
x 1
x
 
 
 
 
, n  N, is
(a) 2n (b) 3n (c) 2n + 1 (d) 3n + 1
Q 8. The number of rational terms in the expansion of 6
3
(1 2 3)
  is
(a) 6 (b) 7 (c) 5 (d) 8
Q 9. The number of terms with integral coefficients in the expansion of (71/3 + 51/2.x)600 is
(a) 100 (b) 50 (c) 101 (d) none of these
Q 10. The sum of the rational terms in the expansion of 10
5
(2 3)
 is
(a) 32 (b) 50 (c) 41 (d) none of these
Q 11. The last term in the binomial expansion of
3
log 8
n
3
3
1 1
2 is
2 3. 9
 
 
  
 
   
. Then the 5th term from
the beginning is
(a) 10C6 (b) 2. 10C4 (c)
10
4
1
. C
2
(d) none of these
Q 12. If the 4th term in the expansion of (px + x-1)m is 2.5 for all x  R then
CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX
WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
(a)
5
p ,m 3
2
  (b)
1
p ,m 6
2
  (c)
1
p ,m 6
2
   (d) none of these
Q 13. In the expansion of (1 + ax)n, n  N, the coefficient of x and x2 are 8 and 24 respectively.
Then
(a) a = 2, n = 4 (b) a = 4, n = 2 (c) a = 2, n = 6 (d) a = -2, n = 4
Q 14. In the expansion of
n
3
2
1
x
x
 

 
 
, n  N, if the sum of the coefficients of x5 and x10 is 0 then n is
(a) 25 (b) 20 (c) 15 (d) none of these
Q 15. The coefficient of x20 in the expansion of
5
2 40 2
2
1
(1 x ) . x 2
x

 
  
 
 
is
(a) 30C10 (b) 30C25 (c) 1 (d) none of these
Q 16. The coefficient of a8b10 in the expansion of (a + b)18 is
(a) 18C8 (b) 18P10 (c) 218 (d) none of these
Q 17. If the coefficient of the (m + 1)th term and the (m + 3)th term in the expansion of (1 + x)20 are
equal then the value of m is
(a) 10 (b) 8 (c) 9 (d) none of these
Q 18. The coefficient of x3 in the expansion of (1 – x + x2)5 is
(a) 10 (b) -20 (c) -50 (d) -30
Q 19. If the coefficients of the 2nd, 3rd and 4th terms in the expansion of (1 + x)n, n  N, are in AP
then n is
(a) 7 (b) 14 (c) 2 (d) none of these
Q 20. The coefficient of x6 in {(1 + x)6 + (1 + x)7 + ….+(1 + x)15} is
(a) 16C9 (b) 16C5 – 6C5 (c) 16C6 – 1 (d) none of these
Q 21. The coefficient of x3y4z in the expansion of (1 + x + y – z)9 is
(a) 2.9C7.7C4 (b) -2.9C2.7C3 (c) 9C7.7C4 (d) none of these
Q 22. The coefficient of x13 in expansion of (1 – x)5(1 + x + x2 + x3)4 is
(a) 4 (b) 4 (c) 0 (d) none of these
Q 23. The coefficient of x6.y-2 in the expansion of
12
2
x y
y x
 

 
 
is
CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX
WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
(a) 12C6 (b) -12C5 (c) 0 (d) none of these
Q 24. The greatest value of the term independent of x in the expansion of (x sin  + x-1 cos )10,  
R, is
(a) 25 (b) 2
10!
(5!)
(c) 5 2
1 10!
.
2 (5!)
(d) none of these
Q 25. In the expansion of
15
3
2
1
x
x
 

 
 
, the constant term is
(a) 15C6 (b) 0 (c) -15C6 (d) 1
Q 26. The constant term in the expansion of (1 + x)10.
12
1
1
x
 

 
 
is
(a) 22C10 (b) 0 (c) 22C11 (d) none of these
Q 27. The term independent of x in the expansion of
10
2 1
(1 x) . x
x
 
 
 
 
is
(a) 11C5 (b) 10C5 (c) 10C4 (d) none of these
Q 28. The middle term in the expansion of
2n
2
2x 3
3 2x
 

 
 
is
(a) 2nCn (b) n n
2
(2n)!
( 1) .x
(n!)

 (c)
2n
n n
1
C .
x
(d) none of these
Q 29. The middle term in the expansion of
n
n
1
1 .(1 x)
x
 
 
 
 
is
(a) 2nCn (b) -2nCn (c) -2nCn-1 (d) none of these
Q 30. If the rth term is the middle term in the expansion of
20
2 1
x
2x
 

 
 
then the (r + 3)th term is
(a) 20C14. 14
1
.x
2
(b)
20 2
12 12
1
C . .x
2
(c)
20
7
13
1
. C .x
2
 (d) none of these
Q 31. Let n  N and n < ( 2 +1)6. Then the greatest value of n is
(a) 199 (b) 198 (c) 197 (d) 196
Q 32. If the coefficient of the 5th term be the numerically greatest coefficient in the expansion of (1 –
x)n then the positive integral value of n is
(a) 9 (b) 8 (c) 7 (d) 10
Q 33. The greatest coefficient in the expansion of (1 + x)2n is
CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX
WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
(a) n
1.3.5. .... .(2n 1)
.2
n!

(b) 2nCn-1 (c) 2nCn+1 (d) none of these
Q 34. Let n be an odd natural number greater than 1. Then the number of zeros at the end of the
sum 99n + 1 is
(a) 3 (b) 4 (c) 2 (d) none of these
Q 35. Let f(n) = 10n + 3.4n+2 + 5, n  N. The greatest value of the integer which divides f(n) for all n
is
(a) 27 (b) 9 (c) 3 (d) none of these
Q 36. 260 when divided by 7 leaves the remainder
(a) 1 (b) 6 (c) 5 (d) 2
Q 37. If {x} denotes the fractional part of x then
2n
3
9
 
 
 
, n  N, is
(a)
3
8
(b)
7
8
(c)
1
8
(d) none of these
Q 38. The sum of the coefficients in the binomial expansion of
n
1
2x
x
 

 
 
is equal to 6561. The
constant term in the expansion is
(a) 8C4 (b) 16.8C4 (c) 6C4.24 (d) none of these
Q 39. The sum of the numerical coefficients in the expansion of
12
x 2y
1
3 3
 
 
 
 
is
(a) 1 (b) 2 (c) 212 (d) none of these
Q 40. The sum of the last ten coefficients in the expansion of (1 + x)19 when
(a) 218 (b) 219 (c) 218 – 19C10 (d) none of these
Q 41. The sum of the coefficients of x2r, r = 1, 2, 3,….,, in the expansion of (1 + x)n is
(a) 2n (b) 2n-1 – 1 (c) 2n – 1 (d) 2n-1 + 1
Q 42. The sum of the coefficients in the polynomial expansion of (1 + x – 3x2)2163 is
(a) 1 (b) -1 (c) 0 (d) none of these
Q 43. The sum of the coefficients of all the integral powers of x in the expansion of 40
(1 2 x)
 is
(a) 340 + 1 (b) 340 – 1 (c)
40
1
(3 1)
2
 (d)
40
1
(3 1)
2

Q 44. If (1 + x – 2x2)8 = a0 + a1x + a2x2 + ….. + a16x16 then the sum is equal to
CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX
WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
(a) -27 (b) 27 (c) 28 (d) none of these
Q 45. The sum 20C0 + 20C1 + 20C2 + …. + 20C10 is equal to
(a) 20
2
20!
2
(10!)
 (b) 19
2
1 20!
2 .
2 (10!)
 (c) 19 20
10
2 C
 (d) none of these
Q 46. The sum 10C3 + 11C3 + 12C3 +….+ 20C3 is equal to
(a) 21C4 (b) 21C4 + 10C4 (c) 21C17 – 10C6 (d) none of these
Q 47. If (1 + x)10 = a0 + a1x + a2x2 +….+ a10x10 then
(a0 – a2 + a4 – a6 + a8 – a10)2 + (a1 – a3 + a5 – a7 + a9)2 is equal to
(a) 310 (b) 210 (c) 29 (d) none of these
Q 48. The sum
1
2
10C0  10
C1 + 2.10
C2 – 22
. 10
C3 + …. + 29
. 10
C10 isequal to
(a)
1
2
(b) 0 (c)
10
1
.3
2
(d) none of these
Q 49. 1.nC1 + 2.nC2+ 3.n
C3 +….+ n.n
Cn isequal to
(a)
n
n(n 1)
.2
4

(b) n 1
2 3

 (c) n 1
n.2 
(d) none of these
Q 50. If
n n
n n n
r 0 r 0
r r
1 r
a then
C C
 
   equals
(a) (n – 1)an (b) nan (c) n
1
na
2
(d) none of these
Q 51. The sum of the series
n
r 1 n
r
r 1
( 1) . C (a r)


 
 is equal to
(a) n . 2n-1 + a (b) 0 (c) a (d) none of these
Q 52. Let (1 + x)n
n
r
r
r 0
a x

 . Then 1 2 n
0 1 n 1
a a a
1 1 .... 1
a a a 
    
  
    
   
 
is equal to
(a)
n 1
(n 1)
n!


(b)
n
(n 1)
n!

(c)
n 1
n
(n 1)!


(d)
n 1
(n 1)
(n 1)!



Q 53. The value of
n
10
r
n
r 1 r 1
C
r.
C
 
 is equal to
(a) 5(2n – 9) (b) 10n (c) 9(n – 4) (d) none of these
CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX
WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
Q 54. The sum
n
2n
r
r 1
r. C

 is equal to
(a) n.22n-1 (b) 22n-1 (c) 2n-1 + 1 (d) none of these
Q 55. The sum 20 20 20 20
1 2 3 20
1. C 2. C 3. C .... 20. C
    is equal to
(a) 219 (b) 0 (c) 220-1 (d) none of these
Choose the correct options. One or more options may be correct.
Q 56. Let
6
2 2 6
2 2
2
f(x) ( x 1 x 1)
x 1 x 1
 
      
  
 
. Then
(a) f(x) is a polynomial of the sixth degree in x (b) f(x) has exactly two terms
(c) f(x) is not a polynomial in x (d) coefficient of x6 is 64
Q 57. The coefficient of a8b6c4 in the expansion of (a + b + c)18 is
(a) 18C14 . 14C8 (b) 18C10. 10C6 (c) 18C6 . 12C8 (d) 18C4 . 14C6
Q 58. The term independent of x in the expansion of
n
n 1
(1 x) . 1
x
 
 
 
 
is
(a) 0, if n is odd (b)
n 1
n
2
n 1
2
( 1) . C


 , if n is odd
(c) n/2 n
n/2
( 1) . C
 , if n is even (d) none of these
Q 59. The coefficient of the (r + 1)th term of
20
1
x
x
 

 
 
when expanded in the descending powers of
x is equal to the coefficient of the 6th term of
10
2
2
1
x 2
x
 
 
 
 
when expanded in ascending
powers of x. The value of r is
(a) 5 (b) 6 (c) 14 (d) 15
Q 60. If (1 + x)2n = a0 + a1x + a2x2 + …. + a2nx2n then
(a) a0 + a2+ a4 + ….
1
2
 (a0 + a1 + a2 + a3 +….) (b) an+1 < an
(c) an-3 = an+3 (d) none of these
Q 61. In the expansionof
20
3
4
1
4
6
 

 
 
,
(a) the numberof rational terms= 4 (b) the numberof irrational terms= 18
CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX
WORKSHEET (T)
STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM
ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII +
MISHAL CHAUHAN (M.Tech, IIT Delhi)
Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham
Contact: 9879639888 Email:sthitpragyaclasses@gmail.com
(c) the middle termisirrational (d) the numberof irrational terms= 17
Q 62. Let n  N.If (1 + x)n
= a0 + a1x + a2x2
+ …. + anxn
,and an-3, an-2,an-1 are inAP then
(a) a1, a2, a3 are inAP (b) a1, a2,a3 are in HP (c) n = 7 (d) n = 14
Q 63. Let R = 20
(8 3 7)
 and[R] = the greatestintegerlessthanorequal to R.
(a) [R] iseven (b) [R] is odd
(c) R – [R] = 1 20
1
(8 3 7)


(d) none of these
Q 64.
1 1 1
...
1!.(n 1)! 3!.(n 3)! 5!(n 5)!
  
  
isequal to
(a)
n 1
2
n!

for evenvaluesof nonly (b)
n 1
2 1
1
n!


 for oddvaluesof n only
(c)
n 1
2
n!

for all n  N (d) none of these
Q 65. In the expansionof (x +y + z)25
(a) everytermisof the form 25 r 25 r r k k
r k
C . C .x .y .z
 
(b) the coefficientof x8
y9
z9
is0
(c) the numberof termsis325 (d) none of these
1c 2b 3a 4b 5a 6d 7c 8b 9c 10c
11a 12b 13a 14c 15b 16a 17c 18d 19a 20a
21b 22a 23c 24c 25c 26a 27a 28b 29a 30c
31c 32b 33a 34c 35b 36a 37c 38b 39c 40a
41b 42b 43d 44a 45d 46c 47b 48a 49c 50c
51c 52b 53a 54a 55b 56abd 57abcd 58ac 59ad 60abc
61bc 62ac 63bc 64c 65ab

More Related Content

DOCX
Class xi complex numbers worksheet (t) part 1
DOCX
Class xii determinants revision worksheet (t)
DOCX
Class xii matrices revision worksheet (t)
DOCX
Xi trigonometric functions and identities (t) part 1
DOCX
Functions revision worksheet (t) part 2
DOCX
Class xii inverse trigonometric function worksheet (t)
DOCX
Permutation & Combination (t) Part 1
DOCX
Class xi complex numbers worksheet (t) part 2
Class xi complex numbers worksheet (t) part 1
Class xii determinants revision worksheet (t)
Class xii matrices revision worksheet (t)
Xi trigonometric functions and identities (t) part 1
Functions revision worksheet (t) part 2
Class xii inverse trigonometric function worksheet (t)
Permutation & Combination (t) Part 1
Class xi complex numbers worksheet (t) part 2

What's hot (18)

PDF
Advanced gmat mathquestions-version2
PDF
Tutor topik 1 qa016
PDF
Quant 125 awesome questions
PDF
Fungsi rekursiv
DOC
Inequality and absolute value
DOCX
CLASS XI RELATION & FUNCTION M WORKSHEET
PDF
Advanced quant-manhattan part 1
PPSX
Teknik menjawab matematik tambahan 1
PDF
PNEB - MATHEMATICS 2014
PPSX
Logarithms level 2
PPTX
Kem akademik sept 16
KEY
Teknik Menjawab Kertas 1 Matematik Tambahan
PDF
Math school-books-3rd-preparatory-2nd-term-khawagah-2019
PPTX
8.3 factorisation lesson
PDF
Sri Chaitanya 2012 AIEEE Question Paper and Solutions
DOCX
Arithmatic & algebra
PDF
Add maths complete f4 & f5 Notes
PDF
10th class maths model question paper
Advanced gmat mathquestions-version2
Tutor topik 1 qa016
Quant 125 awesome questions
Fungsi rekursiv
Inequality and absolute value
CLASS XI RELATION & FUNCTION M WORKSHEET
Advanced quant-manhattan part 1
Teknik menjawab matematik tambahan 1
PNEB - MATHEMATICS 2014
Logarithms level 2
Kem akademik sept 16
Teknik Menjawab Kertas 1 Matematik Tambahan
Math school-books-3rd-preparatory-2nd-term-khawagah-2019
8.3 factorisation lesson
Sri Chaitanya 2012 AIEEE Question Paper and Solutions
Arithmatic & algebra
Add maths complete f4 & f5 Notes
10th class maths model question paper
Ad

Similar to Logarithm practice worksheet (t) (11)

DOCX
Functions revision worksheet (t) part 1
DOCX
Application of derivatives worksheet (k)
PDF
RA Grand Quiz 2024.pdf by ali raza ppsc mcqs
PDF
Advanced gmat mathquestions-version2
PDF
IIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
PDF
Exam7
PDF
IIT JAM MATH 2020 Question Paper | Sourav Sir's Classes
DOCX
Series and sequence (k) worksheet
PDF
CBSE - Grade 9 - Mathematics - Number System - Multiple Choice Questions - Wo...
PDF
CBSE - Grade 10 - Mathematics - Real Numbers - Multiple Choice Questions - Wo...
PDF
Class 10 Maths
Functions revision worksheet (t) part 1
Application of derivatives worksheet (k)
RA Grand Quiz 2024.pdf by ali raza ppsc mcqs
Advanced gmat mathquestions-version2
IIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
Exam7
IIT JAM MATH 2020 Question Paper | Sourav Sir's Classes
Series and sequence (k) worksheet
CBSE - Grade 9 - Mathematics - Number System - Multiple Choice Questions - Wo...
CBSE - Grade 10 - Mathematics - Real Numbers - Multiple Choice Questions - Wo...
Class 10 Maths
Ad

More from Mishal Chauhan (19)

DOCX
Trigonometry, inequality, Logarithm Revision class xi
DOCX
Complex number worksheet 2 (i)
DOCX
Complex number worksheet 1 (i)
DOCX
Trigonomerty worksheet class 11 (i)
DOCX
P&C worksheet class 11 (i)
DOCX
Relation, function worksheet class 12 (i)
DOCX
Binomial theorem worskeet (i)
DOCX
Ix x foundation inequalities - day 1
DOCX
Sets, relation, function worksheet (i)
DOCX
Series and sequence (g) worksheet easy average
DOCX
Series and sequence (d) worksheet
DOCX
Application of derivatives worksheet (s)
DOCX
Series and sequence (c) worksheet
DOCX
xii application of derivatives level 1 worksheet
DOCX
Xii revision sheet 18 aug
DOCX
Ix x foundation logarithm - day 2
DOCX
IX X FOUNDATION LOGARITHM
DOCX
Set, relation, mapping (t)
DOCX
Class xi binomial theorem worksheet (t)
Trigonometry, inequality, Logarithm Revision class xi
Complex number worksheet 2 (i)
Complex number worksheet 1 (i)
Trigonomerty worksheet class 11 (i)
P&C worksheet class 11 (i)
Relation, function worksheet class 12 (i)
Binomial theorem worskeet (i)
Ix x foundation inequalities - day 1
Sets, relation, function worksheet (i)
Series and sequence (g) worksheet easy average
Series and sequence (d) worksheet
Application of derivatives worksheet (s)
Series and sequence (c) worksheet
xii application of derivatives level 1 worksheet
Xii revision sheet 18 aug
Ix x foundation logarithm - day 2
IX X FOUNDATION LOGARITHM
Set, relation, mapping (t)
Class xi binomial theorem worksheet (t)

Recently uploaded (20)

PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
RMMM.pdf make it easy to upload and study
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
Lesson notes of climatology university.
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Cell Types and Its function , kingdom of life
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Indian roads congress 037 - 2012 Flexible pavement
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
RMMM.pdf make it easy to upload and study
Orientation - ARALprogram of Deped to the Parents.pptx
History, Philosophy and sociology of education (1).pptx
Lesson notes of climatology university.
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
LDMMIA Reiki Yoga Finals Review Spring Summer
Supply Chain Operations Speaking Notes -ICLT Program
Cell Types and Its function , kingdom of life
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Digestion and Absorption of Carbohydrates, Proteina and Fats
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Indian roads congress 037 - 2012 Flexible pavement
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Final Presentation General Medicine 03-08-2024.pptx
Practical Manual AGRO-233 Principles and Practices of Natural Farming

Logarithm practice worksheet (t)

  • 1. CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com Q 1. The number of terms in the expansion of (1 + 3x + 3x2 + x3)6 is (a) 18 (b) 9 (c) 19 (d) 24 Q 2. The number of distinct terms in the expansion of (x + y – z)16 is (a) 136 (b) 153 (c) 16 (d) 17 Q 3. The number of irrational terms in the expansion of 6 8 ( 5 2)  100 is (a) 97 (b) 98 (c) 96 (d) 99 Q 4. The number of terms whose values depend on x in the expansion of n 2 2 1 x 2 x         is (a) 2n + 1 (b) 2n (c) n (d) none of these Q 5. The number of real negative terms in the binomial expansion of (1 + ix)4n-2, n  N, x > 0, is (a) n (b) n + 1 (c) n – 1 (d) 2n Q 6. In the expansion of 2 6 2 6 (x x 1) (x x 1)      , the number of terms is (a) 7 (b) 14 (c) 6 (d) 4 Q 7. The number of terms in the expansion of n 2 2 1 x 1 x         , n  N, is (a) 2n (b) 3n (c) 2n + 1 (d) 3n + 1 Q 8. The number of rational terms in the expansion of 6 3 (1 2 3)   is (a) 6 (b) 7 (c) 5 (d) 8 Q 9. The number of terms with integral coefficients in the expansion of (71/3 + 51/2.x)600 is (a) 100 (b) 50 (c) 101 (d) none of these Q 10. The sum of the rational terms in the expansion of 10 5 (2 3)  is (a) 32 (b) 50 (c) 41 (d) none of these Q 11. The last term in the binomial expansion of 3 log 8 n 3 3 1 1 2 is 2 3. 9              . Then the 5th term from the beginning is (a) 10C6 (b) 2. 10C4 (c) 10 4 1 . C 2 (d) none of these Q 12. If the 4th term in the expansion of (px + x-1)m is 2.5 for all x  R then
  • 2. CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com (a) 5 p ,m 3 2   (b) 1 p ,m 6 2   (c) 1 p ,m 6 2    (d) none of these Q 13. In the expansion of (1 + ax)n, n  N, the coefficient of x and x2 are 8 and 24 respectively. Then (a) a = 2, n = 4 (b) a = 4, n = 2 (c) a = 2, n = 6 (d) a = -2, n = 4 Q 14. In the expansion of n 3 2 1 x x        , n  N, if the sum of the coefficients of x5 and x10 is 0 then n is (a) 25 (b) 20 (c) 15 (d) none of these Q 15. The coefficient of x20 in the expansion of 5 2 40 2 2 1 (1 x ) . x 2 x           is (a) 30C10 (b) 30C25 (c) 1 (d) none of these Q 16. The coefficient of a8b10 in the expansion of (a + b)18 is (a) 18C8 (b) 18P10 (c) 218 (d) none of these Q 17. If the coefficient of the (m + 1)th term and the (m + 3)th term in the expansion of (1 + x)20 are equal then the value of m is (a) 10 (b) 8 (c) 9 (d) none of these Q 18. The coefficient of x3 in the expansion of (1 – x + x2)5 is (a) 10 (b) -20 (c) -50 (d) -30 Q 19. If the coefficients of the 2nd, 3rd and 4th terms in the expansion of (1 + x)n, n  N, are in AP then n is (a) 7 (b) 14 (c) 2 (d) none of these Q 20. The coefficient of x6 in {(1 + x)6 + (1 + x)7 + ….+(1 + x)15} is (a) 16C9 (b) 16C5 – 6C5 (c) 16C6 – 1 (d) none of these Q 21. The coefficient of x3y4z in the expansion of (1 + x + y – z)9 is (a) 2.9C7.7C4 (b) -2.9C2.7C3 (c) 9C7.7C4 (d) none of these Q 22. The coefficient of x13 in expansion of (1 – x)5(1 + x + x2 + x3)4 is (a) 4 (b) 4 (c) 0 (d) none of these Q 23. The coefficient of x6.y-2 in the expansion of 12 2 x y y x        is
  • 3. CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com (a) 12C6 (b) -12C5 (c) 0 (d) none of these Q 24. The greatest value of the term independent of x in the expansion of (x sin  + x-1 cos )10,   R, is (a) 25 (b) 2 10! (5!) (c) 5 2 1 10! . 2 (5!) (d) none of these Q 25. In the expansion of 15 3 2 1 x x        , the constant term is (a) 15C6 (b) 0 (c) -15C6 (d) 1 Q 26. The constant term in the expansion of (1 + x)10. 12 1 1 x        is (a) 22C10 (b) 0 (c) 22C11 (d) none of these Q 27. The term independent of x in the expansion of 10 2 1 (1 x) . x x         is (a) 11C5 (b) 10C5 (c) 10C4 (d) none of these Q 28. The middle term in the expansion of 2n 2 2x 3 3 2x        is (a) 2nCn (b) n n 2 (2n)! ( 1) .x (n!)   (c) 2n n n 1 C . x (d) none of these Q 29. The middle term in the expansion of n n 1 1 .(1 x) x         is (a) 2nCn (b) -2nCn (c) -2nCn-1 (d) none of these Q 30. If the rth term is the middle term in the expansion of 20 2 1 x 2x        then the (r + 3)th term is (a) 20C14. 14 1 .x 2 (b) 20 2 12 12 1 C . .x 2 (c) 20 7 13 1 . C .x 2  (d) none of these Q 31. Let n  N and n < ( 2 +1)6. Then the greatest value of n is (a) 199 (b) 198 (c) 197 (d) 196 Q 32. If the coefficient of the 5th term be the numerically greatest coefficient in the expansion of (1 – x)n then the positive integral value of n is (a) 9 (b) 8 (c) 7 (d) 10 Q 33. The greatest coefficient in the expansion of (1 + x)2n is
  • 4. CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com (a) n 1.3.5. .... .(2n 1) .2 n!  (b) 2nCn-1 (c) 2nCn+1 (d) none of these Q 34. Let n be an odd natural number greater than 1. Then the number of zeros at the end of the sum 99n + 1 is (a) 3 (b) 4 (c) 2 (d) none of these Q 35. Let f(n) = 10n + 3.4n+2 + 5, n  N. The greatest value of the integer which divides f(n) for all n is (a) 27 (b) 9 (c) 3 (d) none of these Q 36. 260 when divided by 7 leaves the remainder (a) 1 (b) 6 (c) 5 (d) 2 Q 37. If {x} denotes the fractional part of x then 2n 3 9       , n  N, is (a) 3 8 (b) 7 8 (c) 1 8 (d) none of these Q 38. The sum of the coefficients in the binomial expansion of n 1 2x x        is equal to 6561. The constant term in the expansion is (a) 8C4 (b) 16.8C4 (c) 6C4.24 (d) none of these Q 39. The sum of the numerical coefficients in the expansion of 12 x 2y 1 3 3         is (a) 1 (b) 2 (c) 212 (d) none of these Q 40. The sum of the last ten coefficients in the expansion of (1 + x)19 when (a) 218 (b) 219 (c) 218 – 19C10 (d) none of these Q 41. The sum of the coefficients of x2r, r = 1, 2, 3,….,, in the expansion of (1 + x)n is (a) 2n (b) 2n-1 – 1 (c) 2n – 1 (d) 2n-1 + 1 Q 42. The sum of the coefficients in the polynomial expansion of (1 + x – 3x2)2163 is (a) 1 (b) -1 (c) 0 (d) none of these Q 43. The sum of the coefficients of all the integral powers of x in the expansion of 40 (1 2 x)  is (a) 340 + 1 (b) 340 – 1 (c) 40 1 (3 1) 2  (d) 40 1 (3 1) 2  Q 44. If (1 + x – 2x2)8 = a0 + a1x + a2x2 + ….. + a16x16 then the sum is equal to
  • 5. CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com (a) -27 (b) 27 (c) 28 (d) none of these Q 45. The sum 20C0 + 20C1 + 20C2 + …. + 20C10 is equal to (a) 20 2 20! 2 (10!)  (b) 19 2 1 20! 2 . 2 (10!)  (c) 19 20 10 2 C  (d) none of these Q 46. The sum 10C3 + 11C3 + 12C3 +….+ 20C3 is equal to (a) 21C4 (b) 21C4 + 10C4 (c) 21C17 – 10C6 (d) none of these Q 47. If (1 + x)10 = a0 + a1x + a2x2 +….+ a10x10 then (a0 – a2 + a4 – a6 + a8 – a10)2 + (a1 – a3 + a5 – a7 + a9)2 is equal to (a) 310 (b) 210 (c) 29 (d) none of these Q 48. The sum 1 2 10C0  10 C1 + 2.10 C2 – 22 . 10 C3 + …. + 29 . 10 C10 isequal to (a) 1 2 (b) 0 (c) 10 1 .3 2 (d) none of these Q 49. 1.nC1 + 2.nC2+ 3.n C3 +….+ n.n Cn isequal to (a) n n(n 1) .2 4  (b) n 1 2 3   (c) n 1 n.2  (d) none of these Q 50. If n n n n n r 0 r 0 r r 1 r a then C C      equals (a) (n – 1)an (b) nan (c) n 1 na 2 (d) none of these Q 51. The sum of the series n r 1 n r r 1 ( 1) . C (a r)      is equal to (a) n . 2n-1 + a (b) 0 (c) a (d) none of these Q 52. Let (1 + x)n n r r r 0 a x   . Then 1 2 n 0 1 n 1 a a a 1 1 .... 1 a a a                     is equal to (a) n 1 (n 1) n!   (b) n (n 1) n!  (c) n 1 n (n 1)!   (d) n 1 (n 1) (n 1)!    Q 53. The value of n 10 r n r 1 r 1 C r. C    is equal to (a) 5(2n – 9) (b) 10n (c) 9(n – 4) (d) none of these
  • 6. CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com Q 54. The sum n 2n r r 1 r. C   is equal to (a) n.22n-1 (b) 22n-1 (c) 2n-1 + 1 (d) none of these Q 55. The sum 20 20 20 20 1 2 3 20 1. C 2. C 3. C .... 20. C     is equal to (a) 219 (b) 0 (c) 220-1 (d) none of these Choose the correct options. One or more options may be correct. Q 56. Let 6 2 2 6 2 2 2 f(x) ( x 1 x 1) x 1 x 1               . Then (a) f(x) is a polynomial of the sixth degree in x (b) f(x) has exactly two terms (c) f(x) is not a polynomial in x (d) coefficient of x6 is 64 Q 57. The coefficient of a8b6c4 in the expansion of (a + b + c)18 is (a) 18C14 . 14C8 (b) 18C10. 10C6 (c) 18C6 . 12C8 (d) 18C4 . 14C6 Q 58. The term independent of x in the expansion of n n 1 (1 x) . 1 x         is (a) 0, if n is odd (b) n 1 n 2 n 1 2 ( 1) . C    , if n is odd (c) n/2 n n/2 ( 1) . C  , if n is even (d) none of these Q 59. The coefficient of the (r + 1)th term of 20 1 x x        when expanded in the descending powers of x is equal to the coefficient of the 6th term of 10 2 2 1 x 2 x         when expanded in ascending powers of x. The value of r is (a) 5 (b) 6 (c) 14 (d) 15 Q 60. If (1 + x)2n = a0 + a1x + a2x2 + …. + a2nx2n then (a) a0 + a2+ a4 + …. 1 2  (a0 + a1 + a2 + a3 +….) (b) an+1 < an (c) an-3 = an+3 (d) none of these Q 61. In the expansionof 20 3 4 1 4 6        , (a) the numberof rational terms= 4 (b) the numberof irrational terms= 18
  • 7. CLASS XI BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX WORKSHEET (T) STHITPRAGYA SCIENCE CLASSES, GANDHIDHAM ADVANCED MATHEMATICS FOR JEE | BITSAT| GUJCET| OLYMPIADS | IX, X, XI, XII, XII + MISHAL CHAUHAN (M.Tech, IIT Delhi) Address 1: Near Gayatri Mandir, Opp. PGVCL Office, Shaktinagar Address 2: Sec-5, G.H.B, Gandhidham Contact: 9879639888 Email:sthitpragyaclasses@gmail.com (c) the middle termisirrational (d) the numberof irrational terms= 17 Q 62. Let n  N.If (1 + x)n = a0 + a1x + a2x2 + …. + anxn ,and an-3, an-2,an-1 are inAP then (a) a1, a2, a3 are inAP (b) a1, a2,a3 are in HP (c) n = 7 (d) n = 14 Q 63. Let R = 20 (8 3 7)  and[R] = the greatestintegerlessthanorequal to R. (a) [R] iseven (b) [R] is odd (c) R – [R] = 1 20 1 (8 3 7)   (d) none of these Q 64. 1 1 1 ... 1!.(n 1)! 3!.(n 3)! 5!(n 5)!       isequal to (a) n 1 2 n!  for evenvaluesof nonly (b) n 1 2 1 1 n!    for oddvaluesof n only (c) n 1 2 n!  for all n  N (d) none of these Q 65. In the expansionof (x +y + z)25 (a) everytermisof the form 25 r 25 r r k k r k C . C .x .y .z   (b) the coefficientof x8 y9 z9 is0 (c) the numberof termsis325 (d) none of these 1c 2b 3a 4b 5a 6d 7c 8b 9c 10c 11a 12b 13a 14c 15b 16a 17c 18d 19a 20a 21b 22a 23c 24c 25c 26a 27a 28b 29a 30c 31c 32b 33a 34c 35b 36a 37c 38b 39c 40a 41b 42b 43d 44a 45d 46c 47b 48a 49c 50c 51c 52b 53a 54a 55b 56abd 57abcd 58ac 59ad 60abc 61bc 62ac 63bc 64c 65ab