SlideShare a Scribd company logo
Markov assignment for a pedestrian
activity-based network design problem
Yuki Oyama*,
Eiji Hato, Riccardo Scarinci and Michel Bierlaire
*Department of Urban Engineering
School of Engineering, The University of Tokyo
oyama@bin.t.u-tokyo.ac.jp / yuki.oyama@epfh.ch
September 12, 2017
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 2
Outline
Outline
1. Introduction
2. Pedestrian activity assignment
A) Methodology
B) Illustrative examples
3. Application to a network design
4. Conclusion
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 3
Outline
Outline
1. Introduction
2. Pedestrian activity assignment
A) Methodology
B) Illustrative examples
3. Application to a network design
4. Conclusion
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 4
Introduction
Motivation
Describing the sequence of travels and activities in city centers
Time
Time-constraint
moving
staying
moving
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Space
(About 1 km2 square)
Jury 29, 2016 5
Introduction
Motivation
Describing the sequence of travels and activities in city centers
Time
Time-constraint
moving
staying
stayingmoving
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 6
Introduction
Focus of study
Activity-based network design
OD demand is not known a priori, but is the subject of responses in
user itinerary choices to infrastructure improvements.
[Kang et al., 2013]
Upper level network design problem
Lower level activity path choice problem
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 7
Introduction
Activity path choice problem
For daily household activity
ü Deterministic
ü Pre-trip (static)
ü Low-resolution (zone-
based)
For pedestrian in city centers
ü Probabilistic
ü Sequential (dynamic)
ü High-resolution (network-
based)
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Space
Time
A B
C
Space
(Network)
Time
Jury 29, 2016 8
Contributions
1. Modeling pedestrian activity
- Combinatorial choice of route, location and duration
- Dynamic decision making in time-space network
2. Algorithms for complicated computation
- Applying Markovian (recursive) route choice model
- Network restriction based on the time-space prism
3. Application
- A pedestrian activity-based network design problem
- Bi-level and multi-objective programming
Introduction
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 9
Outline
Outline
1. Introduction
2. Pedestrian activity assignment
A) Methodology
B) Illustrative examples
3. Application to a network design
4. Conclusion
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 10
Framework | network description
Spatial network: includes staying node/link where activities are performed
Pedestrian activity assignment
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Methodology
Discretized time: with a constant interval
Activity path: the sequence of states
y
Space
x
tTime
y
t
x
: Node
(a) (b) (c)
: Link
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
t=1
t=2
t=3
t=4
t=5
move
from 8 to 9
from 9 to 14
at 14
from 13 to 8
move
from 14 to 13
move
move
stay
Jury 29, 2016 11
Framework | assumptions
1. Travelers are homogeneous, move by only walk. Walking speed
is constant.
2. Based on Markov decision process, traveler’s state always
changes into a connected state at each discretized time t.
3. Traveler’s decision is restricted by time-constraint T. As the
result of sequential state transition from 0 to T, an activity path is
obtained.
4. Initial state (source, s0 = (0,o)) and final state (sink, sT = (T,d))
are always given.
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Pedestrian activity assignment Methodology
Jury 29, 2016 12
Network restriction
1o
d
2 3
4 5
6 7
8 9 10
3
4 5
7
8 9
5
0/4
1/3
1/3
1/3
2/2
3/1
2/2
3/1
4/0
2/2
1o
d
2 3
4 5
6 7
8 9 10
3
4 5
7
8 9
5
9 10
Ex.)
STEP1:
STEP2: State existence condition
STEP3:
Time-space constraint
State connection condition
Topological distance
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Pedestrian activity assignment Methodology
Jury 29, 2016 13
Network restriction
y
x1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
x
t
T=5
*Initial and final states
*
0
Figure: Illustrations of constrained networks by the time-space prism
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Pedestrian activity assignment Methodology
Time-space prism
Jury 29, 2016 14
Activity path choice model
Based on the Markov decision process
yy
?
yy
t
xx
: time discount factor
Forward-looking
decision
Individual at state chooses next state that maximizes the sum of
• State transition utility
• Discounted expected utility
Myopic decision
: time-space prism constraint
Transition probability
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Pedestrian activity assignment Methodology
Jury 29, 2016 15
Maximum expected utility of the prism
Backward induction
1. Initialize , and
2. Set , and calculate with Eq. (*)
3. Finish the algorithm if , otherwise return to Step 2.
!(*)
*If the Bellman equation is non-linear, the same method can be applied.
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Pedestrian activity assignment Methodology
Jury 29, 2016 16
Network assignment
Assignment algorithm (forward)
kij
kij
kij
State flow:
Edge flow:
: flow of link (i,j)
Spatial link flow:
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Pedestrian activity assignment Methodology
Input:
(Generating flow)
Jury 29, 2016 17
Outline
Outline
1. Introduction
2. Pedestrian activity assignment
A) Methodology
B) Illustrative examples
3. Application to a network design
4. Conclusion
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 18
Model specification
: a vector of coefficients
: travel time on arcs [min]
: sidewalk width [m]
: shopping street dummy variable
: deviated function of staying utility,
: diminishing marginal utility
Utility function:
Pedestrian activity assignment
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Numerical example
Jury 29, 2016 19
Network setting
Department store Gintengai mall
Okaido mall
City hall
Department store
Park
1 2 3 4
5 6 7
8 9
10 11 12 13
14 15 16 17
18 19 20 21
1o
3o
4o
2o
n : Node for move/stay
n : Node for only move
o : Start/End node
100mN
Pedestrian activity assignment
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Numerical example
Jury 29, 2016 20
Result | activity path choices
Figure: The most frequent paths departing from node 18 with deferent discount rates
1
2
3
4
5
6
7
8
910
11
12
1314
15
16
17
18
19
20
21
1
2
3
4
5
6
7
8
910
11
12
1314
15
16
17
18
19
20
21
(a) (b)
45min.
Finish (total: 81min.)
Finish (total: 45min.)
45min.
30min.
Pedestrian activity assignment
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Numerical example
Jury 29, 2016 21
Result | assignment results
1 2 3 4
5 6 7
8 9
10 11 12 13
14 15 16 17
18 19 20 21
1 2 3 4
5 6 7
8 9
10 11 12 13
14 15 16 17
18 19 20 21
1 2 3 4
5 6 7
8 9
10 11 12 13
14 15 16 17
18 19 20 21
5
0
15
25
10
1 4 7 13 15 17 18 19 20 21 1 4 7 13 15 17 18 19 20 21 1 4 7 13 15 17 18 19 20 21
: 100
Link flow
: 250
: 500
: 1000
(min./person)
(a) (b) (c)
Staying node number
Activity duration
Figure: Activity assignment results with variable values of time constraints.
Table: Input flow pattern of initial and final states
Pedestrian activity assignment
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Numerical example
Jury 29, 2016 22
Outline
Outline
1. Introduction
2. Pedestrian activity assignment
A) Methodology
B) Illustrative examples
3. Application to a network design
4. Conclusion
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 23
Problem definition
Optimizing configuration of the pedestrian network
Decision variable:
: sidewalk width on moving links
s.t.,
: the minimum (current) width [m]
: the possible maximum width [m]
Activity assignment
Decision variable: : link flow at time t
Pedestrian activity-based network design
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 24
Multi-objective functions
1. Maximizing total duration time of district [min.]
2. Minimizing total increases of sidewalk area [m2]
: time discretization unit
: edge flow
: moving link set
: link length
: widening width
Pedestrian activity-based network design
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 25
Solution methodology
Initial solution & network configuration
STEP1: Activity assignment
STEP4: Network Update
STEP3: Acceptance identification
If new solution is accepted, we add it to
the set of Pareto front solution
STEP2: Evaluation of
1) Objective function
2) Arc perfoemance value
Finish iteration
Yes
No
Pedestrian activity-based network design
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
[Scarinci et al., 2017]
Jury 29, 2016 26
Acceptance criterion
existing
solution
new solution
accepted
new solution
rejected
Network update
(A neighborhood search)
Pedestrian activity-based network design
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 27
Result | Pareto front solutions
82800 82900 83000 83100 83200
01000020000300004000050000
Total duration time [min.]
Totalareaofwidenedsidewalk[m2]
Accepted
Rejected
A
Figure: Trade-off curve between sojourn time and widened sidewalk area (CPU time: 5599.69 [s])
Pedestrian activity-based network design
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 28
Result | example solution
Figure: Variation of (a) a network configuration of an example solution A (b) activity
flow in case of the network
1 2 3 4
5 6 7
8 9
10 11 12 13
14 15 16 17
18 19 20 21
1 2 3 4
5 6 7
8 9
10 11 12 13
14 15 16 17
18 19 20 21
+4
+4
+4+4+4
+4+5
+3 +1+8+8
(a) (b)
1 4 7 13 15 17 18 19 20 21
5
0
15
10
Staying node number
Arc flow
Activityduration
[min./person]
: 100
: 250
: 500
: 1000
Pedestrian activity-based network design
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 29
Outline
Outline
1. Introduction
2. Pedestrian activity assignment
A) Methodology
B) Illustrative examples
3. Application to a network design
4. Conclusion
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016 30
Conclusion
• Modeling pedestrian behavior
– A probabilistic and dynamic activity path choice model is
proposed based on the Markov decision process.
– Time-constraint and time discount factor are significant
parameters for pedestrian activities in city centers.
• Computable algorithm
– Markovian assignment is equivalent to the MNL model but does not
require path enumeration.
– Time-space prism-based network restriction removes
unreachable states in advance and reduces the size of path set.
• Network design
– A pedestrian activity-based network design is presented.
Conclusions
Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
Jury 29, 2016hEART 2016 in Delft 31
Thank you for attention.
Jury 29, 2016 32
Network restriction
Methodology
Table: Restricted path set (24 paths)
Jury 29, 2016 33
Case study
Network standardization
(a)
(b)
1
1
2
1 2
1
: arc length [m]
: walking speed [m/s]
: interval of time discretization [s]
: minimum duration time of staying node [s]
Jury 29, 2016 34
Case study
Network design
Network Update
Remove-Random-Width
Add-Random-Width
Remove-Worst-Width
Add-Best-Width
Remove a unit width from an arc randomly selected:
s.t.,
s.t.,
Add a unit width from an arc randomly selected:
Likewise,
where the worst and best are defined with arc performance value (in the next slide).
Jury 29, 2016 35
Case study
Network design
Arc performance
Utility loss (gain) for identifying the worst (best) moving arc:
Jury 29, 2016 36
Case study
Network design
Parameters
: unit removal/additional width [m]
Solution
• Neighborhood structure of Network Update is selected randomly.
• Initial solution is full-equipped network.
: unit capital cost [Yen/m2]
: Iteration number
Jury 29, 2016 37
Case study
Pareto front search
0 200 400 600 800 1000
8280082900830008310083200
Iteration number
Totalsojourntime
0 200 400 600 800 1000
01000020000300004000050000
Iteration number
Totalareaofwidenedsidewalk
Figure: Variation of (a) total sojourn time and (b) total area of widened sidewalk in
iteration process.
(a) (b)

More Related Content

PDF
大山雄己 - 時空間制約と経路相関を考慮した歩行者の活動配分問題
PDF
大山雄己 - 街路景観の連続性を考慮した逐次的経路選択モデル
PDF
大山雄己 - 活動欲求を考慮した離散-連続モデルによる小滞在発生メカニズムの分析
PPTX
確率ロボティクス第六回
PDF
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
PPTX
確率ロボティクス第11回
PDF
ORB-SLAMを動かしてみた
PPTX
Direct Sparse Odometryの解説
大山雄己 - 時空間制約と経路相関を考慮した歩行者の活動配分問題
大山雄己 - 街路景観の連続性を考慮した逐次的経路選択モデル
大山雄己 - 活動欲求を考慮した離散-連続モデルによる小滞在発生メカニズムの分析
確率ロボティクス第六回
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
確率ロボティクス第11回
ORB-SLAMを動かしてみた
Direct Sparse Odometryの解説

What's hot (20)

PDF
LiDAR-SLAM チュートリアル資料
PDF
直交領域探索
PDF
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
PDF
20090924 姿勢推定と回転行列
PDF
re:mobidyc the overview
PDF
Minecraft による強化学習の実践 (MineRL)
PDF
人間の視覚的注意を予測するモデル - 動的ベイジアンネットワークに基づく 最新のアプローチ -
PDF
オープンソース SLAM の分類
PPTX
[DL輪読会]Dense Captioning分野のまとめ
PDF
Unityでロボットの教師データは作れる!
PDF
Visual slam
PDF
20190825 vins mono
PDF
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos
PDF
-SSIIの技術マップ- 過去•現在, そして未来 [領域]認識
PDF
確率モデルを用いた3D点群レジストレーション
PDF
ROS を用いた自律移動ロボットのシステム構築
PDF
東大大学院 電子情報学特論講義資料「ハイパーパラメタ最適化ライブラリOptunaの開発」柳瀬利彦
PDF
SSII2012 2D&3Dレジストレーション ~画像と3次元点群の合わせ方~ 第1部
PDF
YOLO V3で独自データセットを学習させて物体検出 / Yolo V3 with your own dataset
LiDAR-SLAM チュートリアル資料
直交領域探索
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
20090924 姿勢推定と回転行列
re:mobidyc the overview
Minecraft による強化学習の実践 (MineRL)
人間の視覚的注意を予測するモデル - 動的ベイジアンネットワークに基づく 最新のアプローチ -
オープンソース SLAM の分類
[DL輪読会]Dense Captioning分野のまとめ
Unityでロボットの教師データは作れる!
Visual slam
20190825 vins mono
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos
-SSIIの技術マップ- 過去•現在, そして未来 [領域]認識
確率モデルを用いた3D点群レジストレーション
ROS を用いた自律移動ロボットのシステム構築
東大大学院 電子情報学特論講義資料「ハイパーパラメタ最適化ライブラリOptunaの開発」柳瀬利彦
SSII2012 2D&3Dレジストレーション ~画像と3次元点群の合わせ方~ 第1部
YOLO V3で独自データセットを学習させて物体検出 / Yolo V3 with your own dataset
Ad

Similar to Yuki Oyama - Markov assignment for a pedestrian activity-based network design problem (20)

PPTX
Ch 5.pptx IS ALL ABOUT PROJECT MANAGMENT AND EVALUATION
PPTX
Network scheduling
PDF
Session B1 - Planning, Scheduling Monitoring and Control
PPTX
Ch 5.pptx
PDF
Network Analysis-I ppt by Dr. Bostancı.pdf
PPTX
PERT. ppts for operation researchs assgn.pptx
DOCX
Ii. pert cpm
PDF
FINAL REPORT
PPT
Cpm n pert lecture 1
PPT
The Network Diagram and Critical Path
PDF
Critical path analysis
PDF
Temporal networks - Alain Barrat
PDF
Gantt Charts and CPM PERT Networks–.pdf
PDF
Network of Four Activities.pdf
PDF
Network of Seven Activities.pdf
PDF
Example of Simple Network –.pdf
PDF
Network with ES & EF time.pdf
PDF
DEFINITION OF TERMS IN A NETWORK.pdf
PDF
Arc with ES & EF time –.pdf
PDF
Activity, duration, ES, EF, LS, LF–.pdf
Ch 5.pptx IS ALL ABOUT PROJECT MANAGMENT AND EVALUATION
Network scheduling
Session B1 - Planning, Scheduling Monitoring and Control
Ch 5.pptx
Network Analysis-I ppt by Dr. Bostancı.pdf
PERT. ppts for operation researchs assgn.pptx
Ii. pert cpm
FINAL REPORT
Cpm n pert lecture 1
The Network Diagram and Critical Path
Critical path analysis
Temporal networks - Alain Barrat
Gantt Charts and CPM PERT Networks–.pdf
Network of Four Activities.pdf
Network of Seven Activities.pdf
Example of Simple Network –.pdf
Network with ES & EF time.pdf
DEFINITION OF TERMS IN A NETWORK.pdf
Arc with ES & EF time –.pdf
Activity, duration, ES, EF, LS, LF–.pdf
Ad

Recently uploaded (20)

PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
PPTX
Current and future trends in Computer Vision.pptx
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PDF
737-MAX_SRG.pdf student reference guides
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
Fundamentals of Mechanical Engineering.pptx
PPTX
Feature types and data preprocessing steps
PDF
Design Guidelines and solutions for Plastics parts
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
Current and future trends in Computer Vision.pptx
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Information Storage and Retrieval Techniques Unit III
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
distributed database system" (DDBS) is often used to refer to both the distri...
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
Categorization of Factors Affecting Classification Algorithms Selection
737-MAX_SRG.pdf student reference guides
Management Information system : MIS-e-Business Systems.pptx
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Fundamentals of Mechanical Engineering.pptx
Feature types and data preprocessing steps
Design Guidelines and solutions for Plastics parts
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...

Yuki Oyama - Markov assignment for a pedestrian activity-based network design problem

  • 1. Markov assignment for a pedestrian activity-based network design problem Yuki Oyama*, Eiji Hato, Riccardo Scarinci and Michel Bierlaire *Department of Urban Engineering School of Engineering, The University of Tokyo oyama@bin.t.u-tokyo.ac.jp / yuki.oyama@epfh.ch September 12, 2017 Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 2. Jury 29, 2016 2 Outline Outline 1. Introduction 2. Pedestrian activity assignment A) Methodology B) Illustrative examples 3. Application to a network design 4. Conclusion Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 3. Jury 29, 2016 3 Outline Outline 1. Introduction 2. Pedestrian activity assignment A) Methodology B) Illustrative examples 3. Application to a network design 4. Conclusion Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 4. Jury 29, 2016 4 Introduction Motivation Describing the sequence of travels and activities in city centers Time Time-constraint moving staying moving Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Space (About 1 km2 square)
  • 5. Jury 29, 2016 5 Introduction Motivation Describing the sequence of travels and activities in city centers Time Time-constraint moving staying stayingmoving Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 6. Jury 29, 2016 6 Introduction Focus of study Activity-based network design OD demand is not known a priori, but is the subject of responses in user itinerary choices to infrastructure improvements. [Kang et al., 2013] Upper level network design problem Lower level activity path choice problem Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 7. Jury 29, 2016 7 Introduction Activity path choice problem For daily household activity ü Deterministic ü Pre-trip (static) ü Low-resolution (zone- based) For pedestrian in city centers ü Probabilistic ü Sequential (dynamic) ü High-resolution (network- based) Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Space Time A B C Space (Network) Time
  • 8. Jury 29, 2016 8 Contributions 1. Modeling pedestrian activity - Combinatorial choice of route, location and duration - Dynamic decision making in time-space network 2. Algorithms for complicated computation - Applying Markovian (recursive) route choice model - Network restriction based on the time-space prism 3. Application - A pedestrian activity-based network design problem - Bi-level and multi-objective programming Introduction Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 9. Jury 29, 2016 9 Outline Outline 1. Introduction 2. Pedestrian activity assignment A) Methodology B) Illustrative examples 3. Application to a network design 4. Conclusion Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 10. Jury 29, 2016 10 Framework | network description Spatial network: includes staying node/link where activities are performed Pedestrian activity assignment Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Methodology Discretized time: with a constant interval Activity path: the sequence of states y Space x tTime y t x : Node (a) (b) (c) : Link 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 t=1 t=2 t=3 t=4 t=5 move from 8 to 9 from 9 to 14 at 14 from 13 to 8 move from 14 to 13 move move stay
  • 11. Jury 29, 2016 11 Framework | assumptions 1. Travelers are homogeneous, move by only walk. Walking speed is constant. 2. Based on Markov decision process, traveler’s state always changes into a connected state at each discretized time t. 3. Traveler’s decision is restricted by time-constraint T. As the result of sequential state transition from 0 to T, an activity path is obtained. 4. Initial state (source, s0 = (0,o)) and final state (sink, sT = (T,d)) are always given. Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Pedestrian activity assignment Methodology
  • 12. Jury 29, 2016 12 Network restriction 1o d 2 3 4 5 6 7 8 9 10 3 4 5 7 8 9 5 0/4 1/3 1/3 1/3 2/2 3/1 2/2 3/1 4/0 2/2 1o d 2 3 4 5 6 7 8 9 10 3 4 5 7 8 9 5 9 10 Ex.) STEP1: STEP2: State existence condition STEP3: Time-space constraint State connection condition Topological distance Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Pedestrian activity assignment Methodology
  • 13. Jury 29, 2016 13 Network restriction y x1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 x t T=5 *Initial and final states * 0 Figure: Illustrations of constrained networks by the time-space prism Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Pedestrian activity assignment Methodology Time-space prism
  • 14. Jury 29, 2016 14 Activity path choice model Based on the Markov decision process yy ? yy t xx : time discount factor Forward-looking decision Individual at state chooses next state that maximizes the sum of • State transition utility • Discounted expected utility Myopic decision : time-space prism constraint Transition probability Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Pedestrian activity assignment Methodology
  • 15. Jury 29, 2016 15 Maximum expected utility of the prism Backward induction 1. Initialize , and 2. Set , and calculate with Eq. (*) 3. Finish the algorithm if , otherwise return to Step 2. !(*) *If the Bellman equation is non-linear, the same method can be applied. Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Pedestrian activity assignment Methodology
  • 16. Jury 29, 2016 16 Network assignment Assignment algorithm (forward) kij kij kij State flow: Edge flow: : flow of link (i,j) Spatial link flow: Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Pedestrian activity assignment Methodology Input: (Generating flow)
  • 17. Jury 29, 2016 17 Outline Outline 1. Introduction 2. Pedestrian activity assignment A) Methodology B) Illustrative examples 3. Application to a network design 4. Conclusion Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 18. Jury 29, 2016 18 Model specification : a vector of coefficients : travel time on arcs [min] : sidewalk width [m] : shopping street dummy variable : deviated function of staying utility, : diminishing marginal utility Utility function: Pedestrian activity assignment Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Numerical example
  • 19. Jury 29, 2016 19 Network setting Department store Gintengai mall Okaido mall City hall Department store Park 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1o 3o 4o 2o n : Node for move/stay n : Node for only move o : Start/End node 100mN Pedestrian activity assignment Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Numerical example
  • 20. Jury 29, 2016 20 Result | activity path choices Figure: The most frequent paths departing from node 18 with deferent discount rates 1 2 3 4 5 6 7 8 910 11 12 1314 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 910 11 12 1314 15 16 17 18 19 20 21 (a) (b) 45min. Finish (total: 81min.) Finish (total: 45min.) 45min. 30min. Pedestrian activity assignment Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Numerical example
  • 21. Jury 29, 2016 21 Result | assignment results 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 5 0 15 25 10 1 4 7 13 15 17 18 19 20 21 1 4 7 13 15 17 18 19 20 21 1 4 7 13 15 17 18 19 20 21 : 100 Link flow : 250 : 500 : 1000 (min./person) (a) (b) (c) Staying node number Activity duration Figure: Activity assignment results with variable values of time constraints. Table: Input flow pattern of initial and final states Pedestrian activity assignment Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel Numerical example
  • 22. Jury 29, 2016 22 Outline Outline 1. Introduction 2. Pedestrian activity assignment A) Methodology B) Illustrative examples 3. Application to a network design 4. Conclusion Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 23. Jury 29, 2016 23 Problem definition Optimizing configuration of the pedestrian network Decision variable: : sidewalk width on moving links s.t., : the minimum (current) width [m] : the possible maximum width [m] Activity assignment Decision variable: : link flow at time t Pedestrian activity-based network design Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 24. Jury 29, 2016 24 Multi-objective functions 1. Maximizing total duration time of district [min.] 2. Minimizing total increases of sidewalk area [m2] : time discretization unit : edge flow : moving link set : link length : widening width Pedestrian activity-based network design Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 25. Jury 29, 2016 25 Solution methodology Initial solution & network configuration STEP1: Activity assignment STEP4: Network Update STEP3: Acceptance identification If new solution is accepted, we add it to the set of Pareto front solution STEP2: Evaluation of 1) Objective function 2) Arc perfoemance value Finish iteration Yes No Pedestrian activity-based network design Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel [Scarinci et al., 2017]
  • 26. Jury 29, 2016 26 Acceptance criterion existing solution new solution accepted new solution rejected Network update (A neighborhood search) Pedestrian activity-based network design Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 27. Jury 29, 2016 27 Result | Pareto front solutions 82800 82900 83000 83100 83200 01000020000300004000050000 Total duration time [min.] Totalareaofwidenedsidewalk[m2] Accepted Rejected A Figure: Trade-off curve between sojourn time and widened sidewalk area (CPU time: 5599.69 [s]) Pedestrian activity-based network design Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 28. Jury 29, 2016 28 Result | example solution Figure: Variation of (a) a network configuration of an example solution A (b) activity flow in case of the network 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 +4 +4 +4+4+4 +4+5 +3 +1+8+8 (a) (b) 1 4 7 13 15 17 18 19 20 21 5 0 15 10 Staying node number Arc flow Activityduration [min./person] : 100 : 250 : 500 : 1000 Pedestrian activity-based network design Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 29. Jury 29, 2016 29 Outline Outline 1. Introduction 2. Pedestrian activity assignment A) Methodology B) Illustrative examples 3. Application to a network design 4. Conclusion Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 30. Jury 29, 2016 30 Conclusion • Modeling pedestrian behavior – A probabilistic and dynamic activity path choice model is proposed based on the Markov decision process. – Time-constraint and time discount factor are significant parameters for pedestrian activities in city centers. • Computable algorithm – Markovian assignment is equivalent to the MNL model but does not require path enumeration. – Time-space prism-based network restriction removes unreachable states in advance and reduces the size of path set. • Network design – A pedestrian activity-based network design is presented. Conclusions Oyama, Y. et al. (UT&EPFL) September 12, 2017hEART 2017 in Israel
  • 31. Jury 29, 2016hEART 2016 in Delft 31 Thank you for attention.
  • 32. Jury 29, 2016 32 Network restriction Methodology Table: Restricted path set (24 paths)
  • 33. Jury 29, 2016 33 Case study Network standardization (a) (b) 1 1 2 1 2 1 : arc length [m] : walking speed [m/s] : interval of time discretization [s] : minimum duration time of staying node [s]
  • 34. Jury 29, 2016 34 Case study Network design Network Update Remove-Random-Width Add-Random-Width Remove-Worst-Width Add-Best-Width Remove a unit width from an arc randomly selected: s.t., s.t., Add a unit width from an arc randomly selected: Likewise, where the worst and best are defined with arc performance value (in the next slide).
  • 35. Jury 29, 2016 35 Case study Network design Arc performance Utility loss (gain) for identifying the worst (best) moving arc:
  • 36. Jury 29, 2016 36 Case study Network design Parameters : unit removal/additional width [m] Solution • Neighborhood structure of Network Update is selected randomly. • Initial solution is full-equipped network. : unit capital cost [Yen/m2] : Iteration number
  • 37. Jury 29, 2016 37 Case study Pareto front search 0 200 400 600 800 1000 8280082900830008310083200 Iteration number Totalsojourntime 0 200 400 600 800 1000 01000020000300004000050000 Iteration number Totalareaofwidenedsidewalk Figure: Variation of (a) total sojourn time and (b) total area of widened sidewalk in iteration process. (a) (b)