ELECTRÓNICA
DIGITAL
Señal Analógica y Señal Digital
Señal analógica
Es una señal continua.
El nº de valores que puede
tomar es infinito
V
t
Señal digital
Es una señal discreta.
Solo puede tomar
determinados valores
V
t
1
-1
Electrónica
Digital
Valor Analógico
(-∞, 0]
(0, +∞)
Trabaja con señales que solamente
adopta dos estados eléctricos:
► 1 (circuito cerrado)
► 0 (circuito abierto)
1
2
3
4
-3
-2
-1
Valor Digital
0
1
0
t
V
Ventajas:
♠ Fáciles de reconfigurar
♥ Interferencias
prácticamente nulas
♣ Coste menor
♦ Se puede manejar señales
de distintas funciones
Conversión de un número
Decimal a Binario
• Para esta transformación es necesario tener en cuenta los pasos que
muestran en el siguiente ejemplo:
Transformar el número 100 a número binario
– Dividir el numero 100 entre 2
– Dividir el cociente obtenido por 2 y repetir el mismo procedimiento
hasta que el cociente sea 1.
– El numero binario se forma tomando como primer dígito el último
cociente, seguidos por los residuos obtenidos en cada división,
seleccionándolos de derecha a izquierda, como se muestra en el
siguiente esquema.
Ejercicios
Conversión Decimal a Binario
20
51
63
64
102
210
1024
41
33
16
15
Conversión de un número
Binario a Decimal
• Para convertir un número binario a decimal es necesario tener en
cuenta los pasos que muestran en el siguiente ejemplo:
Transformar el número 10101 a número decimal
– Tomamos los valores de posición correspondiente a las columnas
donde aparezcan únicamente unos (1)
– Sumamos los valores de posición para identificar el numero
decimal equivalente
Ejercicios
Conversión Binario a Decimal
100
111
1010
11101
01101
010001
110011
011
11100101
1000
11011100
Álgebra de Boole
Opera con relaciones lógicas
donde las variables pueden
tomar solamente 2 valores:
Postulados
1) a+1= 1
2) a+0= a
3) a*1= a
4) a*0= 0
5) a+a= a
6) a*a= a
7) a+ā= 1
8) a*ā= 0
9) ẵ= a
Verdadero (1)
Falso (0)
a a+1= 1 a+0= a a*1= a a*0= 0 a+a= a a*a= a a+ā=1 a*ā=0
0 0+1=1 0+0=0 0*1=0 0*0=0 0+0=0 0*0=0 0+1=1 0*1=0
1 1+1=1 1+0=1 1*1=1 1*0=0 1+1=1 1*1=1 1+0=1 1*0=0
Cualquier “combinación” a la que se le sume 1, el resultado es 1
Cualquier “combinación” a la que se le multiplique por 0, el resultado es 0
Ejercicios 1 de Álgebra de Boole
(a+1)*a
(a*1)+a
(a*0)*(1+a)
(â+0)*1
(0+1)*1
(a+â)*(0+1)
[(a*1)*a]+0
(a+a)*â
(a*0)*a
(a+0)*â
(a+0)*(a+a)
Ejercicios 2 de Álgebra de Boole
(1*1) + (0*â)
(a+a)*a
(a*â) + (a+â)
(a+â)*(1+0)
(a*1)*(a+0)
(a*0)+a
(1+0) + (â+a)
(1*0) + (a*â)
(â+1+a)*(â*a)
1+ [(â+1+0+a)*(1+a+â)]
0*[(a+1) + 1*(a*â)]
Puerta lógica
Es un dispositivo que tiene
una, dos o más entradas
digitales y que genera una
señal de salida, digital, en
función de esas entradas
Nº comb
1
2
3
4
5
6
7
8
Puerta
lógica
S
E1
E2
E 3
El número posible de
combinaciones es 2n
n = nº de entradas
23 = 8
E1 E2 E3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
Tabla de Verdad
Tabla en que se indica el valor que toma la señal de salida en
función de los valores de las señales de entrada
Nº comb
1
2
3
4
5
6
7
8
Puerta
lógica
S
E1
E2
E 3
E1 E2 E3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
S
1
1
0
1
0
1
0
0
A cada una de las posibles
combinaciones de las señales de
entrada le corresponde siempre el
mismo valor en la salida
Puertas básicas (I)
Puerta AND
E1 E2 S
0 0 0
0 1 0
1 0 0
1 1 1
E1
E2
S
Puerta NAND
E1
E2
S
E1 E2 S
0 0 1
0 1 1
1 0 1
1 1 0
Es equivalente a la multiplicación
del álgebra de Boole
Puertas básicas (II)
Puerta OR
E1 E2 S
0 0 0
0 1 1
1 0 1
1 1 1
Puerta NOR
S
E1 E2 S
0 0 1
0 1 0
1 0 0
1 1 0
Es equivalente a la suma del
álgebra de Boole
E1
E2
S
E1
E2
Puertas básicas (III)
Puerta NOT
E1 S
0 1
1 0
S
Es equivalente a la negación del
álgebra de Boole
E1 S
E1
E2
E1
E2
S
E1
E2
S
=
E1
E2
S
=
AND + NOT = NAND
OR + NOT = NOR
Forma Canónica de una función
Consiste en expresar como suma de productos
(de las entradas) una función (de salida)
Puerta
lógica
S
E1
E2
E 3
E1 E2 E3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
S
1
1
0
1
0
1
0
0
S = Ē1Ē2Ē3 + Ē1Ē2E3 + Ē1E2E3 + E1Ē2E3
Método de obtención de la forma
Canónica
1º Se debe conocer la tabla de verdad de
dicha función
2º Se marcan aquellas filas que hacen que
el valor de la función sea “verdadero”
3º La forma canónica resulta de una suma
de productos de las filas marcadas,
donde las entradas se toman de forma
directa si su valor es (1) o de forma
negada si su valor es (0)
E1 E2 E3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
S
1
1
0
1
0
1
0
0
S = Ē1Ē2Ē3 + Ē1Ē2E3 + Ē1E2E3 + E1Ē2E3
Tipos de problemas (I)
E1 E2 E3 E4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
S
E1
E2
A
S
E3
E4
B
Determinar la tabla de
verdad de la salida “S”
A B
Como hay 4 entradas,
habrá 24 combinaciones
Se recomienda utilizar
variables intermedias
para facilitar el cálculo
Tipos de problemas (II)
E1 E2 E3 E4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
S
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
E1
S
Dada la tabla de verdad de un función “S”,
dibujar las puertas lógicas que la forman
Determinar la forma
canónica de la función
S=
E2
E3
E4
Tipos de problemas (III)
A
S
Dada la función transferencia “S”, dibujar las
puertas lógicas que la forman
S= (A + B) . (A . B . C)
B
C
(A + B)
(A . B . C)

Más contenido relacionado

PPT
Apuntes electr digital
PDF
10. actividades elect-digital
DOC
Representacion en numeros de complementos
PDF
Unidad 4 electronica_digital_v1_c
DOCX
Sistemas De Numeros Digitales
DOC
Operaciones sistemas numéricos
PPSX
Circuitos combinatorios
PDF
Electronica Digital
Apuntes electr digital
10. actividades elect-digital
Representacion en numeros de complementos
Unidad 4 electronica_digital_v1_c
Sistemas De Numeros Digitales
Operaciones sistemas numéricos
Circuitos combinatorios
Electronica Digital

La actualidad más candente (18)

PPT
Presentacion electronica-digital (4)
PPTX
Ejercicios propuestos
DOC
Conversiones
ODP
Electrónica: circuitos combinacionales
DOC
Sistemas De Numeros Digitales
DOCX
Complemento A Dos
PPTX
Compuertas LóGicas
PDF
Sistema octal
PPSX
Presentacion
DOCX
Desarrollo de habilidades de pensamiento lógico
PDF
Practica+1+binario+y+decimal
PPTX
Sistema Binario
PPT
Codigosbinarios
PPTX
Representación de la información
PDF
00017817 conversion con coma
DOCX
Calculo De Complemento 2 De Un Numero Binario
PDF
Aritmetica puntoflotante
Presentacion electronica-digital (4)
Ejercicios propuestos
Conversiones
Electrónica: circuitos combinacionales
Sistemas De Numeros Digitales
Complemento A Dos
Compuertas LóGicas
Sistema octal
Presentacion
Desarrollo de habilidades de pensamiento lógico
Practica+1+binario+y+decimal
Sistema Binario
Codigosbinarios
Representación de la información
00017817 conversion con coma
Calculo De Complemento 2 De Un Numero Binario
Aritmetica puntoflotante
Publicidad

Similar a 1. electrónica-digital (20)

PDF
Ud1 introducccion y compuertas logicas
PPT
Electronica digital
PPT
Presentacion electronica-digital
PPT
Presentació Apunts ElectròNica Digital
PPT
Electronica Digital
PPT
Unidad electronica digital
PPT
Cuaderno de algebra
PPT
3 Electrónica-digital.ppt
PDF
Electrónica digital
PDF
Digitpri - electronica avansada
PDF
Electronica digital
ODP
Tema 12.2
PPS
Circuitos combinacionales
DOCX
Circuitos combinacionales
DOCX
Slideshare maria
DOCX
María de los ángeles villanueva cañizalez
DOCX
María de los ángeles villanueva cañizalez
PDF
PDF
[] Algebra de_boole_y_circuitos_combinacionales(book_za.org)
DOCX
Funciones y variables logicas
Ud1 introducccion y compuertas logicas
Electronica digital
Presentacion electronica-digital
Presentació Apunts ElectròNica Digital
Electronica Digital
Unidad electronica digital
Cuaderno de algebra
3 Electrónica-digital.ppt
Electrónica digital
Digitpri - electronica avansada
Electronica digital
Tema 12.2
Circuitos combinacionales
Circuitos combinacionales
Slideshare maria
María de los ángeles villanueva cañizalez
María de los ángeles villanueva cañizalez
[] Algebra de_boole_y_circuitos_combinacionales(book_za.org)
Funciones y variables logicas
Publicidad

Último (20)

PDF
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
PDF
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
PDF
Mi Primer Millon - Poissant - Godefroy Ccesa007.pdf
PDF
Modelo Educativo SUB 2023versión final.pdf
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
PPTX
TEMA 1ORGANIZACIÓN FUNCIONAL DEL CUERPO, MEDIO INTERNO Y HOMEOSTASIS (3) [Aut...
PDF
IPERC...................................
PDF
Introducción a la historia de la filosofía
PDF
Manual del Gobierno Escolar -MINEDUC.pdf
DOCX
Programa_Sintetico_Fase_4.docx 3° Y 4°..
PDF
Telos 127 Generacion Al fa Beta - fundaciontelefonica
DOCX
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
PDF
RM2025 - FUNDAMENTOS TEÓRICOS - PEDIATRÍA.pdf
PDF
Ernst Cassirer - Antropologia Filosofica.pdf
PDF
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
PDF
Esc. Sab. Lección 7. El pan y el agua de vida.pdf
PDF
Iniciación Al Aprendizaje Basado En Proyectos ABP Ccesa007.pdf
PPTX
LAS MIGRACIONES E INVASIONES Y EL INICIO EDAD MEDIA
PDF
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
PDF
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
Mi Primer Millon - Poissant - Godefroy Ccesa007.pdf
Modelo Educativo SUB 2023versión final.pdf
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
TEMA 1ORGANIZACIÓN FUNCIONAL DEL CUERPO, MEDIO INTERNO Y HOMEOSTASIS (3) [Aut...
IPERC...................................
Introducción a la historia de la filosofía
Manual del Gobierno Escolar -MINEDUC.pdf
Programa_Sintetico_Fase_4.docx 3° Y 4°..
Telos 127 Generacion Al fa Beta - fundaciontelefonica
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
RM2025 - FUNDAMENTOS TEÓRICOS - PEDIATRÍA.pdf
Ernst Cassirer - Antropologia Filosofica.pdf
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
Esc. Sab. Lección 7. El pan y el agua de vida.pdf
Iniciación Al Aprendizaje Basado En Proyectos ABP Ccesa007.pdf
LAS MIGRACIONES E INVASIONES Y EL INICIO EDAD MEDIA
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf

1. electrónica-digital

  • 2. Señal Analógica y Señal Digital Señal analógica Es una señal continua. El nº de valores que puede tomar es infinito V t Señal digital Es una señal discreta. Solo puede tomar determinados valores V t 1 -1
  • 3. Electrónica Digital Valor Analógico (-∞, 0] (0, +∞) Trabaja con señales que solamente adopta dos estados eléctricos: ► 1 (circuito cerrado) ► 0 (circuito abierto) 1 2 3 4 -3 -2 -1 Valor Digital 0 1 0 t V Ventajas: ♠ Fáciles de reconfigurar ♥ Interferencias prácticamente nulas ♣ Coste menor ♦ Se puede manejar señales de distintas funciones
  • 4. Conversión de un número Decimal a Binario • Para esta transformación es necesario tener en cuenta los pasos que muestran en el siguiente ejemplo: Transformar el número 100 a número binario – Dividir el numero 100 entre 2 – Dividir el cociente obtenido por 2 y repetir el mismo procedimiento hasta que el cociente sea 1. – El numero binario se forma tomando como primer dígito el último cociente, seguidos por los residuos obtenidos en cada división, seleccionándolos de derecha a izquierda, como se muestra en el siguiente esquema.
  • 5. Ejercicios Conversión Decimal a Binario 20 51 63 64 102 210 1024 41 33 16 15
  • 6. Conversión de un número Binario a Decimal • Para convertir un número binario a decimal es necesario tener en cuenta los pasos que muestran en el siguiente ejemplo: Transformar el número 10101 a número decimal – Tomamos los valores de posición correspondiente a las columnas donde aparezcan únicamente unos (1) – Sumamos los valores de posición para identificar el numero decimal equivalente
  • 7. Ejercicios Conversión Binario a Decimal 100 111 1010 11101 01101 010001 110011 011 11100101 1000 11011100
  • 8. Álgebra de Boole Opera con relaciones lógicas donde las variables pueden tomar solamente 2 valores: Postulados 1) a+1= 1 2) a+0= a 3) a*1= a 4) a*0= 0 5) a+a= a 6) a*a= a 7) a+ā= 1 8) a*ā= 0 9) ẵ= a Verdadero (1) Falso (0) a a+1= 1 a+0= a a*1= a a*0= 0 a+a= a a*a= a a+ā=1 a*ā=0 0 0+1=1 0+0=0 0*1=0 0*0=0 0+0=0 0*0=0 0+1=1 0*1=0 1 1+1=1 1+0=1 1*1=1 1*0=0 1+1=1 1*1=1 1+0=1 1*0=0 Cualquier “combinación” a la que se le sume 1, el resultado es 1 Cualquier “combinación” a la que se le multiplique por 0, el resultado es 0
  • 9. Ejercicios 1 de Álgebra de Boole (a+1)*a (a*1)+a (a*0)*(1+a) (â+0)*1 (0+1)*1 (a+â)*(0+1) [(a*1)*a]+0 (a+a)*â (a*0)*a (a+0)*â (a+0)*(a+a)
  • 10. Ejercicios 2 de Álgebra de Boole (1*1) + (0*â) (a+a)*a (a*â) + (a+â) (a+â)*(1+0) (a*1)*(a+0) (a*0)+a (1+0) + (â+a) (1*0) + (a*â) (â+1+a)*(â*a) 1+ [(â+1+0+a)*(1+a+â)] 0*[(a+1) + 1*(a*â)]
  • 11. Puerta lógica Es un dispositivo que tiene una, dos o más entradas digitales y que genera una señal de salida, digital, en función de esas entradas Nº comb 1 2 3 4 5 6 7 8 Puerta lógica S E1 E2 E 3 El número posible de combinaciones es 2n n = nº de entradas 23 = 8 E1 E2 E3 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
  • 12. Tabla de Verdad Tabla en que se indica el valor que toma la señal de salida en función de los valores de las señales de entrada Nº comb 1 2 3 4 5 6 7 8 Puerta lógica S E1 E2 E 3 E1 E2 E3 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 S 1 1 0 1 0 1 0 0 A cada una de las posibles combinaciones de las señales de entrada le corresponde siempre el mismo valor en la salida
  • 13. Puertas básicas (I) Puerta AND E1 E2 S 0 0 0 0 1 0 1 0 0 1 1 1 E1 E2 S Puerta NAND E1 E2 S E1 E2 S 0 0 1 0 1 1 1 0 1 1 1 0 Es equivalente a la multiplicación del álgebra de Boole
  • 14. Puertas básicas (II) Puerta OR E1 E2 S 0 0 0 0 1 1 1 0 1 1 1 1 Puerta NOR S E1 E2 S 0 0 1 0 1 0 1 0 0 1 1 0 Es equivalente a la suma del álgebra de Boole E1 E2 S E1 E2
  • 15. Puertas básicas (III) Puerta NOT E1 S 0 1 1 0 S Es equivalente a la negación del álgebra de Boole E1 S E1 E2 E1 E2 S E1 E2 S = E1 E2 S = AND + NOT = NAND OR + NOT = NOR
  • 16. Forma Canónica de una función Consiste en expresar como suma de productos (de las entradas) una función (de salida) Puerta lógica S E1 E2 E 3 E1 E2 E3 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 S 1 1 0 1 0 1 0 0 S = Ē1Ē2Ē3 + Ē1Ē2E3 + Ē1E2E3 + E1Ē2E3
  • 17. Método de obtención de la forma Canónica 1º Se debe conocer la tabla de verdad de dicha función 2º Se marcan aquellas filas que hacen que el valor de la función sea “verdadero” 3º La forma canónica resulta de una suma de productos de las filas marcadas, donde las entradas se toman de forma directa si su valor es (1) o de forma negada si su valor es (0) E1 E2 E3 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 S 1 1 0 1 0 1 0 0 S = Ē1Ē2Ē3 + Ē1Ē2E3 + Ē1E2E3 + E1Ē2E3
  • 18. Tipos de problemas (I) E1 E2 E3 E4 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 S E1 E2 A S E3 E4 B Determinar la tabla de verdad de la salida “S” A B Como hay 4 entradas, habrá 24 combinaciones Se recomienda utilizar variables intermedias para facilitar el cálculo
  • 19. Tipos de problemas (II) E1 E2 E3 E4 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 S 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 E1 S Dada la tabla de verdad de un función “S”, dibujar las puertas lógicas que la forman Determinar la forma canónica de la función S= E2 E3 E4
  • 20. Tipos de problemas (III) A S Dada la función transferencia “S”, dibujar las puertas lógicas que la forman S= (A + B) . (A . B . C) B C (A + B) (A . B . C)