SlideShare una empresa de Scribd logo
Carmen Rosa Sánchez Tejada IE. MIGUEL CORTES
ANGULOS TEORIA  PROLEMAS RESUELTOS Y PROPUESTOS
ANGULO .-Es la abertura formado por dos rayos divergentes que tienen un extremo común que se denomina vértice. ELEMENTOS DE UN ANGULO:  LADO LADO VÉRTICE  Medida del Angulo convexo Medida del Angulo cóncavo O A B
 0º <    < 180º 0º  <     <  90º CLASIFICACIÓN SEGÚN SU MEDIDA a)  ÁNGULO CONVEXO a.1)  ÁNGULO AGUDO 
   = 90º 90º  <     <  180º a.2)  ÁNGULO RECTO a.3)  ÁNGULO OBTUSO  
         = 90º    +    = 180º CLASIFICACIÓN SEGÚN SU SUMA a)  ÁNGULOS COMPLEMENTARIOS b)  ÁNGULOS SUPLEMENTARIOS    
CLASIFICACIÓN SEGÚN SU POSICIÓN a)  ÁNGULOS ADYACENTES b)  ÁNGULOS CONSECUTIVOS ÁNGULOS OPUESTOS POR EL VÉRTICE Son congruentes Puede formar más ángulos Un lado común       
01.   Ángulos alternos internos: m   3 = m   5;  m   4 = m   6 02.   Ángulos alternos externos: m   1 = m   7;  m   2 = m   8 03.   Ángulos conjugados internos: m   3+m   6=m   4+m   5=180° 04.   Ángulos conjugados externos: m   1+m   8=m   2+m   7=180° 05.   Ángulos correspondientes: m   1 = m   5;  m   4 = m   8 m   2 = m   6;  m   3 = m   7 ÁNGULOS ENTRE DOS RECTAS PARALELAS  Y UNA RECTA SECANTE 1 2 3 4 5 6 7 8
   +     +     =  x  +  y 01.- Ángulos que se forman por una línea poligonal entre  dos rectas paralelas. PROPIEDADES  DE  LOS  ANGULOS    x y
   +     +     +     +     =  180° 02.-  ÁNGULOS ENTRE DOS RECTAS PARALELAS     
   +     = 180° 03 .- ÁNGULOS DE LADOS PERPENDICULARES  
PROBLEMAS  RESUELTOS
El complemento de la diferencia entre el suplemento y  el  complemento  de  un  ángulo  “X”  es  igual  al  duplo del complemento  del  ángulo  “X”.  Calcule la  medida del ángulo “X”. 90  -  {  (  ) - (  )  }  =  (  ) 180° - X 90° - X 90° - X 2 90° - { 180° - X - 90° + X } = 180° - 2X 90° - 90° = 180° - 2X 2X = 180° X = 90° RESOLUCIÓN Problema Nº 01 La estructura según el enunciado: Desarrollando se obtiene: Luego se reduce a:
La suma de las medidas de dos ángulos es 80° y el complemento del primer ángulo es el doble de la medida del segundo ángulo. Calcule la diferencia de las medidas de dichos ángulos. Sean los ángulos:     y      +    = 80°  Dato:    = 80° -     ( 90° -    ) = 2  Reemplazando (1) en (2): ( 90° -    ) = 2 ( 80° -    )  90° -    = 160° -2     = 10°    -    = 70°-10° = 60° Problema Nº 02 RESOLUCIÓN Dato: Diferencia de las medidas Resolviendo ( 1 ) ( 2 )    = 70°
La suma de sus complementos de dos ángulos es 130° y la diferencia de sus suplementos de los mismos ángulos es 10°.Calcule la medida dichos ángulos. Sean los ángulos:     y   ( 90° -    ) ( 90° -    ) = 130° + ( 180° -    ) ( 180° -    ) = 10° - Resolviendo: (1) y (2)    +    = 50°     -    = 10°  2   =  60°    =  30°    =  20° Problema Nº 03 RESOLUCIÓN Del enunciado: Del enunciado:    +    = 50°  ( 1 )    -    = 10°  ( 2 ) (+)
Se tienen ángulos adyacentes AOB y BOC (AOB<BOC), se traza la bisectriz OM del ángulo AOC; si los ángulos BOC y BOM miden 60° y 20°  respectivamente. Calcule la medida del ángulo AOB. De la figura:    = 60° - 20° Luego: X = 40° - 20°    = 40° X = 20° Problema Nº 04 RESOLUCIÓN A B O C M   60° 20° X
La diferencia de las medidas de dos ángulos adyacentes AOB y BOC es 30°. Calcule la medida del ángulo formado por la bisectriz del ángulo AOC con el lado OB. (    + X) (   - X) = 30º 2X=30º X = 15° Problema Nº 05 RESOLUCIÓN Construcción de la gráfica según el enunciado Del enunciado: AOB  -  OBC = 30° -   Luego se reemplaza por lo que Se observa en la gráfica A O B C   X (  - X) M
Se tiene los ángulos consecutivos AOB, BOC y COD tal que  la m  AOC = m  BOD = 90°. Calcule la medida del ángulo formado por las bisectrices de los ángulos AOB y COD. De la figura: 2   +    = 90°    + 2   = 90° 2   + 2   + 2   = 180°    +    +    = 90° X =    +    +   X = 90° Problema Nº 06 RESOLUCIÓN Construcción de la gráfica según el enunciado A C B D M N      X ( + )
Si m // n . Calcule la medida del ángulo “X” Problema Nº 07 80° 30°     X m n
2   + 2   = 80° + 30° Por la propiedad Propiedad del cuadrilátero  cóncavo Reemplazando (1) en (2) 80° = 55° + X X = 25° RESOLUCIÓN    +    = 55° (1) 80° =    +    + X (2) 80° 30°     X m n
Si m // n . Calcular la medida del ángulo “X” Problema Nº 08 5  4  65° X m n
Por la propiedad: 4   + 5   = 90°    = 10° Ángulo exterior del triángulo 40° 65° X = 40° + 65° X = 105° RESOLUCIÓN 5  4  65° X m n
Problema Nº 01 Si m // n . Calcule la medida del ángulo ”X”  2  x m n  2 
3   + 3   = 180°    +    = 60° Ángulos entre líneas poligonales X =    +     X = 60°   RESOLUCIÓN x Ángulos conjugados internos  2  x m n  2 
PROBLEMAS PROPUESTOS DE ANGULOS ENTRE PARALELAS
PROBLEMA 01.-  Si  L 1  // L 2   . Calcule  la m    x A) 10°  B) 20°  C) 30°  D) 40°  E) 50° x     4x 3x L 1 L 2
PROBLEMA 02.-   Si  m // n . Calcule  la m    x A) 18°  B) 20°  C) 30°  D) 36°  E) 48° m n 30° X
PROBLEMA 03.-   Si  m // n . Calcule  la m      A) 15°  B) 22°  C) 27°  D) 38°  E) 45° 3  3  3   m n
PROBLEMA 04.-   Si  m // n . Calcule  el valor de “x” A) 10°  B) 15°  C) 20°  D) 25°  E) 30° 40° 95°   2x m n
PROBLEMA 05.-   Calcule  la m    x A) 99°  B) 100°  C) 105°  D) 110°  E) 120° 3  6  x
PROBLEMA 06.-   Si  m // n . Calcule  la m    x A) 22°  B) 28°  C) 30°  D) 36°  E) 60°  4  4   X m n
A) 24°  B) 25°  C) 32°  D) 35°  E) 45° PROBLEMA 07.-   Si. Calcule  la m    x 88° 24° x     m n
PROBLEMA 08.-   Si  m // n . Calcule  la m    x A) 50°  B) 60°  C) 70°  D) 80°  E) 30° 20° 30° X m n
PROBLEMA 09.- Si  m//n  y   -    = 80°. Calcule la m  x  A) 60°  B) 65°  C) 70°  D) 75°  E) 80°   x   m n
PROBLEMA  10.-   Si  m // n . Calcule la m    x A) 20°  B) 30°  C) 40°  D) 50°  E) 60° x x x m n
PROBLEMA 11.-   Si  m // n . Calcule  la m      A) 46°  B) 48°  C) 50°  D) 55°  E) 60° 180°-2   2  m n
PROBLEMA 12.-   Si  m // n . Calcule  la m    x A) 30°  B) 36°  C) 40°  D) 45°  E) 50°     x 80° m n
PROBLEMA 13.-   Si  m // n . Calcule  la m    x A) 30°  B) 40°  C) 50°  D) 60°  E) 70° 80°     m n x
REPUESTAS DE LOS PROBLEMAS PROPUESTOS 20º 8. 50º 30º 9. 80º 45º 10. 30º 10º 11. 60º 120º 12. 40º 36º 13. 50º 7. 32º

Más contenido relacionado

PDF
Rmsegundobi
PPT
Angulos
DOC
ANGULO EN POSICION NORMAL II
PDF
ÁNGULOS
PDF
Semana07 angulos posicion_normal_parte_ii
DOC
SOLUCIÓN DEL I EXAMEN BIMESTRAL DE RAZONAMIENTO MATEMÁTICO DE 5° SEC.
PDF
Ii bimestre 2015 tercero vectores a4
PDF
Rmsegundobi
Angulos
ANGULO EN POSICION NORMAL II
ÁNGULOS
Semana07 angulos posicion_normal_parte_ii
SOLUCIÓN DEL I EXAMEN BIMESTRAL DE RAZONAMIENTO MATEMÁTICO DE 5° SEC.
Ii bimestre 2015 tercero vectores a4

La actualidad más candente (20)

PDF
PPT
Relaciones metricas en el triangulo
DOCX
Ficha 1 sistemas de medidas angulares
PDF
Potencias taller 2
PPTX
Planos y rectas
PPTX
Relaciones metricas en un triángulo rectángulo
PPT
ángulos teoría completa
PDF
Actividad 2 trigonometria 4 to sector circular ii 2013
PDF
ÁLGEBRA Pre San Marcos.pdf
PDF
Angulos horizontales
DOCX
Sistemas de medida angular
PDF
Líneas notables-en-el-triángulo
PDF
Semana01angulotrigonometrico 131117102923-phpapp01
PPTX
Ecuaciones de las líneas paralelas y perpendiculares
PDF
Guia de ejercicios de Inecuaciones
PPTX
Sistema de coordenadas
PDF
Cuatro operaciones(multiplicacion y división)
PPTX
Rectas y Puntos Notables en el Triángulo.pptx
DOC
Funciones ejercicios-resueltos
PDF
Tema 3 Analisis vectorial parte i tercero 2016-la
Relaciones metricas en el triangulo
Ficha 1 sistemas de medidas angulares
Potencias taller 2
Planos y rectas
Relaciones metricas en un triángulo rectángulo
ángulos teoría completa
Actividad 2 trigonometria 4 to sector circular ii 2013
ÁLGEBRA Pre San Marcos.pdf
Angulos horizontales
Sistemas de medida angular
Líneas notables-en-el-triángulo
Semana01angulotrigonometrico 131117102923-phpapp01
Ecuaciones de las líneas paralelas y perpendiculares
Guia de ejercicios de Inecuaciones
Sistema de coordenadas
Cuatro operaciones(multiplicacion y división)
Rectas y Puntos Notables en el Triángulo.pptx
Funciones ejercicios-resueltos
Tema 3 Analisis vectorial parte i tercero 2016-la
Publicidad

Similar a ANGULOS (20)

PPT
Angulos ab
PPT
Ángulos Repaso
PPT
Angulos
PPT
2.- TIPOS DE LOS ANGULOS SDFEFSAD_AB.ppt
PDF
Situaciones Geométricas Ángulos y Rectas ccesa007
PPT
Angulos jcprimera
PPT
Planos segmentos-angulos
PPT
ángulos
PPT
Angulos ab
PPT
Angulos Ab
PPT
001 angulosgeometricos-140424065027-phpapp01
PPT
001 angulos geometricos
PPTX
ángulos y paralelas
PPT
Ángulos entre paralelas
PPTX
PPT
Angulos2
PPT
Angulos ab
PPT
Ángulos Problemas
Angulos ab
Ángulos Repaso
Angulos
2.- TIPOS DE LOS ANGULOS SDFEFSAD_AB.ppt
Situaciones Geométricas Ángulos y Rectas ccesa007
Angulos jcprimera
Planos segmentos-angulos
ángulos
Angulos ab
Angulos Ab
001 angulosgeometricos-140424065027-phpapp01
001 angulos geometricos
ángulos y paralelas
Ángulos entre paralelas
Angulos2
Angulos ab
Ángulos Problemas
Publicidad

Último (20)

PDF
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
PDF
IPERC...................................
PDF
TOMO II - LITERATURA.pd plusenmas ultras
PDF
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
PDF
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
PDF
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
PDF
Unidad de Aprendizaje 5 de Educacion para el Trabajo EPT Ccesa007.pdf
PDF
Tomo 1 de biologia gratis ultra plusenmas
PPTX
Doctrina 1 Soteriologuia y sus diferente
DOCX
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
PDF
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
PDF
Esc. Sab. Lección 7. El pan y el agua de vida.pdf
PDF
Introducción a la historia de la filosofía
PDF
Unidad de Aprendizaje 5 de Matematica 2do Secundaria Ccesa007.pdf
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
PDF
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
PDF
IDH_Guatemala_2.pdfnjjjkeioooe ,l dkdldp ekooe
PDF
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
PDF
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
IPERC...................................
TOMO II - LITERATURA.pd plusenmas ultras
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
Unidad de Aprendizaje 5 de Educacion para el Trabajo EPT Ccesa007.pdf
Tomo 1 de biologia gratis ultra plusenmas
Doctrina 1 Soteriologuia y sus diferente
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
Esc. Sab. Lección 7. El pan y el agua de vida.pdf
Introducción a la historia de la filosofía
Unidad de Aprendizaje 5 de Matematica 2do Secundaria Ccesa007.pdf
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
IDH_Guatemala_2.pdfnjjjkeioooe ,l dkdldp ekooe
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf

ANGULOS

  • 1. Carmen Rosa Sánchez Tejada IE. MIGUEL CORTES
  • 2. ANGULOS TEORIA PROLEMAS RESUELTOS Y PROPUESTOS
  • 3. ANGULO .-Es la abertura formado por dos rayos divergentes que tienen un extremo común que se denomina vértice. ELEMENTOS DE UN ANGULO:  LADO LADO VÉRTICE  Medida del Angulo convexo Medida del Angulo cóncavo O A B
  • 4.  0º <  < 180º 0º <  < 90º CLASIFICACIÓN SEGÚN SU MEDIDA a) ÁNGULO CONVEXO a.1) ÁNGULO AGUDO 
  • 5. = 90º 90º <  < 180º a.2) ÁNGULO RECTO a.3) ÁNGULO OBTUSO  
  • 6.   = 90º  +  = 180º CLASIFICACIÓN SEGÚN SU SUMA a) ÁNGULOS COMPLEMENTARIOS b) ÁNGULOS SUPLEMENTARIOS    
  • 7. CLASIFICACIÓN SEGÚN SU POSICIÓN a) ÁNGULOS ADYACENTES b) ÁNGULOS CONSECUTIVOS ÁNGULOS OPUESTOS POR EL VÉRTICE Son congruentes Puede formar más ángulos Un lado común       
  • 8. 01. Ángulos alternos internos: m  3 = m  5; m  4 = m  6 02. Ángulos alternos externos: m  1 = m  7; m  2 = m  8 03. Ángulos conjugados internos: m  3+m  6=m  4+m  5=180° 04. Ángulos conjugados externos: m  1+m  8=m  2+m  7=180° 05. Ángulos correspondientes: m  1 = m  5; m  4 = m  8 m  2 = m  6; m  3 = m  7 ÁNGULOS ENTRE DOS RECTAS PARALELAS Y UNA RECTA SECANTE 1 2 3 4 5 6 7 8
  • 9. +  +  = x + y 01.- Ángulos que se forman por una línea poligonal entre dos rectas paralelas. PROPIEDADES DE LOS ANGULOS    x y
  • 10. +  +  +  +  = 180° 02.- ÁNGULOS ENTRE DOS RECTAS PARALELAS     
  • 11. +  = 180° 03 .- ÁNGULOS DE LADOS PERPENDICULARES  
  • 13. El complemento de la diferencia entre el suplemento y el complemento de un ángulo “X” es igual al duplo del complemento del ángulo “X”. Calcule la medida del ángulo “X”. 90 - { ( ) - ( ) } = ( ) 180° - X 90° - X 90° - X 2 90° - { 180° - X - 90° + X } = 180° - 2X 90° - 90° = 180° - 2X 2X = 180° X = 90° RESOLUCIÓN Problema Nº 01 La estructura según el enunciado: Desarrollando se obtiene: Luego se reduce a:
  • 14. La suma de las medidas de dos ángulos es 80° y el complemento del primer ángulo es el doble de la medida del segundo ángulo. Calcule la diferencia de las medidas de dichos ángulos. Sean los ángulos:  y   +  = 80° Dato:  = 80° -  ( 90° -  ) = 2  Reemplazando (1) en (2): ( 90° -  ) = 2 ( 80° -  ) 90° -  = 160° -2   = 10°  -  = 70°-10° = 60° Problema Nº 02 RESOLUCIÓN Dato: Diferencia de las medidas Resolviendo ( 1 ) ( 2 )  = 70°
  • 15. La suma de sus complementos de dos ángulos es 130° y la diferencia de sus suplementos de los mismos ángulos es 10°.Calcule la medida dichos ángulos. Sean los ángulos:  y  ( 90° -  ) ( 90° -  ) = 130° + ( 180° -  ) ( 180° -  ) = 10° - Resolviendo: (1) y (2)  +  = 50°  -  = 10° 2  = 60°  = 30°  = 20° Problema Nº 03 RESOLUCIÓN Del enunciado: Del enunciado:  +  = 50° ( 1 )  -  = 10° ( 2 ) (+)
  • 16. Se tienen ángulos adyacentes AOB y BOC (AOB<BOC), se traza la bisectriz OM del ángulo AOC; si los ángulos BOC y BOM miden 60° y 20° respectivamente. Calcule la medida del ángulo AOB. De la figura:  = 60° - 20° Luego: X = 40° - 20°  = 40° X = 20° Problema Nº 04 RESOLUCIÓN A B O C M   60° 20° X
  • 17. La diferencia de las medidas de dos ángulos adyacentes AOB y BOC es 30°. Calcule la medida del ángulo formado por la bisectriz del ángulo AOC con el lado OB. (  + X) (  - X) = 30º 2X=30º X = 15° Problema Nº 05 RESOLUCIÓN Construcción de la gráfica según el enunciado Del enunciado: AOB - OBC = 30° - Luego se reemplaza por lo que Se observa en la gráfica A O B C   X (  - X) M
  • 18. Se tiene los ángulos consecutivos AOB, BOC y COD tal que la m  AOC = m  BOD = 90°. Calcule la medida del ángulo formado por las bisectrices de los ángulos AOB y COD. De la figura: 2  +  = 90°  + 2  = 90° 2  + 2  + 2  = 180°  +  +  = 90° X =  +  +  X = 90° Problema Nº 06 RESOLUCIÓN Construcción de la gráfica según el enunciado A C B D M N      X ( + )
  • 19. Si m // n . Calcule la medida del ángulo “X” Problema Nº 07 80° 30°     X m n
  • 20. 2  + 2  = 80° + 30° Por la propiedad Propiedad del cuadrilátero cóncavo Reemplazando (1) en (2) 80° = 55° + X X = 25° RESOLUCIÓN  +  = 55° (1) 80° =  +  + X (2) 80° 30°     X m n
  • 21. Si m // n . Calcular la medida del ángulo “X” Problema Nº 08 5  4  65° X m n
  • 22. Por la propiedad: 4  + 5  = 90°  = 10° Ángulo exterior del triángulo 40° 65° X = 40° + 65° X = 105° RESOLUCIÓN 5  4  65° X m n
  • 23. Problema Nº 01 Si m // n . Calcule la medida del ángulo ”X”  2  x m n  2 
  • 24. 3  + 3  = 180°  +  = 60° Ángulos entre líneas poligonales X =  +  X = 60° RESOLUCIÓN x Ángulos conjugados internos  2  x m n  2 
  • 25. PROBLEMAS PROPUESTOS DE ANGULOS ENTRE PARALELAS
  • 26. PROBLEMA 01.- Si L 1 // L 2 . Calcule la m  x A) 10° B) 20° C) 30° D) 40° E) 50° x     4x 3x L 1 L 2
  • 27. PROBLEMA 02.- Si m // n . Calcule la m  x A) 18° B) 20° C) 30° D) 36° E) 48° m n 30° X
  • 28. PROBLEMA 03.- Si m // n . Calcule la m   A) 15° B) 22° C) 27° D) 38° E) 45° 3  3  3   m n
  • 29. PROBLEMA 04.- Si m // n . Calcule el valor de “x” A) 10° B) 15° C) 20° D) 25° E) 30° 40° 95°   2x m n
  • 30. PROBLEMA 05.- Calcule la m  x A) 99° B) 100° C) 105° D) 110° E) 120° 3  6  x
  • 31. PROBLEMA 06.- Si m // n . Calcule la m  x A) 22° B) 28° C) 30° D) 36° E) 60°  4  4   X m n
  • 32. A) 24° B) 25° C) 32° D) 35° E) 45° PROBLEMA 07.- Si. Calcule la m  x 88° 24° x     m n
  • 33. PROBLEMA 08.- Si m // n . Calcule la m  x A) 50° B) 60° C) 70° D) 80° E) 30° 20° 30° X m n
  • 34. PROBLEMA 09.- Si m//n y  -  = 80°. Calcule la m  x A) 60° B) 65° C) 70° D) 75° E) 80°   x   m n
  • 35. PROBLEMA 10.- Si m // n . Calcule la m  x A) 20° B) 30° C) 40° D) 50° E) 60° x x x m n
  • 36. PROBLEMA 11.- Si m // n . Calcule la m   A) 46° B) 48° C) 50° D) 55° E) 60° 180°-2   2  m n
  • 37. PROBLEMA 12.- Si m // n . Calcule la m  x A) 30° B) 36° C) 40° D) 45° E) 50°     x 80° m n
  • 38. PROBLEMA 13.- Si m // n . Calcule la m  x A) 30° B) 40° C) 50° D) 60° E) 70° 80°     m n x
  • 39. REPUESTAS DE LOS PROBLEMAS PROPUESTOS 20º 8. 50º 30º 9. 80º 45º 10. 30º 10º 11. 60º 120º 12. 40º 36º 13. 50º 7. 32º