SlideShare una empresa de Scribd logo
2
Lo más leído
3
Lo más leído
4
Lo más leído
ERROR ABSOLUTO ERROR RELATIVO Y
              APLICACIONES

Cálculo de errores: error absoluto, error relativo.
Bien sea una medida directa (la que da el aparato) o
indirecta (utilizando una fórmula) existe un tratamiento
de los errores de medida. Podemos distinguir dos tipos
de errores que se utilizan en los cálculos:
    Error absoluto.
    Es la diferencia entre el valor de la medida y el
    valor tomado como exacto. Puede ser positivo o
    negativo, según si la medida es superior al valor
    real o inferior (la resta sale positiva o negativa).
    Tiene unidades, las mismas que las de la medida.
    Error relativo. Es el cociente (la división) entre el
    error absoluto y el valor exacto. Si se multiplica
    por 100 se obtiene el tanto por ciento (%) de error.
    Al igual que el error absoluto puede ser positivo o
    negativo (según lo sea el error absoluto) porque
    puede ser por exceso o por defecto. no tiene
    unidades.




Cifras significativas.
Las cifras significativas de una medida están formas
por los dígitos que se conocen no afectados por el
error, más una última cifra sometida al error de la
medida. Así, por ejemplo, si digo que el resultado de
una medida es 3,72 m, quiero decir que serán
significativas las cifras 3, 7 y 2. Que los dígitos 3 y 7
son cifras exactas y que el dígito 2 puede ser erróneo.
O sea, el aparato de medida puede medir hasta las
centésimas de metro (centímetros), aquí es donde está
el error del aparato y de la medida. Por tanto, has de
tener en cuenta:
    Que en física y en química el número de dígitos
    con das un resultado de una medida (directa o
    indirecta) es importante. No puedes poner todos
    los dígitos que te da la calculadora. Los resultados
    no pueden ser más precisos que los datos de
    donde se obtienen, es decir, los resultados deben
    tener tantas cifras significativas o menos que los
    datos de procedencia.
    No es lo mismo 3,70 m que 3,7 m. En el primer
    caso queremos decir que se ha precisado hasta
    los centímetros mientras que en el segundo caso
    sólo hasta los decímetros.
    Un aparato de medida debería tener el error en el
    último dígito que es capaz de medir. Así si tengo
    una regla cuya escala alcanza hasta los
    milímetros, su error debería ser de más / menos
    algún milímetro. Si el error lo tuviese en los
    centímetros no tendría sentido la escala hasta los
    milímetros.
Cuando el resultado de una operación matemática nos
dé como resultado un número con demasiados dígitos
hemos de redondearlo para que el número de cifras
significativas sea coherente con los datos de
procedencia.



Cálculos con datos experimentales.
La estadística es muy importante en la Ciencias
Experimentales. Toda experiencia debería tener
detrás un estudio estadístico que nos indique
cuantos datos debemos tomar y cómo tratarlos
una vez realizada la misma.
Como se trata de iniciarte en las Ciencias
Experimentales, las reglas que vamos a adoptar
en el cálculo con datos experimentales son las
siguientes:
    Una medida se debería repetir tres ó cuatro
    veces para intentar neutralizar el error
    accidental.
    Se tomará como valor real (que se acerca al
    valor exacto) la media aritmética simple de
    los resultados.
    El error absoluto de cada medida será la
    diferencia entre cada una de las medidas y
    ese valor tomado como exacto (la media
    aritmética).
El error relativo de cada medida será el error
    absoluto de la misma dividido por el valor
    tomado como exacto (la media aritmética).
Ejemplo. Medidas de tiempo de un recorrido
efectuadas por diferentes alumnos: 3,01 s; 3,11
s; 3,20 s; 3,15 s
  1. Valor que se considera exacto:



  2.Errores absoluto y relativo de cada
    medida:
    Medidas       Errores absolutos              Errores relativos
     3,01 s   3,01 - 3,12 = - 0,11 s   -0,11 / 3,12 = - 0,036 (- 3,6%)
     3,11 s   3,11 -3,12 = - 0,01 s    -0,01 / 3,12 = - 0,003 (- 0,3%)
     3,20 s   3,20 -3,12 = + 0,08 s    +0,08 / 3,12 = + 0,026 (+ 2,6%)
     3,15 s   3,15 - 3,12 = + 0,03 s   +0,03 / 3,12 = + 0,010 (+ 1,0%)



      EL EJERCICIO DADO DE CIRO
              MARTINEZ


      1.La disparidad de los datos recogidos
        con respecto a la realidad de los
        hechos tiene un doble alcance
          a. Error absoluto
          b.Error relativo
2.Error absoluto es la cantidad de error
  cometido en unidades de dato. 8, 2.
  Etc.
  Ea = a - a

         Ea = Error absoluto

 .a´   = Observación sin errores

 .a    = El dato conocido
                 RESULTADO
                 POSITIVO
                 = POR EXCESO



               = POR DEFECTO
               RESULTADO
               NEGATIVO
.   Er = Error relativo

                 Igual a




Error absoluto por unidad
dedato exacto multiplicado por

100 PARA QUE DEVALORES
PORCENTUALES

Realice un ejercicio con el
datos más relevantes de su
proyecto

Más contenido relacionado

DOCX
Ejercicios tema 1
PDF
Mesa de fuerzas.docx
DOCX
Informe Ley de Boyle
DOC
Lab. 2 sistema masa-resorte
PPT
Primera ley de la termodinámica (continuación)
DOCX
Laboratorio rozamiento
PPTX
Producto entre vectores
DOCX
Lab Física B - Informe #8 (Calor Específico de los Sólidos)
Ejercicios tema 1
Mesa de fuerzas.docx
Informe Ley de Boyle
Lab. 2 sistema masa-resorte
Primera ley de la termodinámica (continuación)
Laboratorio rozamiento
Producto entre vectores
Lab Física B - Informe #8 (Calor Específico de los Sólidos)

La actualidad más candente (20)

PDF
Tipos de Errores en las Mediciones
PPT
Ondas mecanicas1
PDF
Tema 20 4.7 multiplicadores-de_lagrange..excelente
PDF
Problemas ondas y sonido
PDF
Problemas resueltos-cap-20-fisica-serway
PDF
Laboratorio3 segunda ley de newton
DOCX
Informe de laboratorio Física, segunda ley de Newton.
DOCX
Capitulo i. fisica ii. elasticidad
DOCX
Ejercicios campo electrico y carga puntual
PDF
Problemas de estequiometria
PPT
Ciencias Exactas Calorimetría
PDF
Diapositiva vectores 3 dimensiones
DOCX
Mesa de Fuerzas
PDF
Algunos resueltos de capítulo 13 sears
DOCX
Informe de laboratorio: Movimiento parabólico.
PPT
Cifras Significativas
DOCX
Presión hidrostática
DOCX
Informe nº2 movimiento parabólico
PPTX
Blog fisica 1
PDF
45916215 quimica-ejercicios-resueltos-soluciones-2º-bachillerato-equilibrio-q...
Tipos de Errores en las Mediciones
Ondas mecanicas1
Tema 20 4.7 multiplicadores-de_lagrange..excelente
Problemas ondas y sonido
Problemas resueltos-cap-20-fisica-serway
Laboratorio3 segunda ley de newton
Informe de laboratorio Física, segunda ley de Newton.
Capitulo i. fisica ii. elasticidad
Ejercicios campo electrico y carga puntual
Problemas de estequiometria
Ciencias Exactas Calorimetría
Diapositiva vectores 3 dimensiones
Mesa de Fuerzas
Algunos resueltos de capítulo 13 sears
Informe de laboratorio: Movimiento parabólico.
Cifras Significativas
Presión hidrostática
Informe nº2 movimiento parabólico
Blog fisica 1
45916215 quimica-ejercicios-resueltos-soluciones-2º-bachillerato-equilibrio-q...
Publicidad

Similar a Error absoluto error relativo y aplicaciones (1) (20)

PDF
Error absolut i relatiu
DOCX
Teoría de errores
DOC
Tarea nº1 análisis numérico
PDF
Calculo de errores
DOCX
Teoría de errores
PPTX
Analisis numerico error
PDF
Errores
DOC
PDF
Teoria de errores
PDF
Teoria de errores
DOCX
Analisis numerico
DOCX
Jheickson noguera teoría de errores
PPTX
Investigación Análisis Numérico - Alex Pérez
PDF
Teoria de errores presentacion pdf
DOCX
Analisis numerico
DOCX
Calculo numerico
DOCX
Manejo de errores 1
PPTX
Teoria de errores
PPTX
Analisis numerico. slideshare
Error absolut i relatiu
Teoría de errores
Tarea nº1 análisis numérico
Calculo de errores
Teoría de errores
Analisis numerico error
Errores
Teoria de errores
Teoria de errores
Analisis numerico
Jheickson noguera teoría de errores
Investigación Análisis Numérico - Alex Pérez
Teoria de errores presentacion pdf
Analisis numerico
Calculo numerico
Manejo de errores 1
Teoria de errores
Analisis numerico. slideshare
Publicidad

Más de afmejia54 (20)

PPTX
Comunicacion proceso comunicativo (2)
PPTX
Comunicación
PPTX
Drywall
PPTX
Drywall
PPTX
Drywall
PPTX
Drywall
PPTX
DRYWALL SPEED SERVICE
PPTX
LLUVIA DE IDEAS CAPÍTULOS 5 - 6
PPTX
Estrategia de la fuerza de ventas
PPTX
Lluvia de ideas
PPTX
Publicidad, promocion, relasiones publicas y merchandising
PPTX
LA INTERCREACION EN UNA EMPRESA
PPTX
La gestion de las pequeñas y medianas empresas
PPTX
Crea tu propia empresa paola herrera
PPTX
Estudio de mercado
PPT
El fenómeno de la creación de empresas en el siglo XXI
PPTX
Corporate venturing
PPT
Investigacion de mercado y sistemas de informacion
PPT
Tipod de mercado[1].diapositivaspptx
PPTX
Canales de distribucion
Comunicacion proceso comunicativo (2)
Comunicación
Drywall
Drywall
Drywall
Drywall
DRYWALL SPEED SERVICE
LLUVIA DE IDEAS CAPÍTULOS 5 - 6
Estrategia de la fuerza de ventas
Lluvia de ideas
Publicidad, promocion, relasiones publicas y merchandising
LA INTERCREACION EN UNA EMPRESA
La gestion de las pequeñas y medianas empresas
Crea tu propia empresa paola herrera
Estudio de mercado
El fenómeno de la creación de empresas en el siglo XXI
Corporate venturing
Investigacion de mercado y sistemas de informacion
Tipod de mercado[1].diapositivaspptx
Canales de distribucion

Último (20)

PDF
Lección 6 Escuela Sab. A través del mar rojo.pdf
PDF
GUIA DE: CANVA + INTELIGENCIA ARTIFICIAL
PPT
Cosacos y hombres del Este en el Heer.ppt
PDF
SESION 12 INMUNIZACIONES - CADENA DE FRÍO- SALUD FAMILIAR - PUEBLOS INDIGENAS...
PDF
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
PDF
Salvese Quien Pueda - Andres Oppenheimer Ccesa007.pdf
PDF
TRAUMA_Y_RECUPERACION consecuencias de la violencia JUDITH HERMAN
PDF
DI, TEA, TDAH.pdf guía se secuencias didacticas
PDF
Breve historia de los Incas -- Patricia Temoche [Temoche, Patricia] -- Breve ...
PDF
ciencias-1.pdf libro cuarto basico niños
PDF
biología es un libro sobre casi todo el tema de biología
PDF
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
PDF
Didactica de la Investigacion Educativa SUE Ccesa007.pdf
PDF
Híper Mega Repaso Histológico Bloque 3.pdf
PDF
Educación Artística y Desarrollo Humano - Howard Gardner Ccesa007.pdf
PDF
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
PDF
COMUNICACION EFECTIVA PARA LA EDUCACION .pdf
PDF
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
PDF
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
PPTX
caso clínico iam clinica y semiología l3.pptx
Lección 6 Escuela Sab. A través del mar rojo.pdf
GUIA DE: CANVA + INTELIGENCIA ARTIFICIAL
Cosacos y hombres del Este en el Heer.ppt
SESION 12 INMUNIZACIONES - CADENA DE FRÍO- SALUD FAMILIAR - PUEBLOS INDIGENAS...
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
Salvese Quien Pueda - Andres Oppenheimer Ccesa007.pdf
TRAUMA_Y_RECUPERACION consecuencias de la violencia JUDITH HERMAN
DI, TEA, TDAH.pdf guía se secuencias didacticas
Breve historia de los Incas -- Patricia Temoche [Temoche, Patricia] -- Breve ...
ciencias-1.pdf libro cuarto basico niños
biología es un libro sobre casi todo el tema de biología
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
Didactica de la Investigacion Educativa SUE Ccesa007.pdf
Híper Mega Repaso Histológico Bloque 3.pdf
Educación Artística y Desarrollo Humano - Howard Gardner Ccesa007.pdf
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
COMUNICACION EFECTIVA PARA LA EDUCACION .pdf
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
caso clínico iam clinica y semiología l3.pptx

Error absoluto error relativo y aplicaciones (1)

  • 1. ERROR ABSOLUTO ERROR RELATIVO Y APLICACIONES Cálculo de errores: error absoluto, error relativo. Bien sea una medida directa (la que da el aparato) o indirecta (utilizando una fórmula) existe un tratamiento de los errores de medida. Podemos distinguir dos tipos de errores que se utilizan en los cálculos: Error absoluto. Es la diferencia entre el valor de la medida y el valor tomado como exacto. Puede ser positivo o negativo, según si la medida es superior al valor real o inferior (la resta sale positiva o negativa). Tiene unidades, las mismas que las de la medida. Error relativo. Es el cociente (la división) entre el error absoluto y el valor exacto. Si se multiplica por 100 se obtiene el tanto por ciento (%) de error. Al igual que el error absoluto puede ser positivo o negativo (según lo sea el error absoluto) porque puede ser por exceso o por defecto. no tiene unidades. Cifras significativas. Las cifras significativas de una medida están formas por los dígitos que se conocen no afectados por el error, más una última cifra sometida al error de la medida. Así, por ejemplo, si digo que el resultado de
  • 2. una medida es 3,72 m, quiero decir que serán significativas las cifras 3, 7 y 2. Que los dígitos 3 y 7 son cifras exactas y que el dígito 2 puede ser erróneo. O sea, el aparato de medida puede medir hasta las centésimas de metro (centímetros), aquí es donde está el error del aparato y de la medida. Por tanto, has de tener en cuenta: Que en física y en química el número de dígitos con das un resultado de una medida (directa o indirecta) es importante. No puedes poner todos los dígitos que te da la calculadora. Los resultados no pueden ser más precisos que los datos de donde se obtienen, es decir, los resultados deben tener tantas cifras significativas o menos que los datos de procedencia. No es lo mismo 3,70 m que 3,7 m. En el primer caso queremos decir que se ha precisado hasta los centímetros mientras que en el segundo caso sólo hasta los decímetros. Un aparato de medida debería tener el error en el último dígito que es capaz de medir. Así si tengo una regla cuya escala alcanza hasta los milímetros, su error debería ser de más / menos algún milímetro. Si el error lo tuviese en los centímetros no tendría sentido la escala hasta los milímetros. Cuando el resultado de una operación matemática nos dé como resultado un número con demasiados dígitos hemos de redondearlo para que el número de cifras
  • 3. significativas sea coherente con los datos de procedencia. Cálculos con datos experimentales. La estadística es muy importante en la Ciencias Experimentales. Toda experiencia debería tener detrás un estudio estadístico que nos indique cuantos datos debemos tomar y cómo tratarlos una vez realizada la misma. Como se trata de iniciarte en las Ciencias Experimentales, las reglas que vamos a adoptar en el cálculo con datos experimentales son las siguientes: Una medida se debería repetir tres ó cuatro veces para intentar neutralizar el error accidental. Se tomará como valor real (que se acerca al valor exacto) la media aritmética simple de los resultados. El error absoluto de cada medida será la diferencia entre cada una de las medidas y ese valor tomado como exacto (la media aritmética).
  • 4. El error relativo de cada medida será el error absoluto de la misma dividido por el valor tomado como exacto (la media aritmética). Ejemplo. Medidas de tiempo de un recorrido efectuadas por diferentes alumnos: 3,01 s; 3,11 s; 3,20 s; 3,15 s 1. Valor que se considera exacto: 2.Errores absoluto y relativo de cada medida: Medidas Errores absolutos Errores relativos 3,01 s 3,01 - 3,12 = - 0,11 s -0,11 / 3,12 = - 0,036 (- 3,6%) 3,11 s 3,11 -3,12 = - 0,01 s -0,01 / 3,12 = - 0,003 (- 0,3%) 3,20 s 3,20 -3,12 = + 0,08 s +0,08 / 3,12 = + 0,026 (+ 2,6%) 3,15 s 3,15 - 3,12 = + 0,03 s +0,03 / 3,12 = + 0,010 (+ 1,0%) EL EJERCICIO DADO DE CIRO MARTINEZ 1.La disparidad de los datos recogidos con respecto a la realidad de los hechos tiene un doble alcance a. Error absoluto b.Error relativo
  • 5. 2.Error absoluto es la cantidad de error cometido en unidades de dato. 8, 2. Etc. Ea = a - a Ea = Error absoluto .a´ = Observación sin errores .a = El dato conocido RESULTADO POSITIVO = POR EXCESO = POR DEFECTO RESULTADO NEGATIVO
  • 6. . Er = Error relativo Igual a Error absoluto por unidad dedato exacto multiplicado por 100 PARA QUE DEVALORES PORCENTUALES Realice un ejercicio con el datos más relevantes de su proyecto