SlideShare a Scribd company logo
Cosmological Perturbations and
    Numerical Simulations

             Ian Huston
             Astronomy Unit


          24th March 2010


   arXiv:0907.2917, JCAP 0909:019
perturbations


       Long review: Malik & Wands 0809.4944

 Short technical review: Malik & Matravers 0804.3276
Cosmological Perturbations and Numerical Simulations
T(η, xi) = T0(η) + δT(η, xi)


               ∞     n
        i
 δT(η, x ) =              δTn(η, xi)
               n=1
                     n!

              1
ϕ = ϕ0 + δϕ1 + δϕ2 + . . .
              2
T(η, xi) = T0(η) + δT(η, xi)


               ∞     n
        i
 δT(η, x ) =              δTn(η, xi)
               n=1
                     n!

              1
ϕ = ϕ0 + δϕ1 + δϕ2 + . . .
              2
Gauges
  Background split not
  covariant
  Many possible descriptions
  Should give same physical
  answers!
Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical Simulations
First order transformation
      µ
     ξ1 = (α1, β1,i + γ1)
                       i

            ⇓
     δϕ1 = δϕ1 + ϕ0α1
Perturbed FRW metric

  g00 = −a2(1 + 2φ1) ,
  g0i = a2B1i ,
  gij = a2 [δij + 2C1ij ] .
Choosing a gauge
   Longitudinal: zero shear
   Comoving: zero 3-velocity
   Flat: zero curvature
   Uniform density: zero energy
   density
   ...
δGµν = 8πGδTµν
       ⇓
 Eqs of Motion
non-Gaussianity


  Some reviews: Chen 1002.1416, Senatore et al. 0905.3746
Sim 1




Simulations from Ligouri et al, PRD (2007)
Sim 2




Simulations from Ligouri et al, PRD (2007)
Gaussian fields:
All information in

       ζ(k1 )ζ(k2 ) = (2π)3 δ 3 (k1 + k2 )Pζ (k1 ) ,

where ζ is curvature perturbation on uniform
density hypersurfaces.

  ζ(k1 )ζ(k2 )ζ(k3 ) = 0 ,
            ζ 4 (ki ) = ζ(k1 )ζ(k2 ) ζ(k3 )ζ(k4 )
                       + ζ(k2 )ζ(k3 ) ζ(k4 )ζ(k1 )
                       + ζ(k1 )ζ(k3 ) ζ(k2 )ζ(k4 ) .
Bispectrum:
ζ(k1 )ζ(k2 )ζ(k3 ) = (2π)3 δ 3 (k1 +k2 +k3 )B(k1 , k2 , k3 )




       Local (squeezed)               Equilateral
B(k1, k2, k3)                                   fNLF (x2, x3) ,
    xi = ki/k1 ,                             1 − x2 ≤ x3 ≤ x2 .
           Local            1                                  Higher Deriv. 1
                             0.9   x2                                         0.9    x2
                               0.8                                              0.8
                                 0.7                                               0.7
                                    0.6                                               0.6
                                       0.5                                                  0.5
                                         8                                                    1
                                        6                                                    0.75
                                       4 F x2 , x3                                          0.5 F x2 , x3
                                       2                                                    0.25
                                       0                                                    0
                              0.2                                            0.4   0.2
           0.6        0.4                                0.8      0.6
1    0.8                                             1                  x3
                 x3



                                                                             Babich et al. astro-ph/0405356
WMAP7 bounds (95% CL)
                    loc
             −10 < fNL < 74



             loc
           fNL > 1
    rules out ALL single field
       inflationary models.
WMAP7 bounds (95% CL)
                    loc
             −10 < fNL < 74



             loc
           fNL > 1
    rules out ALL single field
       inflationary models.
One way of getting local fNL
           ζ(x) = ζL (x) + 3 fNL ζL (x)
                             5
                               loc 2




         ∆T         1           loc
                   − ζ,        fNL > 0
         T          5
                      ⇓
                 ∆T < ∆TL
Sim 1: fNL = 1000




Simulations from Ligouri et al, PRD (2007)
Sim 2: fNL = 0




Simulations from Ligouri et al, PRD (2007)
code():
Paper:    Huston & Malik 0907.2917, JCAP
 2nd order equations:   Malik astro-ph/0610864, JCAP
Approaches:
  δN formalism
  Moment transport equations
  Field Equations
1
ϕ = ϕ0 + δϕ1 + δϕ2
              2
i            i     2      i     2       8πG                                                2 8πG               i
δϕ2 (k ) + 2Hδϕ2 (k ) + k δϕ2 (k ) + a V,ϕϕ +                                  2ϕ0 V,ϕ + (ϕ0 )           V0    δϕ2 (k )
                                               H                                                   H
      1          3  3 3 i     i   i                       16πG            i       i        2           i       i
+               d pd qδ (k − p − q )                               Xδϕ1 (p )δϕ1 (q ) + ϕ0 a V,ϕϕ δϕ1 (p )δϕ1 (q )
    (2π)3                                                  H

     8πG        2
                         2             i       i              i       i
+                   ϕ0 2a V,ϕ ϕ0 δϕ1 (p )δϕ1 (q ) + ϕ0 Xδϕ1 (p )δϕ1 (q )
         H

          4πG       2 ϕ X
                       0              i   i       i             i       i
−2                             Xδϕ1 (k − q )δϕ1 (q ) + ϕ0 δϕ1 (p )δϕ1 (q )
          H             H
    4πG               i       i     2        8πG               i       i
+            ϕ0 δϕ1 (p )δϕ1 (q ) + a V,ϕϕϕ +     ϕ0 V,ϕϕ δϕ1 (p )δϕ1 (q )
     H                                        H

      1          3  3 3 i     i   i                        8πG      pk q k       i          i            i
+               d pd qδ (k − p − q ) 2                                     δϕ1 (p ) Xδϕ1 (q ) + ϕ0 δϕ1 (q )
    (2π)3                                                   H         q2
                                                                                        
  2 16πG       i          i                        4πG     2 ϕ
                                                               0             pi qj kj ki
+p       δϕ1 (p )ϕ0 δϕ1 (q ) +                                      p q l −              ϕ δϕ (ki − q i )ϕ δϕ (q i )
                                                                      l                     0  1            0  1
      H                                             H          H                  k2

     X       4πG        2 p q l p q m + p2 q 2
                           l     m                      i         i             i
+2                                             ϕ0 δϕ1 (p ) Xδϕ1 (q ) + ϕ0 δϕ1 (q )
     H        H                   k2 q 2

    4πG             q 2 + pl q l          i       i           l      i       i
+            4X                     δϕ1 (p )δϕ1 (q ) − ϕ0 pl q δϕ1 (p )δϕ1 (q )
     H                  k2

     4πG        pl q l pm q m
                2 ϕ
                    0                  i             i             i        i
+                              Xδϕ1 (p ) + ϕ0 δϕ1 (p ) Xδϕ1 (q ) + ϕ0 δϕ1 (q )
         HH         p2 q 2
                                                                         
  ϕ0       pl q l + p2 2        i       i    q 2 + pl q l       i       i
+    8πG               q δϕ1 (p )δϕ1 (q ) −              δϕ1 (p )δϕ1 (q )
  H             k2                               k2

                         4πG       2 kj k         pi pj
                                          i                       i             i         i
                    +                         2            Xδϕ1 (p ) + ϕ0 δϕ1 (p ) Xδϕ1 (q )             = 0
                          H           k2           p2
Single field slow roll
Single field full equation
Multi-field calculation
δϕ1(q i)δϕ1(k i − q i)d3q
code():
   1000+ k modes
   python & numpy
   parallel
Four potentials
           ×10−9
     3.0
                                      V (ϕ) = 1 m2 ϕ2
                                              2

     2.8                              V (ϕ) = 1 λϕ4
                                              4
                                                 2
                                      V (ϕ) =σϕ 3
     2.6                              V (ϕ) = U0 + 1 m2 ϕ2
                                                   2 0
   PR1




     2.4
    2




     2.2


     2.0


     1.8 −61
      10           10−60      10−59           10−58
                           k/MPL
Source term
        10−1
                             V (ϕ) = 1 m2 ϕ2
                                     2

                             V (ϕ) = 1 λϕ4
                                     4
                                        2
        10−5                 V (ϕ) =σϕ 3
                             V (ϕ) = U0 + 1 m2 ϕ2
                                          2 0
  |S|




        10−9




    10−13




    10−17
               0   10   20     30        40         50   60
                              N − N init
Second order perturbation
                   ×10−95
               4

               3

               2

               1
 √1 k 2 δϕ2




               0
      3

  2π




              −1

              −2

              −3

              −4
                            64   63           62   61
                                      Nend − N
Future Plans:
   Full single field equation
   Multi field equation
   Vector & Vorticity similarities
   Rework code for efficiency
Summary:
  Perturbations seed structure
  2nd order needed for fNL
  Numerically intensive calculation
kmax
 IA (k) =   dq 3 δϕ1 (q i )δϕ1 (k i − q i ) = 2π           dq q 2 δϕ1 (q i )A(k i , q i ) ,
                                                   kmin


                              √      √                            √           √
           πα2            kmax − k + kmax                           k + kmax + kmax
IA (k) = −     3k 3 log         √                           + log √           √
           18k                    k                                 kmin + k + kmin
                                √
                  π               kmin
                 + − arctan √
                  2             k − kmin

                 −     kmax       3k 2 + 8kmax
                                           2
                                                      k + kmax −            kmax − k


                       + 14kkmax         k + kmax +          kmax − k


                 +     kmin     3k 2 + 8kmin
                                         2
                                                      k + kmin +          k − kmin


                       + 14kkmin         k + kmin −          k − kmin           .
10−6



         10−7
   rel




         10−8



         10−9

                           k ∈ K1
              −10
                           k ∈ K2
         10
                           k ∈ K3
                         −61
                    10              10−60    10−59    10−58   10−57
                                            k/MPL




K1 = 1.9 × 10−5 , 0.039 Mpc−1 ,                      ∆k = 3.8 × 10−5 Mpc−1 ,
K2 = 5.71 × 10−5 , 0.12 Mpc−1 ,                      ∆k = 1.2 × 10−4 Mpc−1 ,
K3 = 9.52 × 10−5 , 0.39 Mpc−1 ,                      ∆k = 3.8 × 10−4 Mpc−1 .

More Related Content

PDF
Formulario de calculo
PDF
YSC 2013
PDF
R. Jimenez - Fundamental Physics from Astronomical Observations
PDF
Cosmin Crucean: Perturbative QED on de Sitter Universe.
PDF
KEY
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
PDF
A Review of Proximal Methods, with a New One
PDF
Principal component analysis and matrix factorizations for learning (part 3) ...
Formulario de calculo
YSC 2013
R. Jimenez - Fundamental Physics from Astronomical Observations
Cosmin Crucean: Perturbative QED on de Sitter Universe.
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
A Review of Proximal Methods, with a New One
Principal component analysis and matrix factorizations for learning (part 3) ...

What's hot (20)

PDF
International Journal of Engineering Research and Development (IJERD)
PDF
Lista exercintegrais
PDF
Stuff You Must Know Cold for the AP Calculus BC Exam!
PDF
Andreas Eberle
PDF
11.on generalized dislocated quasi metrics
PDF
On generalized dislocated quasi metrics
PDF
Metric Embeddings and Expanders
PDF
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
PDF
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
PDF
Introduction to inverse problems
DOC
Design &amp; Simulation of Cargo Stabilization System
PDF
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
PDF
Reflect tsukuba524
PDF
Image denoising
PDF
Quantitative norm convergence of some ergodic averages
PDF
Levy processes in the energy markets
PDF
CPSC 125 Ch 1 sec 4
PDF
Lecture13
PDF
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
International Journal of Engineering Research and Development (IJERD)
Lista exercintegrais
Stuff You Must Know Cold for the AP Calculus BC Exam!
Andreas Eberle
11.on generalized dislocated quasi metrics
On generalized dislocated quasi metrics
Metric Embeddings and Expanders
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
Introduction to inverse problems
Design &amp; Simulation of Cargo Stabilization System
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
Reflect tsukuba524
Image denoising
Quantitative norm convergence of some ergodic averages
Levy processes in the energy markets
CPSC 125 Ch 1 sec 4
Lecture13
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
Ad

Viewers also liked (7)

PPT
Introduction to cosmology and numerical cosmology (with the Cactus code) (2/2)
PDF
The Elementary Particles
PPT
Mesons
PPT
Overview of GTR and Introduction to Cosmology
PPTX
Cosmology,bigbang and dark energy
PPT
Cosmology
ODP
Physics Ppt
Introduction to cosmology and numerical cosmology (with the Cactus code) (2/2)
The Elementary Particles
Mesons
Overview of GTR and Introduction to Cosmology
Cosmology,bigbang and dark energy
Cosmology
Physics Ppt
Ad

Similar to Cosmological Perturbations and Numerical Simulations (20)

PDF
Bayesian inference on mixtures
PDF
Holographic Cotton Tensor
PDF
Chapter 16
PDF
E6 GUT Model and the Higgs boson search
PDF
16.40 o10 d wiltshire
PDF
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
PDF
Lecture6 svdd
PPTX
State equations model based on modulo 2 arithmetic and its applciation on rec...
PPTX
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
PDF
Instantons and Chern-Simons Terms in AdS4/CFT3
PDF
Engr 371 final exam april 2010
PDF
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
PDF
Signal Processing Course : Wavelets
PDF
Second Order Perturbations During Inflation Beyond Slow-roll
PDF
calculo vectorial
PDF
NIPS2010: optimization algorithms in machine learning
PDF
Number theory lecture (part 2)
PDF
Fast parallelizable scenario-based stochastic optimization
PDF
Non standard
PDF
Crib Sheet AP Calculus AB and BC exams
Bayesian inference on mixtures
Holographic Cotton Tensor
Chapter 16
E6 GUT Model and the Higgs boson search
16.40 o10 d wiltshire
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
Lecture6 svdd
State equations model based on modulo 2 arithmetic and its applciation on rec...
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
Instantons and Chern-Simons Terms in AdS4/CFT3
Engr 371 final exam april 2010
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
Signal Processing Course : Wavelets
Second Order Perturbations During Inflation Beyond Slow-roll
calculo vectorial
NIPS2010: optimization algorithms in machine learning
Number theory lecture (part 2)
Fast parallelizable scenario-based stochastic optimization
Non standard
Crib Sheet AP Calculus AB and BC exams

More from Ian Huston (10)

PDF
CFSummit: Data Science on Cloud Foundry
PDF
Cloud Foundry for Data Science
PDF
Python on Cloud Foundry
PDF
Data Science Amsterdam - Massively Parallel Processing with Procedural Languages
PDF
Massively Parallel Processing with Procedural Python (PyData London 2014)
PDF
Driving the Future of Smart Cities - How to Beat the Traffic (Pivotal talk at...
PDF
Calculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
PDF
Second Order Perturbations - National Astronomy Meeting 2011
PDF
Inflation as a solution to the problems of the Big Bang
PDF
Cosmo09 presentation
CFSummit: Data Science on Cloud Foundry
Cloud Foundry for Data Science
Python on Cloud Foundry
Data Science Amsterdam - Massively Parallel Processing with Procedural Languages
Massively Parallel Processing with Procedural Python (PyData London 2014)
Driving the Future of Smart Cities - How to Beat the Traffic (Pivotal talk at...
Calculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
Second Order Perturbations - National Astronomy Meeting 2011
Inflation as a solution to the problems of the Big Bang
Cosmo09 presentation

Recently uploaded (20)

PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Approach and Philosophy of On baking technology
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Big Data Technologies - Introduction.pptx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
Per capita expenditure prediction using model stacking based on satellite ima...
Digital-Transformation-Roadmap-for-Companies.pptx
Network Security Unit 5.pdf for BCA BBA.
Approach and Philosophy of On baking technology
Chapter 3 Spatial Domain Image Processing.pdf
Big Data Technologies - Introduction.pptx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Building Integrated photovoltaic BIPV_UPV.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Review of recent advances in non-invasive hemoglobin estimation
NewMind AI Weekly Chronicles - August'25 Week I
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Reach Out and Touch Someone: Haptics and Empathic Computing

Cosmological Perturbations and Numerical Simulations

  • 1. Cosmological Perturbations and Numerical Simulations Ian Huston Astronomy Unit 24th March 2010 arXiv:0907.2917, JCAP 0909:019
  • 2. perturbations Long review: Malik & Wands 0809.4944 Short technical review: Malik & Matravers 0804.3276
  • 4. T(η, xi) = T0(η) + δT(η, xi) ∞ n i δT(η, x ) = δTn(η, xi) n=1 n! 1 ϕ = ϕ0 + δϕ1 + δϕ2 + . . . 2
  • 5. T(η, xi) = T0(η) + δT(η, xi) ∞ n i δT(η, x ) = δTn(η, xi) n=1 n! 1 ϕ = ϕ0 + δϕ1 + δϕ2 + . . . 2
  • 6. Gauges Background split not covariant Many possible descriptions Should give same physical answers!
  • 9. First order transformation µ ξ1 = (α1, β1,i + γ1) i ⇓ δϕ1 = δϕ1 + ϕ0α1
  • 10. Perturbed FRW metric g00 = −a2(1 + 2φ1) , g0i = a2B1i , gij = a2 [δij + 2C1ij ] .
  • 11. Choosing a gauge Longitudinal: zero shear Comoving: zero 3-velocity Flat: zero curvature Uniform density: zero energy density ...
  • 12. δGµν = 8πGδTµν ⇓ Eqs of Motion
  • 13. non-Gaussianity Some reviews: Chen 1002.1416, Senatore et al. 0905.3746
  • 14. Sim 1 Simulations from Ligouri et al, PRD (2007)
  • 15. Sim 2 Simulations from Ligouri et al, PRD (2007)
  • 16. Gaussian fields: All information in ζ(k1 )ζ(k2 ) = (2π)3 δ 3 (k1 + k2 )Pζ (k1 ) , where ζ is curvature perturbation on uniform density hypersurfaces. ζ(k1 )ζ(k2 )ζ(k3 ) = 0 , ζ 4 (ki ) = ζ(k1 )ζ(k2 ) ζ(k3 )ζ(k4 ) + ζ(k2 )ζ(k3 ) ζ(k4 )ζ(k1 ) + ζ(k1 )ζ(k3 ) ζ(k2 )ζ(k4 ) .
  • 17. Bispectrum: ζ(k1 )ζ(k2 )ζ(k3 ) = (2π)3 δ 3 (k1 +k2 +k3 )B(k1 , k2 , k3 ) Local (squeezed) Equilateral
  • 18. B(k1, k2, k3) fNLF (x2, x3) , xi = ki/k1 , 1 − x2 ≤ x3 ≤ x2 . Local 1 Higher Deriv. 1 0.9 x2 0.9 x2 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 8 1 6 0.75 4 F x2 , x3 0.5 F x2 , x3 2 0.25 0 0 0.2 0.4 0.2 0.6 0.4 0.8 0.6 1 0.8 1 x3 x3 Babich et al. astro-ph/0405356
  • 19. WMAP7 bounds (95% CL) loc −10 < fNL < 74 loc fNL > 1 rules out ALL single field inflationary models.
  • 20. WMAP7 bounds (95% CL) loc −10 < fNL < 74 loc fNL > 1 rules out ALL single field inflationary models.
  • 21. One way of getting local fNL ζ(x) = ζL (x) + 3 fNL ζL (x) 5 loc 2 ∆T 1 loc − ζ, fNL > 0 T 5 ⇓ ∆T < ∆TL
  • 22. Sim 1: fNL = 1000 Simulations from Ligouri et al, PRD (2007)
  • 23. Sim 2: fNL = 0 Simulations from Ligouri et al, PRD (2007)
  • 24. code(): Paper: Huston & Malik 0907.2917, JCAP 2nd order equations: Malik astro-ph/0610864, JCAP
  • 25. Approaches: δN formalism Moment transport equations Field Equations
  • 26. 1 ϕ = ϕ0 + δϕ1 + δϕ2 2
  • 27. i i 2 i 2 8πG 2 8πG i δϕ2 (k ) + 2Hδϕ2 (k ) + k δϕ2 (k ) + a V,ϕϕ + 2ϕ0 V,ϕ + (ϕ0 ) V0 δϕ2 (k ) H H 1 3 3 3 i i i 16πG i i 2 i i + d pd qδ (k − p − q ) Xδϕ1 (p )δϕ1 (q ) + ϕ0 a V,ϕϕ δϕ1 (p )δϕ1 (q ) (2π)3 H 8πG 2 2 i i i i + ϕ0 2a V,ϕ ϕ0 δϕ1 (p )δϕ1 (q ) + ϕ0 Xδϕ1 (p )δϕ1 (q ) H 4πG 2 ϕ X 0 i i i i i −2 Xδϕ1 (k − q )δϕ1 (q ) + ϕ0 δϕ1 (p )δϕ1 (q ) H H 4πG i i 2 8πG i i + ϕ0 δϕ1 (p )δϕ1 (q ) + a V,ϕϕϕ + ϕ0 V,ϕϕ δϕ1 (p )δϕ1 (q ) H H 1 3 3 3 i i i 8πG pk q k i i i + d pd qδ (k − p − q ) 2 δϕ1 (p ) Xδϕ1 (q ) + ϕ0 δϕ1 (q ) (2π)3 H q2   2 16πG i i 4πG 2 ϕ 0 pi qj kj ki +p δϕ1 (p )ϕ0 δϕ1 (q ) + p q l −  ϕ δϕ (ki − q i )ϕ δϕ (q i ) l 0 1 0 1 H H H k2 X 4πG 2 p q l p q m + p2 q 2 l m i i i +2 ϕ0 δϕ1 (p ) Xδϕ1 (q ) + ϕ0 δϕ1 (q ) H H k2 q 2 4πG q 2 + pl q l i i l i i + 4X δϕ1 (p )δϕ1 (q ) − ϕ0 pl q δϕ1 (p )δϕ1 (q ) H k2 4πG pl q l pm q m 2 ϕ 0 i i i i + Xδϕ1 (p ) + ϕ0 δϕ1 (p ) Xδϕ1 (q ) + ϕ0 δϕ1 (q ) HH p2 q 2   ϕ0 pl q l + p2 2 i i q 2 + pl q l i i + 8πG  q δϕ1 (p )δϕ1 (q ) − δϕ1 (p )δϕ1 (q ) H k2 k2 4πG 2 kj k pi pj i i i i + 2 Xδϕ1 (p ) + ϕ0 δϕ1 (p ) Xδϕ1 (q ) = 0 H k2 p2
  • 28. Single field slow roll Single field full equation Multi-field calculation
  • 29. δϕ1(q i)δϕ1(k i − q i)d3q
  • 30. code(): 1000+ k modes python & numpy parallel
  • 31. Four potentials ×10−9 3.0 V (ϕ) = 1 m2 ϕ2 2 2.8 V (ϕ) = 1 λϕ4 4 2 V (ϕ) =σϕ 3 2.6 V (ϕ) = U0 + 1 m2 ϕ2 2 0 PR1 2.4 2 2.2 2.0 1.8 −61 10 10−60 10−59 10−58 k/MPL
  • 32. Source term 10−1 V (ϕ) = 1 m2 ϕ2 2 V (ϕ) = 1 λϕ4 4 2 10−5 V (ϕ) =σϕ 3 V (ϕ) = U0 + 1 m2 ϕ2 2 0 |S| 10−9 10−13 10−17 0 10 20 30 40 50 60 N − N init
  • 33. Second order perturbation ×10−95 4 3 2 1 √1 k 2 δϕ2 0 3 2π −1 −2 −3 −4 64 63 62 61 Nend − N
  • 34. Future Plans: Full single field equation Multi field equation Vector & Vorticity similarities Rework code for efficiency
  • 35. Summary: Perturbations seed structure 2nd order needed for fNL Numerically intensive calculation
  • 36. kmax IA (k) = dq 3 δϕ1 (q i )δϕ1 (k i − q i ) = 2π dq q 2 δϕ1 (q i )A(k i , q i ) , kmin √ √ √ √ πα2 kmax − k + kmax k + kmax + kmax IA (k) = − 3k 3 log √ + log √ √ 18k k kmin + k + kmin √ π kmin + − arctan √ 2 k − kmin − kmax 3k 2 + 8kmax 2 k + kmax − kmax − k + 14kkmax k + kmax + kmax − k + kmin 3k 2 + 8kmin 2 k + kmin + k − kmin + 14kkmin k + kmin − k − kmin .
  • 37. 10−6 10−7 rel 10−8 10−9 k ∈ K1 −10 k ∈ K2 10 k ∈ K3 −61 10 10−60 10−59 10−58 10−57 k/MPL K1 = 1.9 × 10−5 , 0.039 Mpc−1 , ∆k = 3.8 × 10−5 Mpc−1 , K2 = 5.71 × 10−5 , 0.12 Mpc−1 , ∆k = 1.2 × 10−4 Mpc−1 , K3 = 9.52 × 10−5 , 0.39 Mpc−1 , ∆k = 3.8 × 10−4 Mpc−1 .