SlideShare a Scribd company logo
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
DOI : 10.5121/ijcnc.2016.8212 133
A JOINT TIMING OFFSET AND CHANNEL
ESTIMATION USING FRACTIONAL FOURIER
TRANSFORM AND CAZAC SEQUENCES
Cherif Rezgui and Khaled Grayaa
Communication Systems Lab, National School of Engineers of Tunis (ENIT), Tunisia
ABSTRACT
This paper deals with symbol timing offset and channel estimation in OFDM (orthogonal frequency
division multiplexing) system in fast varying channel. Symbol timing offset (STO) estimation is a major task
in OFDM. Most of existing methods for estimating STO used cyclic prefix or training sequences. In this
paper, we consider a new system for STO estimation using constant amplitude zero autocorrelation
(CAZAC) sequences as pilot sequences in conjunction with fractional Fourier transform (FRFT). After STO
estimation is done, timing compensation is made. Thereafter, channel is estimated to well recover the
original transmitted signal. This method gives good results in terms of MSE in comparison with other
known techniques, it estimated well the channel and it is important for fast varying channel. MATLAB
Monte-Carlo simulations are used to evaluate the performance of the proposed estimator.
KEYWORDS
OFDM, STO, FRFT, CAZAC sequences, MSE, LS, MMSE, SNR
1. INTRODUCTION
Multicarrier modulations are increasingly used in various telecommunication systems such as in
Digital Audio Broadcasting (DAB), Digital Video Broadcasting Terrestrial (DVBT), digital
broadband communications, Long Term Evolution (LTE), WiMAX,... The principle of OFDM is
to divide, on a wide number of subcarriers, the digital signal that is to be transmitted. In wireless
systems, transmitted data reaches to receivers after transit through a radio channel. For
conventional coherent receivers, the effect of channel on transmitted signal must be estimated to
recover transmitted data.
In so far as the receiver estimates exactly how the channel changes the transmitted signal, it can
recover sent data. The signal is spread in frequency, time, and angle; therefore, the received signal
suffers from the impact of these spreads on transmitted signal.
IFFT and FFT are basic functions necessary for modulation and demodulation in the OFDM
systems. To take the N Point FFT at the receiver, it is necessary that exact samples of transmitted
information for the OFDM symbol period. In other terms, symbol synchronization must be
carried out in order to detect the starting point of each OFDM symbol (after removing CP), which
facilitates obtaining the exact samples. Therefore, STO must be estimated by the receiver.
Estimated STO is then compensated witch called timing synchronization. Timing synchronization
is one of the major challenges of OFDM system. Imperfect synchronization destroys the
orthogonality of sub-carriers and deteriorates the performance of OFDM system. Timing
synchronization consists of symbol timing offset estimation and correction. Many techniques are
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
134
used literature to compensate this STO, using cyclic prefix or training sequences as preamble.
After synchronization is done, the OFDM channel is estimated in order to best recover the
transmitted symbols. OFDM channel estimator uses different techniques such as LS with different
type of interpolation and MMSE with many variant. In this paper, we propose a receiver with
timing synchronization and channel estimation based on fractional Fourier transform and
Constant Amplitude Zero Auto-Correlation (CAZAC) as pilot sequences.
The remainder of this paper is organized as follows. In section 2, we introduce OFDM signal and
the effect of STO. In section 3, we introduce some techniques used in the literature estimating
STO. Section 4 studies the most used channel estimation techniques and gives comparison
between them. Then, we present Fractional Fourier Transform in section 5. Thereafter, Section 6
shows the proposed method. Finally, Section 7 shows the performance of this technique in terms
of MSE. Conclusion is given in the last section.
2. OFDM AND EFFECT OF STO
OFDM is a multicarrier modulation technique which divides the transmission band into N several
sub-channels that are transmitted in parallel. Compared to the single-carrier modulation,the
OFDM symbols have a relatively long duration, but a narrow bandwidth. Accordingly, the
OFDM is more robust to the multipath channel dispersion, ensuring the frequency selectivity of
the mobile radio channel resistance. The OFDM symbol is defined as {Xn; n = 0; 1; ... ;N-1}. The
OFDM signal is as follows:
(1)
Where j = √-1, ∆f is spacing between, l the lth
OFDM symbol and NT is data block period. The
subcarriers in OFDM system are supposed to be orthogonal to each other. In order to correctly
demodulate an OFDM symbol at the receiver using N point DFT, it is very important to take
exact samples of transmitted OFDM symbol. The correct starting point of DFT window is needed
to preserve the orthogonality among the sub-carriers. OFDM systems present many advantages in
comparison with single carrier system however all these advantages can be relevant only when
the orthogonality among sub-carriers is kept. If one DFT window takes sample of two different
OFDM symbol generating ICI and ISI. Table 1 shows the effect of timing offset in the received
signal in time and frequency domain. Channel effects and noise are neglected for simplicity.
The presence of STO in the time domain causes phase offset of 2πkd/N in the frequency domain.
This phase offset is proportional to the subcarrier index k as well as the STO δ, Table 1.
Table 1: The effect of STO on the received signal, [1]
Received signal Effect of STO δ on the received signal
Time-domain signal y(n) x(n + δ)
Frequency-domain signal Y (k) ej2πkδ
/N X(k)
Four possible cases may occur, Figure 1.
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
135
Case I: No timing error is presented in this case (i.e. timing offset δ = 0). That is the case that
estimated starting point of the OFDM symbol coincides with the exact time, preserving the
orthogonality among sub-carriers, so the OFDM symbol can be perfectly left without any type of
interference.
Figure 1: Four different cases symbol starting point subject to STO.
Case II: That is the case that the estimated starting point of the OFDM symbol before the exact
point, but after the end of the (displaced) channel response of the precedent OFDM symbol. In
that case the ith
symbol not overlapped with the preceding (i-1) th
OFDM symbol, that is, without
incurring ISI by the preceding symbol in such cases. The received signal after passing through
FFT block time- domain received samples , given as:
(2)
The term in equation 2 indicates that the orthogonality between the subcarriers of the frequency
components can be fully preserved. However, there is a phase offset. This phase offset leads to
rotation of signal constellation around the origin.
Case III: This case occurs when starting point of the OFDM symbol is estimated exist prior to
the end of the (displaced) channel response of the previous OFDM symbol and thus the symbol
synchronization is too soon to avoid the ISI. In that case the orthogonality between the
components of subcarrier is destroyed by the ISI (the previous symbol) and furthermore, ICI
occurs.
Case IV: That is the case if the starting point of the OFDM symbol is estimated just after the
exact time. In this case, the samples for current FFT operation interval is consists of a part of the
current OFDM symbol xl(n) and a part of the following OFDM symbol xl+ 1 (n).
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
136
As illustrated, an STO can lead not only to phase distortion, but also ISI in OFDM systems.
Therefore, timing synchronization must be done at the receiver. Synchronization task is
composed by STO estimation and compensation. Generally, the STO estimation can be used
either in the time or frequency domain.
3. RELATED WORK FOR ESTIMATING STO
Many techniques in the literature are implemented using whether cyclic prefix or training
sequence. As an example of estimating STO using cyclic prefix is done by Tourtier, P.J.,
Monnier, R., and Lopez, P. [2].
Figure 2: STO estimation technique using double sliding windows.
The estimated STO is done by:
(3)
Another technique used in [3]. It consists on minimizing the squared difference between a NG
sample block (seized in window W1) and conjugate of another NG sample block (seized in
window W2).
(4)
Estimation techniques using training sequences are presented in Figure 3:
Figure 3: STO estimation using the repetitive training symbol, (period = Tsub/2).
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
137
In this case, STO is estimated as, [4] and [5]:
(5)
In this paper, STO is estimated in frequency domain. As discussed in case II, the received signal
suffers from a phase rotation, Figure 4:
Figure 4 : Effect of STO in frequency domain
STO is estimated as:
(6)
Where is defined as:
(7)
4. CHANNEL ESTIMATION
Channel estimation techniques for OFDM systems can be divided into two major
groups: blind and non-blind. Methods for blind channel estimation exploit the statistical behavior
from the received signals and require a lot of data. Therefore, they suffer from serious
performance degradation in fast fading channels. Moreover, in the non-blind channel estimation
methods, information from precedent channel estimates or a portion of the transmitted signal is
present to the receiver to be used for channel estimation. In the data aided channel estimation,
known data by the receiver is inserted into the OFDM symbols so the actual channel can be
estimated. Two techniques are commonly used: sending known information over one or more
OFDM symbols with no data being sent (called channel estimation with training symbols), or
sending known information together with the data (called pilots aided channel estimation).
In this paper, we are interested in pilots aided channel estimation, so we will explain in detail this
technique with different methods. In the pilots aided channel estimation, the pilots are
multiplexed with the data. For time domain estimation, the CIR (Channel Impulse Response) is
estimated first. The estimate of the CIR is then passed through a FFT operation to get the channel
at each subcarrier for the equalization in frequency domain. For frequency domain estimation, the
channel at each pilot is estimated, and then these estimates are interpolated via different methods.
Different type of arrangement of pilots is done: block type and comb type. In this paper, we are
interested in comb pilot arrangement.
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
138
Figure 5: Pilot Arrangement for Channel estimation.
We consider Np pilot signals, equi-spaced with spacing Nps , are inserted into X, where Nps =
N/Np. Receiver knows the locations of pilots P = [Pk]T
(k=0,1,...,Np-1), the pilot value XP
=[Xk
P
]T
and Y the received signal, [7].
Many techniques used to estimate OFDM channel. The most known are Least Square (LS) and
minimum mean square error (MMSE).
4.1. LS
Least square method calculates channel response at pilot subcarriers HP
as follows:
(8)
The task here is to estimate the channel conditions at the data subcarriers (specified by H with
length N), given the LS estimates at pilot subcarriers , received signal Y.
4.2. MMSE
The MMSE estimator employs the second-order statistics of the channel conditions to minimize
the mean-square error.
(9)
Where is the cross-correlation matrix between the true channel vector and temporary channel
estimate vector in the frequency domain and σn
2
/ σx
2
is the inverse of the SNR.
To estimate channel in data subcarrier, we need interpolation technique. In the literature, many
interpolation techniques are implemented. We explain two of them Linear and second order
interpolation [8].
Linear interpolation: The estimated channel response at the data-carrier k, mL < k < (m + 1)L is
given by :
(10)
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
139
Second Order Interpolation: The estimated channel response is given by:
(11)
Where
Other interpolation techniques are listed in [10] such as Low-pass interpolation, spline cubic
interpolation, time domain interpolation...
5. FRACTIONAL FOURIER TRANSFORM (FRFT)
The fractional Fourier Transform is a generalisation of the Fourier Transform. The FRFT
of a signal s(t) is defined as follows :
Where p is a real number known as FRFT order, α=pπ/2 is the angle of FRFT, and Kα(t,u)
is the kernel of FRFT:
Fractional Fourier Transform could be seen as a projection of the signal on an axis which forms
an angle α with the time axis: a rotation in the time-frequency plane that generalizes FFT. “The
FRFT gives great satisfactions in many signals processing applications such optical
communications, signal filtering and also beam forming for fading channels”, [9]. Multicarrier
modulation that uses traditional Fourier Trans form attempts a frequency windowing of
bandwidth. The effect of the time-invariant channel distortions can be compensated for by
subchannel-by-subchannel basis single-tap frequency domain equalizers. Consequently, the
overall traditional multicarrier system can be seen as an optimal Fourier-domain filter. However,
when channel is time-varying, traditional multicarrier system loses optimality since ideal
recovery operator is mostly time-variant. This means that it cannot be employed in the
conventional Fourier domain and is the reason motivating the use of fractional Fourier transform
based technique.
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
140
6. PROPOSED METHOD
This section deals with the proposed method. A conventional OFDM system is used but
Fractional Fourier Transform FRFT block is used instead of classical FFT. We use CAZAC
sequences as pilot sequences. The pilot sequences are inserted in combo-type mode. The Timing
Offset estimation is done in frequency domain. After STO estimation, compensation is done in
time domain. After channel estimation is used in order to best recover the transmitted signal. LS
with DFT channel estimator is used with linear interpolation. The DFT-based channel estimation
technique has been derived to improve the performance of LS or MMSE channel estimation by
eliminating the effect of noise outside the maximum channel delay, [1]. The DFT block diagram
is shown in figure 6.
Figure 6 : DFT-based channel estimation.
CAZAC sequences used in this paper are defined as :
(12)
Where Nps and Np are pilot spacing and number of pilotsequences respectively in OFDM symbol.
The OFDM basic system of the proposed method is presented in figure 7.
Figure 7: OFDM system of the proposed method.
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
141
Where timing synchronization block is represented in figure 8.
Figure 8: STO synchronization block
7. SIMULATIONS RESULTS AND DISCUSSION
Parameters of simulation for the proposed method are listed in Table 2.
Table 2: The parameters for simulation.
Modulation 16 QAM
Number of sub-carrier 128
Cyclic Prefix Length (Ng) 32
Pilot sequences CAZAC sequences
Number of Bits per Symbol 4
Pilot Spacing (Nps) 4
STO -3
Number of iteration 100
Signal to Noise Ratio (SNR) range 0:30
Figure 9 shows the Mean Square Error (MSE) of the Carrier Frequency Offset (STO) of the
OFDM system using Fractional Fourier Transform and CAZAC sequences. This figure shows
attractive results of the proposed system in terms of MSE by comparison to competitive systems
such as Schmidl and Cox[5], Shi and Serpedin [6] methods. Simulation also proves the effect of
fractional Fourier transform in comparison with classical Fourier transform. This method is useful
in fast varying channel that varies from OFDM symbol to another and does not decrease much the
useful throughput in comparison with the methods using training sequences. The proposed
method shows attractive results compared to GR method proposed by G. Ren, Y. Chang, and H.
Zhang, [11] and better results than the one done by A.P. Rathkanthiwar and A.S.Gandhi, [12].
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
142
For SNR equal to 15 dB, the proposed method shows a gain ratio in comparison with Shi &
Serpedin method equal to 20dB.
Figure 9: MSE of STO estimation for proposed method compared to known
method: Schmidl and Cox, Shi and Serpedin.
Figure 10: Real channel vs estimated channel for the proposed method for SNR = 15 dB.
Figure 11: MSE of LSE channel estimation theory and simulation.
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
143
It is shown in figure 10 and figure 11 that our method gives attractive results. The estimated
channel is nearly to real channel. The MSE of LSE of the proposed method is almost the
theoretical one which gives the proposed method a good candidate for both Symbol Timing
Offset and channel estimation.
8. CONCLUSIONS
This paper proposes new symbol timing offset (STO) and channel estimation method that uses
CAZAC sequences as pilot sequences in conjunction with Fractional Fourier Transform. The
main design criterion of this method is to exploit the well-known efficiency of both CAZAC
sequences and FRFT in reducing MSE of STO of the designed system. The system also gives
good results for channel estimation in comparison with the real one. The system we designed
shows attractive performance and stands useful for mobile fast varying channels.
REFERENCES
[1] Cho, Y.S., Kim J., Yang, W.Y. and Kang C. G., ”MIMO-OFDM wireless communications with
MATLAB”, John Wiley and Sons, Asia, IEEE Press, 2010, pp.153-161.
[2] Tourtier, P.J., Monnier, R., and Lopez, P. ”Multicarrier modem for digital HDTV terrestrial
broadcasting” .Signal Process., 5(5), 379403, 1993.
[3] Speth,M., Classen, F., and Meyr,H. ”Frame synchronization of OFDM systems in frequency selective
fading channels”. IEEE VTC97, pp.18071811, 1997.
[4] T. M. Schmidl and D. C. Cox , ”Robust Frequency and Timing Synchronization for OFDM”, IEEE
Trans. on Commun. , pp.1613 -1621 , 1997.
[5] D. C. Schmidl and D. C. Cox , ”Low-overhead, low-complexity [burst] synchronization for OFDM” ,
IEEE Int. Conf. on Commun , vol. 3 ,pp.1301 -1306, 1996.
[6] K. Shi and B. E. Serpedin. ”Coarse frame and carrier synchronization of OFDM systems: A new
metric and comparison”, IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 12711284, Jul. 2004.
[7] Coleri, S., Ergen, M., Puri, A., and Bahai, A.,”Channel Estimation Techniques Based on Pilot
Arrangement in OFDM Systems,” IEEE Transactions on Broadcasting, vol.48, pp.223229, Sept.
2002.
[8] Sinem Coleri, Mustafa Ergen,Anuj Puri, Ahmad Bahai, ”A Study of Channel Estimation in OFDM
Systems”, IEEE 56th Vehicular technology conference.
[9] Massimiliano (Max) Martone , ”A Multicarrier System Based on the Fractional Fourier Transform
for Time-Frequency-Selective,” IEEETransactions on Communications, VOL. 49, NO. 6, June 2001.
[10] Yushi Shen and Ed Martinez,”Channel Estimation in OFDM Systems”, Freescale Semiconductor,
Inc., 2006.
[11] G. Ren, Y. Chang, and H. Zhang, ”Synchronization method based on a new constant envelop
preamble for OFDM systems,”IEEE Trans.Broadcast.,vol. 51, no. 1, pp. 139-143, Mar. 2005.
[12] A.P. Rathkanthiwar and A.S. Gandhi, ”A new timing metric for timing error estimation in OFDM”,
conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace-
Electronics Systems (VITAE), 2013.
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016
144
AUTHORS
Cherif Rezgui is graduate as telecommunication Engineer from higher school of
communication in 2004, his master degree in 2011 from national school of engineers of Tunis.
He is actually working on Ph.D. He is working in the field of MIMO, OFDM, Chanel
estimation and synchronization.
Khaled Grayaa is a Professor at National School of Advanced Sciences and
Technologies (ENSTAB). He was Director of the National Higher Engineering School of
Tunis from 2011 to 2015. He received his Phd in 2000 and HDR in 2007 in
Telecommunication from the National Engineering School of Tunis. His interests
include microwave circuits modelling, wireless communications and smart grid. He has
published 25 articles in refereed conference lectures and 15 journal articles.

More Related Content

PDF
Analyse Performance of Fractional Fourier Transform on Timing and Carrier Fr...
PDF
Mathematical description of ofdm
PDF
Performance evaluation on the basis of bit error rate for different order of ...
PDF
Simulation of ofdm modulation adapted to the transmission of a fixed image
PDF
Alamouti ofdm
PDF
Spatial multiplexing ofdmoqam systems with time reversal technique
PDF
Study of timing synchronization in mimoofdm systems using dvb t
PDF
ofdma doppler
Analyse Performance of Fractional Fourier Transform on Timing and Carrier Fr...
Mathematical description of ofdm
Performance evaluation on the basis of bit error rate for different order of ...
Simulation of ofdm modulation adapted to the transmission of a fixed image
Alamouti ofdm
Spatial multiplexing ofdmoqam systems with time reversal technique
Study of timing synchronization in mimoofdm systems using dvb t
ofdma doppler

What's hot (19)

PDF
ESTIMATION OF SYMBOL TIMING AND CARRIER FREQUENCY OFFSET USING SYNCHRONIZATI...
PDF
Analysis of cyclic prefix length effect on ISI limitation in OFDM system over...
PPSX
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
PDF
Performance and Analysis of OFDM Signal Using Matlab Simulink
PDF
Reduction of Outage Probability in Fast Rayleigh Fading MIMO Channels Using OFDM
PDF
Channel estimation
PDF
Blind, Non-stationary Source Separation Using Variational Mode Decomposition ...
PDF
Frequency and Power Estimator for Digital Receivers in Doppler Shift Environm...
PPTX
Sistec ppt
PDF
Performance of enhanced lte otdoa position ing approach through nakagami-m fa...
PDF
An Adaptive Approach to Switching Coded Modulation in OFDM System Under AWGN ...
PDF
CS Based Channel Estimation for OFDM Systems under Long Delay Channels Using ...
PPT
Ncc2004 ofdm tutorial part i-rvr
PDF
Fp3410401046
PDF
PDF
Peak detection using wavelet transform
PDF
Channel estimation-for-wireless-ofdm-communications
PDF
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
PDF
Dq31784792
ESTIMATION OF SYMBOL TIMING AND CARRIER FREQUENCY OFFSET USING SYNCHRONIZATI...
Analysis of cyclic prefix length effect on ISI limitation in OFDM system over...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Performance and Analysis of OFDM Signal Using Matlab Simulink
Reduction of Outage Probability in Fast Rayleigh Fading MIMO Channels Using OFDM
Channel estimation
Blind, Non-stationary Source Separation Using Variational Mode Decomposition ...
Frequency and Power Estimator for Digital Receivers in Doppler Shift Environm...
Sistec ppt
Performance of enhanced lte otdoa position ing approach through nakagami-m fa...
An Adaptive Approach to Switching Coded Modulation in OFDM System Under AWGN ...
CS Based Channel Estimation for OFDM Systems under Long Delay Channels Using ...
Ncc2004 ofdm tutorial part i-rvr
Fp3410401046
Peak detection using wavelet transform
Channel estimation-for-wireless-ofdm-communications
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
Dq31784792
Ad

Viewers also liked (9)

PDF
Embedding bus and ring into hex cell
PDF
A novel signature based traffic classification engine to reduce false alarms ...
PDF
Visualize network anomaly detection by using k means clustering algorithm
PDF
Clock synchronization estimation of non deterministic delays in wireless mess...
PDF
PERFORMANCE OF TCP CONGESTION CONTROL IN UAV NETWORKS OF VARIOUS RADIO PROPAG...
PDF
COMPARATIVE ANALYSIS OF DIFFERENT ENCRYPTION TECHNIQUES IN MOBILE AD HOC NETW...
PDF
Dynamic bandwidth allocation scheme in lr pon with performance modelling and ...
PDF
Web object size satisfying mean waiting
PDF
A novel energy aware node clustering
Embedding bus and ring into hex cell
A novel signature based traffic classification engine to reduce false alarms ...
Visualize network anomaly detection by using k means clustering algorithm
Clock synchronization estimation of non deterministic delays in wireless mess...
PERFORMANCE OF TCP CONGESTION CONTROL IN UAV NETWORKS OF VARIOUS RADIO PROPAG...
COMPARATIVE ANALYSIS OF DIFFERENT ENCRYPTION TECHNIQUES IN MOBILE AD HOC NETW...
Dynamic bandwidth allocation scheme in lr pon with performance modelling and ...
Web object size satisfying mean waiting
A novel energy aware node clustering
Ad

Similar to A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFORM AND CAZAC SEQUENCES (20)

PPTX
Synchronization Issues in OFDM Systems
PDF
Aa04606162167
PDF
Ijetcas14 344
PDF
Bb2419581967
PDF
BER Analysis of OFDM Systems with Varying Frequency Offset Factor over AWGN a...
PDF
Reduction of Frequency offset Using Joint Clock for OFDM Based Cellular Syste...
PPT
Ncc2004 ofdm tutorial part ii-apal
PDF
Non-Extended Schemes for Inter-Subchannel
PDF
Blind frequency offset estimator for OFDM systems
PDF
I010216266
PDF
OFDM: Modulation Technique for Wireless Communication
PDF
Ijst 131202
PDF
SpringerWPC2013
PDF
An improved dft based channel estimation
PDF
Improved Timing Estimation Using Iterative Normalization Technique for OFDM S...
PPT
Final ppt
PDF
Time_and_Frequency_Synchronization_for_OTFS.pdf
PDF
Design and Fabrication of a Two Axis Parabolic Solar Dish Collector
PDF
A Review: Significant Research on Time And Frequency Synchronization In MIMO ...
PDF
Improved autocorrelation method for time synchronization in filtered orthogon...
Synchronization Issues in OFDM Systems
Aa04606162167
Ijetcas14 344
Bb2419581967
BER Analysis of OFDM Systems with Varying Frequency Offset Factor over AWGN a...
Reduction of Frequency offset Using Joint Clock for OFDM Based Cellular Syste...
Ncc2004 ofdm tutorial part ii-apal
Non-Extended Schemes for Inter-Subchannel
Blind frequency offset estimator for OFDM systems
I010216266
OFDM: Modulation Technique for Wireless Communication
Ijst 131202
SpringerWPC2013
An improved dft based channel estimation
Improved Timing Estimation Using Iterative Normalization Technique for OFDM S...
Final ppt
Time_and_Frequency_Synchronization_for_OTFS.pdf
Design and Fabrication of a Two Axis Parabolic Solar Dish Collector
A Review: Significant Research on Time And Frequency Synchronization In MIMO ...
Improved autocorrelation method for time synchronization in filtered orthogon...

More from IJCNCJournal (20)

PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
Authenticated Key Agreement Protocol with Forward Secrecy for Securing Cyber ...
PDF
Enhancing IoT Cyberattack Detection via Hyperparameter Optimization Technique...
PDF
Analysis of LTE/5G Network Performance Parameters in Smartphone Use Cases: A ...
PDF
An Energy Hole Detection and Relay Repositioning in Cluster Based Routing Pro...
PDF
Performance of Multi-Hop FSO Systems Under Practical Conditions with Malaga T...
PDF
QoS Based Reliable Route in MANET for Military Applications
PDF
Conflict Flow Avoided Proactive Rerouting Algorithm using Online Active Learn...
PDF
A Cluster-Based Trusted Secure Multipath Routing Protocol for Mobile Ad Hoc N...
PDF
Evaluating OTFS Modulation for 6G: Impact of High Mobility and Environmental ...
PDF
AI-Driven IoT-Enabled UAV Inspection Framework for Predictive Maintenance and...
PDF
Classification of Network Traffic using Machine Learning Models on the NetML ...
PDF
A Cluster-Based Trusted Secure Multipath Routing Protocol for Mobile Ad Hoc N...
PDF
Energy Efficient Virtual MIMO Communication Designed for Cluster based on Coo...
PDF
An Optimized Energy-Efficient Hello Routing Protocol for Underwater Wireless ...
PDF
Evaluating OTFS Modulation for 6G: Impact of High Mobility and Environmental ...
PDF
Simulated Annealing-Salp Swarm Algorithm based Variational Autoencoder for Pe...
PDF
A Framework for Securing Personal Data Shared by Users on the Digital Platforms
PDF
Developing a Secure and Transparent Blockchain System for Fintech with Fintru...
PDF
Visually Image Encryption and Compression using a CNN-Based Autoencoder
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Authenticated Key Agreement Protocol with Forward Secrecy for Securing Cyber ...
Enhancing IoT Cyberattack Detection via Hyperparameter Optimization Technique...
Analysis of LTE/5G Network Performance Parameters in Smartphone Use Cases: A ...
An Energy Hole Detection and Relay Repositioning in Cluster Based Routing Pro...
Performance of Multi-Hop FSO Systems Under Practical Conditions with Malaga T...
QoS Based Reliable Route in MANET for Military Applications
Conflict Flow Avoided Proactive Rerouting Algorithm using Online Active Learn...
A Cluster-Based Trusted Secure Multipath Routing Protocol for Mobile Ad Hoc N...
Evaluating OTFS Modulation for 6G: Impact of High Mobility and Environmental ...
AI-Driven IoT-Enabled UAV Inspection Framework for Predictive Maintenance and...
Classification of Network Traffic using Machine Learning Models on the NetML ...
A Cluster-Based Trusted Secure Multipath Routing Protocol for Mobile Ad Hoc N...
Energy Efficient Virtual MIMO Communication Designed for Cluster based on Coo...
An Optimized Energy-Efficient Hello Routing Protocol for Underwater Wireless ...
Evaluating OTFS Modulation for 6G: Impact of High Mobility and Environmental ...
Simulated Annealing-Salp Swarm Algorithm based Variational Autoencoder for Pe...
A Framework for Securing Personal Data Shared by Users on the Digital Platforms
Developing a Secure and Transparent Blockchain System for Fintech with Fintru...
Visually Image Encryption and Compression using a CNN-Based Autoencoder

Recently uploaded (20)

PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
composite construction of structures.pdf
PPTX
Welding lecture in detail for understanding
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
PPT on Performance Review to get promotions
PPTX
Construction Project Organization Group 2.pptx
PPTX
CH1 Production IntroductoryConcepts.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
UNIT 4 Total Quality Management .pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
additive manufacturing of ss316l using mig welding
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
bas. eng. economics group 4 presentation 1.pptx
composite construction of structures.pdf
Welding lecture in detail for understanding
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
CYBER-CRIMES AND SECURITY A guide to understanding
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPT on Performance Review to get promotions
Construction Project Organization Group 2.pptx
CH1 Production IntroductoryConcepts.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
OOP with Java - Java Introduction (Basics)
Foundation to blockchain - A guide to Blockchain Tech
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
UNIT 4 Total Quality Management .pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
additive manufacturing of ss316l using mig welding

A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFORM AND CAZAC SEQUENCES

  • 1. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 DOI : 10.5121/ijcnc.2016.8212 133 A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFORM AND CAZAC SEQUENCES Cherif Rezgui and Khaled Grayaa Communication Systems Lab, National School of Engineers of Tunis (ENIT), Tunisia ABSTRACT This paper deals with symbol timing offset and channel estimation in OFDM (orthogonal frequency division multiplexing) system in fast varying channel. Symbol timing offset (STO) estimation is a major task in OFDM. Most of existing methods for estimating STO used cyclic prefix or training sequences. In this paper, we consider a new system for STO estimation using constant amplitude zero autocorrelation (CAZAC) sequences as pilot sequences in conjunction with fractional Fourier transform (FRFT). After STO estimation is done, timing compensation is made. Thereafter, channel is estimated to well recover the original transmitted signal. This method gives good results in terms of MSE in comparison with other known techniques, it estimated well the channel and it is important for fast varying channel. MATLAB Monte-Carlo simulations are used to evaluate the performance of the proposed estimator. KEYWORDS OFDM, STO, FRFT, CAZAC sequences, MSE, LS, MMSE, SNR 1. INTRODUCTION Multicarrier modulations are increasingly used in various telecommunication systems such as in Digital Audio Broadcasting (DAB), Digital Video Broadcasting Terrestrial (DVBT), digital broadband communications, Long Term Evolution (LTE), WiMAX,... The principle of OFDM is to divide, on a wide number of subcarriers, the digital signal that is to be transmitted. In wireless systems, transmitted data reaches to receivers after transit through a radio channel. For conventional coherent receivers, the effect of channel on transmitted signal must be estimated to recover transmitted data. In so far as the receiver estimates exactly how the channel changes the transmitted signal, it can recover sent data. The signal is spread in frequency, time, and angle; therefore, the received signal suffers from the impact of these spreads on transmitted signal. IFFT and FFT are basic functions necessary for modulation and demodulation in the OFDM systems. To take the N Point FFT at the receiver, it is necessary that exact samples of transmitted information for the OFDM symbol period. In other terms, symbol synchronization must be carried out in order to detect the starting point of each OFDM symbol (after removing CP), which facilitates obtaining the exact samples. Therefore, STO must be estimated by the receiver. Estimated STO is then compensated witch called timing synchronization. Timing synchronization is one of the major challenges of OFDM system. Imperfect synchronization destroys the orthogonality of sub-carriers and deteriorates the performance of OFDM system. Timing synchronization consists of symbol timing offset estimation and correction. Many techniques are
  • 2. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 134 used literature to compensate this STO, using cyclic prefix or training sequences as preamble. After synchronization is done, the OFDM channel is estimated in order to best recover the transmitted symbols. OFDM channel estimator uses different techniques such as LS with different type of interpolation and MMSE with many variant. In this paper, we propose a receiver with timing synchronization and channel estimation based on fractional Fourier transform and Constant Amplitude Zero Auto-Correlation (CAZAC) as pilot sequences. The remainder of this paper is organized as follows. In section 2, we introduce OFDM signal and the effect of STO. In section 3, we introduce some techniques used in the literature estimating STO. Section 4 studies the most used channel estimation techniques and gives comparison between them. Then, we present Fractional Fourier Transform in section 5. Thereafter, Section 6 shows the proposed method. Finally, Section 7 shows the performance of this technique in terms of MSE. Conclusion is given in the last section. 2. OFDM AND EFFECT OF STO OFDM is a multicarrier modulation technique which divides the transmission band into N several sub-channels that are transmitted in parallel. Compared to the single-carrier modulation,the OFDM symbols have a relatively long duration, but a narrow bandwidth. Accordingly, the OFDM is more robust to the multipath channel dispersion, ensuring the frequency selectivity of the mobile radio channel resistance. The OFDM symbol is defined as {Xn; n = 0; 1; ... ;N-1}. The OFDM signal is as follows: (1) Where j = √-1, ∆f is spacing between, l the lth OFDM symbol and NT is data block period. The subcarriers in OFDM system are supposed to be orthogonal to each other. In order to correctly demodulate an OFDM symbol at the receiver using N point DFT, it is very important to take exact samples of transmitted OFDM symbol. The correct starting point of DFT window is needed to preserve the orthogonality among the sub-carriers. OFDM systems present many advantages in comparison with single carrier system however all these advantages can be relevant only when the orthogonality among sub-carriers is kept. If one DFT window takes sample of two different OFDM symbol generating ICI and ISI. Table 1 shows the effect of timing offset in the received signal in time and frequency domain. Channel effects and noise are neglected for simplicity. The presence of STO in the time domain causes phase offset of 2πkd/N in the frequency domain. This phase offset is proportional to the subcarrier index k as well as the STO δ, Table 1. Table 1: The effect of STO on the received signal, [1] Received signal Effect of STO δ on the received signal Time-domain signal y(n) x(n + δ) Frequency-domain signal Y (k) ej2πkδ /N X(k) Four possible cases may occur, Figure 1.
  • 3. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 135 Case I: No timing error is presented in this case (i.e. timing offset δ = 0). That is the case that estimated starting point of the OFDM symbol coincides with the exact time, preserving the orthogonality among sub-carriers, so the OFDM symbol can be perfectly left without any type of interference. Figure 1: Four different cases symbol starting point subject to STO. Case II: That is the case that the estimated starting point of the OFDM symbol before the exact point, but after the end of the (displaced) channel response of the precedent OFDM symbol. In that case the ith symbol not overlapped with the preceding (i-1) th OFDM symbol, that is, without incurring ISI by the preceding symbol in such cases. The received signal after passing through FFT block time- domain received samples , given as: (2) The term in equation 2 indicates that the orthogonality between the subcarriers of the frequency components can be fully preserved. However, there is a phase offset. This phase offset leads to rotation of signal constellation around the origin. Case III: This case occurs when starting point of the OFDM symbol is estimated exist prior to the end of the (displaced) channel response of the previous OFDM symbol and thus the symbol synchronization is too soon to avoid the ISI. In that case the orthogonality between the components of subcarrier is destroyed by the ISI (the previous symbol) and furthermore, ICI occurs. Case IV: That is the case if the starting point of the OFDM symbol is estimated just after the exact time. In this case, the samples for current FFT operation interval is consists of a part of the current OFDM symbol xl(n) and a part of the following OFDM symbol xl+ 1 (n).
  • 4. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 136 As illustrated, an STO can lead not only to phase distortion, but also ISI in OFDM systems. Therefore, timing synchronization must be done at the receiver. Synchronization task is composed by STO estimation and compensation. Generally, the STO estimation can be used either in the time or frequency domain. 3. RELATED WORK FOR ESTIMATING STO Many techniques in the literature are implemented using whether cyclic prefix or training sequence. As an example of estimating STO using cyclic prefix is done by Tourtier, P.J., Monnier, R., and Lopez, P. [2]. Figure 2: STO estimation technique using double sliding windows. The estimated STO is done by: (3) Another technique used in [3]. It consists on minimizing the squared difference between a NG sample block (seized in window W1) and conjugate of another NG sample block (seized in window W2). (4) Estimation techniques using training sequences are presented in Figure 3: Figure 3: STO estimation using the repetitive training symbol, (period = Tsub/2).
  • 5. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 137 In this case, STO is estimated as, [4] and [5]: (5) In this paper, STO is estimated in frequency domain. As discussed in case II, the received signal suffers from a phase rotation, Figure 4: Figure 4 : Effect of STO in frequency domain STO is estimated as: (6) Where is defined as: (7) 4. CHANNEL ESTIMATION Channel estimation techniques for OFDM systems can be divided into two major groups: blind and non-blind. Methods for blind channel estimation exploit the statistical behavior from the received signals and require a lot of data. Therefore, they suffer from serious performance degradation in fast fading channels. Moreover, in the non-blind channel estimation methods, information from precedent channel estimates or a portion of the transmitted signal is present to the receiver to be used for channel estimation. In the data aided channel estimation, known data by the receiver is inserted into the OFDM symbols so the actual channel can be estimated. Two techniques are commonly used: sending known information over one or more OFDM symbols with no data being sent (called channel estimation with training symbols), or sending known information together with the data (called pilots aided channel estimation). In this paper, we are interested in pilots aided channel estimation, so we will explain in detail this technique with different methods. In the pilots aided channel estimation, the pilots are multiplexed with the data. For time domain estimation, the CIR (Channel Impulse Response) is estimated first. The estimate of the CIR is then passed through a FFT operation to get the channel at each subcarrier for the equalization in frequency domain. For frequency domain estimation, the channel at each pilot is estimated, and then these estimates are interpolated via different methods. Different type of arrangement of pilots is done: block type and comb type. In this paper, we are interested in comb pilot arrangement.
  • 6. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 138 Figure 5: Pilot Arrangement for Channel estimation. We consider Np pilot signals, equi-spaced with spacing Nps , are inserted into X, where Nps = N/Np. Receiver knows the locations of pilots P = [Pk]T (k=0,1,...,Np-1), the pilot value XP =[Xk P ]T and Y the received signal, [7]. Many techniques used to estimate OFDM channel. The most known are Least Square (LS) and minimum mean square error (MMSE). 4.1. LS Least square method calculates channel response at pilot subcarriers HP as follows: (8) The task here is to estimate the channel conditions at the data subcarriers (specified by H with length N), given the LS estimates at pilot subcarriers , received signal Y. 4.2. MMSE The MMSE estimator employs the second-order statistics of the channel conditions to minimize the mean-square error. (9) Where is the cross-correlation matrix between the true channel vector and temporary channel estimate vector in the frequency domain and σn 2 / σx 2 is the inverse of the SNR. To estimate channel in data subcarrier, we need interpolation technique. In the literature, many interpolation techniques are implemented. We explain two of them Linear and second order interpolation [8]. Linear interpolation: The estimated channel response at the data-carrier k, mL < k < (m + 1)L is given by : (10)
  • 7. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 139 Second Order Interpolation: The estimated channel response is given by: (11) Where Other interpolation techniques are listed in [10] such as Low-pass interpolation, spline cubic interpolation, time domain interpolation... 5. FRACTIONAL FOURIER TRANSFORM (FRFT) The fractional Fourier Transform is a generalisation of the Fourier Transform. The FRFT of a signal s(t) is defined as follows : Where p is a real number known as FRFT order, α=pπ/2 is the angle of FRFT, and Kα(t,u) is the kernel of FRFT: Fractional Fourier Transform could be seen as a projection of the signal on an axis which forms an angle α with the time axis: a rotation in the time-frequency plane that generalizes FFT. “The FRFT gives great satisfactions in many signals processing applications such optical communications, signal filtering and also beam forming for fading channels”, [9]. Multicarrier modulation that uses traditional Fourier Trans form attempts a frequency windowing of bandwidth. The effect of the time-invariant channel distortions can be compensated for by subchannel-by-subchannel basis single-tap frequency domain equalizers. Consequently, the overall traditional multicarrier system can be seen as an optimal Fourier-domain filter. However, when channel is time-varying, traditional multicarrier system loses optimality since ideal recovery operator is mostly time-variant. This means that it cannot be employed in the conventional Fourier domain and is the reason motivating the use of fractional Fourier transform based technique.
  • 8. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 140 6. PROPOSED METHOD This section deals with the proposed method. A conventional OFDM system is used but Fractional Fourier Transform FRFT block is used instead of classical FFT. We use CAZAC sequences as pilot sequences. The pilot sequences are inserted in combo-type mode. The Timing Offset estimation is done in frequency domain. After STO estimation, compensation is done in time domain. After channel estimation is used in order to best recover the transmitted signal. LS with DFT channel estimator is used with linear interpolation. The DFT-based channel estimation technique has been derived to improve the performance of LS or MMSE channel estimation by eliminating the effect of noise outside the maximum channel delay, [1]. The DFT block diagram is shown in figure 6. Figure 6 : DFT-based channel estimation. CAZAC sequences used in this paper are defined as : (12) Where Nps and Np are pilot spacing and number of pilotsequences respectively in OFDM symbol. The OFDM basic system of the proposed method is presented in figure 7. Figure 7: OFDM system of the proposed method.
  • 9. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 141 Where timing synchronization block is represented in figure 8. Figure 8: STO synchronization block 7. SIMULATIONS RESULTS AND DISCUSSION Parameters of simulation for the proposed method are listed in Table 2. Table 2: The parameters for simulation. Modulation 16 QAM Number of sub-carrier 128 Cyclic Prefix Length (Ng) 32 Pilot sequences CAZAC sequences Number of Bits per Symbol 4 Pilot Spacing (Nps) 4 STO -3 Number of iteration 100 Signal to Noise Ratio (SNR) range 0:30 Figure 9 shows the Mean Square Error (MSE) of the Carrier Frequency Offset (STO) of the OFDM system using Fractional Fourier Transform and CAZAC sequences. This figure shows attractive results of the proposed system in terms of MSE by comparison to competitive systems such as Schmidl and Cox[5], Shi and Serpedin [6] methods. Simulation also proves the effect of fractional Fourier transform in comparison with classical Fourier transform. This method is useful in fast varying channel that varies from OFDM symbol to another and does not decrease much the useful throughput in comparison with the methods using training sequences. The proposed method shows attractive results compared to GR method proposed by G. Ren, Y. Chang, and H. Zhang, [11] and better results than the one done by A.P. Rathkanthiwar and A.S.Gandhi, [12].
  • 10. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 142 For SNR equal to 15 dB, the proposed method shows a gain ratio in comparison with Shi & Serpedin method equal to 20dB. Figure 9: MSE of STO estimation for proposed method compared to known method: Schmidl and Cox, Shi and Serpedin. Figure 10: Real channel vs estimated channel for the proposed method for SNR = 15 dB. Figure 11: MSE of LSE channel estimation theory and simulation.
  • 11. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 143 It is shown in figure 10 and figure 11 that our method gives attractive results. The estimated channel is nearly to real channel. The MSE of LSE of the proposed method is almost the theoretical one which gives the proposed method a good candidate for both Symbol Timing Offset and channel estimation. 8. CONCLUSIONS This paper proposes new symbol timing offset (STO) and channel estimation method that uses CAZAC sequences as pilot sequences in conjunction with Fractional Fourier Transform. The main design criterion of this method is to exploit the well-known efficiency of both CAZAC sequences and FRFT in reducing MSE of STO of the designed system. The system also gives good results for channel estimation in comparison with the real one. The system we designed shows attractive performance and stands useful for mobile fast varying channels. REFERENCES [1] Cho, Y.S., Kim J., Yang, W.Y. and Kang C. G., ”MIMO-OFDM wireless communications with MATLAB”, John Wiley and Sons, Asia, IEEE Press, 2010, pp.153-161. [2] Tourtier, P.J., Monnier, R., and Lopez, P. ”Multicarrier modem for digital HDTV terrestrial broadcasting” .Signal Process., 5(5), 379403, 1993. [3] Speth,M., Classen, F., and Meyr,H. ”Frame synchronization of OFDM systems in frequency selective fading channels”. IEEE VTC97, pp.18071811, 1997. [4] T. M. Schmidl and D. C. Cox , ”Robust Frequency and Timing Synchronization for OFDM”, IEEE Trans. on Commun. , pp.1613 -1621 , 1997. [5] D. C. Schmidl and D. C. Cox , ”Low-overhead, low-complexity [burst] synchronization for OFDM” , IEEE Int. Conf. on Commun , vol. 3 ,pp.1301 -1306, 1996. [6] K. Shi and B. E. Serpedin. ”Coarse frame and carrier synchronization of OFDM systems: A new metric and comparison”, IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 12711284, Jul. 2004. [7] Coleri, S., Ergen, M., Puri, A., and Bahai, A.,”Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems,” IEEE Transactions on Broadcasting, vol.48, pp.223229, Sept. 2002. [8] Sinem Coleri, Mustafa Ergen,Anuj Puri, Ahmad Bahai, ”A Study of Channel Estimation in OFDM Systems”, IEEE 56th Vehicular technology conference. [9] Massimiliano (Max) Martone , ”A Multicarrier System Based on the Fractional Fourier Transform for Time-Frequency-Selective,” IEEETransactions on Communications, VOL. 49, NO. 6, June 2001. [10] Yushi Shen and Ed Martinez,”Channel Estimation in OFDM Systems”, Freescale Semiconductor, Inc., 2006. [11] G. Ren, Y. Chang, and H. Zhang, ”Synchronization method based on a new constant envelop preamble for OFDM systems,”IEEE Trans.Broadcast.,vol. 51, no. 1, pp. 139-143, Mar. 2005. [12] A.P. Rathkanthiwar and A.S. Gandhi, ”A new timing metric for timing error estimation in OFDM”, conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace- Electronics Systems (VITAE), 2013.
  • 12. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016 144 AUTHORS Cherif Rezgui is graduate as telecommunication Engineer from higher school of communication in 2004, his master degree in 2011 from national school of engineers of Tunis. He is actually working on Ph.D. He is working in the field of MIMO, OFDM, Chanel estimation and synchronization. Khaled Grayaa is a Professor at National School of Advanced Sciences and Technologies (ENSTAB). He was Director of the National Higher Engineering School of Tunis from 2011 to 2015. He received his Phd in 2000 and HDR in 2007 in Telecommunication from the National Engineering School of Tunis. His interests include microwave circuits modelling, wireless communications and smart grid. He has published 25 articles in refereed conference lectures and 15 journal articles.