SlideShare a Scribd company logo
AttSum: Joint Learning of
Focusing and Summarization
with Neural Attention
Ziqiang Cao, Wenjie Li, Sujian Li, Furu Wei and Yanran Li
Coling 2016
発表者:小平 知範
1
Abstract
• Task: Extractive query-focused summarization

- query relevance ranking and sentence saliency ranking
• Main contributions:

- They apply the attention mechanism that tries to simulate
human attentive reading behavior for query-focused
summarization.

- They propose a joint neural network model to learn query
relevance ranking and sentence saliency ranking
simultaneously
2
Query-Focused Sentence
Ranking
CNN Layer
Pooling Layer
Ranking Layer
3
1. CNN Layer
3. Query-Focused Sentence Ranking
4
v(wi: wi+j) = concatenation
Convolution Layer Max-over-time pooling
f (●) = non-linear function
Wt
h ∈ Rl x hk h = window size
k = embeding size
ct
h ∈ Rl
2. Pooling Layer
• Query relevance:
• The document Embedding:
3. Query-Focused Sentence Ranking
5
M ∈ Rl x l
3. Ranking Layer
• rank a sentence according to cosine similarity
• Cosine Similarity:
3. Query-Focused Sentence Ranking
6
ex. Training Process
• Cost Function:
• s+: High ROUGE score, s-: rest
• Ω is margin threthold
3. Query-Focused Sentence Ranking
7
Sentence Selection
• 1. discard sentences less than 8 words
• 2. sort descending order
• 3. They iteratively dequeue the top-ranked
sentence, and append it to the current summary if
it is non-redundant.
• non-redundant: new bi-gram ratio > .5
8
Dataset
• DUC 2005 ~ 2007, query-focused multi-document
summarization task.
• Preprocessing: StanfordCoreNLP (ssplit, tokenize)
• Summary: the length limit of 250 words
• Validation: 3-fold cross-validation
4. Experiments
9
Model Setting
• Word Embedding: (50 dimention, trained on News corpus)

- don’t update word embeddings in the training process
• word window size h = 2
• Convolution output l = 50
• margin Ω = 0.5
10
4. Experiments
Evaluation Metrics
• ROUGE-2
11
4. Experiments
Baselines
• LEAD
• QUERY_SIM
• MultiMR (Wan and iao, 2009)
• SVR (Ouyang et al., 2011)
• DocEmb (Kobayashi et al., 2015)
• ISOLATION: AttSum w/o attention mechanism
12
4. Experiments
Summarization Performance
13
4. Experiments
Conclusion
• Propose a novel query-focuesed summarization
system called AttSum, which jointly handles
saliency ranking and relevance ranking.
14

More Related Content

PDF
Neural Summarization by Extracting Sentences and Words
PPTX
Query dependent ranking using k nearest neighbor
 
PDF
2019 dynamically composing_domain-data_selection_with_clean-data_selection_by...
PPTX
Document clustering for forensic analysis an approach for improving compute...
PPTX
Document clustering for forensic analysis
PDF
PDF
Dstc6 an introduction
 
PPTX
CSMR: A Scalable Algorithm for Text Clustering with Cosine Similarity and Map...
Neural Summarization by Extracting Sentences and Words
Query dependent ranking using k nearest neighbor
 
2019 dynamically composing_domain-data_selection_with_clean-data_selection_by...
Document clustering for forensic analysis an approach for improving compute...
Document clustering for forensic analysis
Dstc6 an introduction
 
CSMR: A Scalable Algorithm for Text Clustering with Cosine Similarity and Map...

What's hot (20)

PPTX
Document Classification and Clustering
PPT
Textmining Retrieval And Clustering
PPTX
Tim Menzies, directions in Data Science
PPTX
Reverted Indexing for Expansion and Feedback
PPTX
Text categorization
PPTX
A Machine learning approach to classify a pair of sentence as duplicate or not.
PDF
IRE- Algorithm Name Detection in Research Papers
PPTX
Text clustering
PPTX
Quora questions pair duplication analysis using semantic analysis
PPTX
Algorithm Name Detection & Extraction
PPTX
Icse2014 v3
PDF
LoryfelNunezInsight
PDF
LoryfelNunez
DOCX
Final proj 2 (1)
PPTX
Adaptive relevance feedback in information retrieval
PDF
AINL 2016: Alekseev, Nikolenko
PPTX
An online semantic enhanced dirichlet model for short text
PDF
Big Data Palooza Talk: Aspects of Semantic Processing
PDF
SemEval 2017 Task 10: ScienceIE – Extracting Keyphrases and Relations from Sc...
Document Classification and Clustering
Textmining Retrieval And Clustering
Tim Menzies, directions in Data Science
Reverted Indexing for Expansion and Feedback
Text categorization
A Machine learning approach to classify a pair of sentence as duplicate or not.
IRE- Algorithm Name Detection in Research Papers
Text clustering
Quora questions pair duplication analysis using semantic analysis
Algorithm Name Detection & Extraction
Icse2014 v3
LoryfelNunezInsight
LoryfelNunez
Final proj 2 (1)
Adaptive relevance feedback in information retrieval
AINL 2016: Alekseev, Nikolenko
An online semantic enhanced dirichlet model for short text
Big Data Palooza Talk: Aspects of Semantic Processing
SemEval 2017 Task 10: ScienceIE – Extracting Keyphrases and Relations from Sc...
Ad

Similar to AttSum: Joint Learning of Focusing and Summarization with Neural Attention (20)

PPTX
OpenEssayist: Extractive Summarisation and Formative Assessment (DCLA13)
PDF
FriendsQA: Open-domain Question Answering on TV Show Transcripts
PDF
The CSO Classifier: Ontology-Driven Detection of Research Topics in Scholarly...
PDF
GPT-2: Language Models are Unsupervised Multitask Learners
PDF
[poster] A Compare-Aggregate Model with Latent Clustering for Answer Selection
PPT
score based ranking of documents
PDF
AINL 2016: Galinsky, Alekseev, Nikolenko
PPT
Query Dependent Pseudo-Relevance Feedback based on Wikipedia
PPT
Asking Clarifying Questions in Open-Domain Information-Seeking Conversations
PPTX
SE-DSI-Generative-information-reterival.pptx
PPTX
How Anchoring Concepts Influence Essay Conceptual Structure And Test Performance
PDF
Triantafyllia Voulibasi
PPTX
2016-05-31 Venia Legendi (CEITER): Sergey Sosnovsky
PPTX
Enriching Solr with Deep Learning for a Question Answering System - Sanket Sh...
PPTX
Embed, Encode, Attend, Predict – applying the 4 step NLP recipe for text clas...
PDF
Seq2seq Model to Tokenize the Chinese Language
PDF
Seq2seq Model to Tokenize the Chinese Language
PPTX
250113_JH_labseminar[An Attentive Inductive Bias for Sequential Recommendatio...
PPTX
Machine learning assisted citation screening for Systematic Reviews - Anjani ...
PPTX
Machine Learning Assisted Citation Screening for Systematic Reviews
OpenEssayist: Extractive Summarisation and Formative Assessment (DCLA13)
FriendsQA: Open-domain Question Answering on TV Show Transcripts
The CSO Classifier: Ontology-Driven Detection of Research Topics in Scholarly...
GPT-2: Language Models are Unsupervised Multitask Learners
[poster] A Compare-Aggregate Model with Latent Clustering for Answer Selection
score based ranking of documents
AINL 2016: Galinsky, Alekseev, Nikolenko
Query Dependent Pseudo-Relevance Feedback based on Wikipedia
Asking Clarifying Questions in Open-Domain Information-Seeking Conversations
SE-DSI-Generative-information-reterival.pptx
How Anchoring Concepts Influence Essay Conceptual Structure And Test Performance
Triantafyllia Voulibasi
2016-05-31 Venia Legendi (CEITER): Sergey Sosnovsky
Enriching Solr with Deep Learning for a Question Answering System - Sanket Sh...
Embed, Encode, Attend, Predict – applying the 4 step NLP recipe for text clas...
Seq2seq Model to Tokenize the Chinese Language
Seq2seq Model to Tokenize the Chinese Language
250113_JH_labseminar[An Attentive Inductive Bias for Sequential Recommendatio...
Machine learning assisted citation screening for Systematic Reviews - Anjani ...
Machine Learning Assisted Citation Screening for Systematic Reviews
Ad

More from Kodaira Tomonori (20)

PDF
Deep recurrent generative decoder for abstractive text summarization
PDF
Selective encoding for abstractive sentence summarization
PDF
Abstractive Text Summarization @Retrieva seminar
PDF
障害情報レポートに対する同時関連文章圧縮
PDF
Poster: Controlled and Balanced Dataset for Japanese Lexical Simplification
PDF
[Introduction] Neural Network-Based Abstract Generation for Opinions and Argu...
PDF
[ポスター]均衡コーパスを用いた語彙平易化データセットの構築
PDF
Noise or additional information? Leveraging crowdsource annotation item agree...
PDF
語彙平易化システム評価のためのデータセット改良[ブースター]
PDF
語彙平易化システム評価のためのデータセットの改良[ポスター]
PDF
PPDB 2.0: Better paraphrase ranking, 
fine-grained entailment relations,
word...
PDF
WordNet-Based Lexical Simplification of Document
PDF
文レベルの機械翻訳評価尺度に関する調査
PDF
Simp lex rankng based on contextual and psycholinguistic features
PDF
Aligning sentences from standard wikipedia to simple wikipedia
PDF
日本語の語彙平易化評価セットの構築
PDF
Improving text simplification language modeling using unsimplified text data
PDF
言い換えを用いたテキスト要約の自動評価
PDF
聾者向け文章読解支援における構文的言い換えの効果について
PDF
国語辞典を使った放送ニュースの名詞の平易化
Deep recurrent generative decoder for abstractive text summarization
Selective encoding for abstractive sentence summarization
Abstractive Text Summarization @Retrieva seminar
障害情報レポートに対する同時関連文章圧縮
Poster: Controlled and Balanced Dataset for Japanese Lexical Simplification
[Introduction] Neural Network-Based Abstract Generation for Opinions and Argu...
[ポスター]均衡コーパスを用いた語彙平易化データセットの構築
Noise or additional information? Leveraging crowdsource annotation item agree...
語彙平易化システム評価のためのデータセット改良[ブースター]
語彙平易化システム評価のためのデータセットの改良[ポスター]
PPDB 2.0: Better paraphrase ranking, 
fine-grained entailment relations,
word...
WordNet-Based Lexical Simplification of Document
文レベルの機械翻訳評価尺度に関する調査
Simp lex rankng based on contextual and psycholinguistic features
Aligning sentences from standard wikipedia to simple wikipedia
日本語の語彙平易化評価セットの構築
Improving text simplification language modeling using unsimplified text data
言い換えを用いたテキスト要約の自動評価
聾者向け文章読解支援における構文的言い換えの効果について
国語辞典を使った放送ニュースの名詞の平易化

Recently uploaded (20)

PPTX
2. Earth - The Living Planet earth and life
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
Microbiology with diagram medical studies .pptx
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PPTX
2. Earth - The Living Planet Module 2ELS
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
Introduction to Cardiovascular system_structure and functions-1
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PDF
Sciences of Europe No 170 (2025)
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
Cell Membrane: Structure, Composition & Functions
PDF
HPLC-PPT.docx high performance liquid chromatography
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
famous lake in india and its disturibution and importance
2. Earth - The Living Planet earth and life
bbec55_b34400a7914c42429908233dbd381773.pdf
neck nodes and dissection types and lymph nodes levels
7. General Toxicologyfor clinical phrmacy.pptx
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
Microbiology with diagram medical studies .pptx
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
2. Earth - The Living Planet Module 2ELS
ECG_Course_Presentation د.محمد صقران ppt
INTRODUCTION TO EVS | Concept of sustainability
Classification Systems_TAXONOMY_SCIENCE8.pptx
Introduction to Cardiovascular system_structure and functions-1
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Sciences of Europe No 170 (2025)
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
Cell Membrane: Structure, Composition & Functions
HPLC-PPT.docx high performance liquid chromatography
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
famous lake in india and its disturibution and importance

AttSum: Joint Learning of Focusing and Summarization with Neural Attention

  • 1. AttSum: Joint Learning of Focusing and Summarization with Neural Attention Ziqiang Cao, Wenjie Li, Sujian Li, Furu Wei and Yanran Li Coling 2016 発表者:小平 知範 1
  • 2. Abstract • Task: Extractive query-focused summarization
 - query relevance ranking and sentence saliency ranking • Main contributions:
 - They apply the attention mechanism that tries to simulate human attentive reading behavior for query-focused summarization.
 - They propose a joint neural network model to learn query relevance ranking and sentence saliency ranking simultaneously 2
  • 4. 1. CNN Layer 3. Query-Focused Sentence Ranking 4 v(wi: wi+j) = concatenation Convolution Layer Max-over-time pooling f (●) = non-linear function Wt h ∈ Rl x hk h = window size k = embeding size ct h ∈ Rl
  • 5. 2. Pooling Layer • Query relevance: • The document Embedding: 3. Query-Focused Sentence Ranking 5 M ∈ Rl x l
  • 6. 3. Ranking Layer • rank a sentence according to cosine similarity • Cosine Similarity: 3. Query-Focused Sentence Ranking 6
  • 7. ex. Training Process • Cost Function: • s+: High ROUGE score, s-: rest • Ω is margin threthold 3. Query-Focused Sentence Ranking 7
  • 8. Sentence Selection • 1. discard sentences less than 8 words • 2. sort descending order • 3. They iteratively dequeue the top-ranked sentence, and append it to the current summary if it is non-redundant. • non-redundant: new bi-gram ratio > .5 8
  • 9. Dataset • DUC 2005 ~ 2007, query-focused multi-document summarization task. • Preprocessing: StanfordCoreNLP (ssplit, tokenize) • Summary: the length limit of 250 words • Validation: 3-fold cross-validation 4. Experiments 9
  • 10. Model Setting • Word Embedding: (50 dimention, trained on News corpus)
 - don’t update word embeddings in the training process • word window size h = 2 • Convolution output l = 50 • margin Ω = 0.5 10 4. Experiments
  • 12. Baselines • LEAD • QUERY_SIM • MultiMR (Wan and iao, 2009) • SVR (Ouyang et al., 2011) • DocEmb (Kobayashi et al., 2015) • ISOLATION: AttSum w/o attention mechanism 12 4. Experiments
  • 14. Conclusion • Propose a novel query-focuesed summarization system called AttSum, which jointly handles saliency ranking and relevance ranking. 14