SlideShare a Scribd company logo
Lecture 14
Per Unit Analysis of Three
Phase System
2
After completing this unit you will be able to:
• Apply per unit models of power system components such as
generators, transformers, transmission lines, etc. to analyse a
balanced three-phase power system.
Learning Outcomes
3
Per-Unit System for Three Phase System
For a given single-line (one-line) diagram of a power network, all
component parameters are expressed in 3- quantity whether it is
the rating (capacity) expressed as MVA or voltage as kV. Lets begin
with 3- base quantity of
base
base
base I
V
S 3

where Vbase = line voltage, Ibase = line or phase current
Per phase base impedance,
base
base
base
I
V
Z
3

This is line-to-neutral impedance.
(i)
(ii)
4
Combining (i) and (ii) yields,
 
base
base
base
base
base
base
MVA
kV
V
S
V
Z
2
3
3 

where kVbase and MVAbase are 3- qualtities
5
Sometimes the parameters for two elements in the same circuit
(network) are quoted in per-unit on a different base. The changing
base impedance is given as,
Changing base impedance (Znew]
 
2
2
base OLD base NEW
NEW OLD
base OLD
base NEW
kV MVA
Z pu Z
MVA
kV
 
 
  
 
 
6
Determine the per-unit values of the following single-line diagram
and draw the impedance diagram. From the impedance diagram
obtained find the transmission line current.
Example
XT1 = 0.1 p.u
5 MVA
Xg = 16%
100 MVA
275 kV/132 kV
50 MVA
132 kV/66 kV
Transmission line
j 3.48 
XT2 = 0.04 p.u Load
40 MW, 0.8 p.f. lagging
7
Chosen base: Always choose the largest rating, therefore
Sbase = 100 MVA, V = 66 kV, 132 kV and 275 kV
Solution
Per-unit calculations
Generator G1:
 
2
2
base OLD base NEW
NEW OLD
base OLD
base NEW
kV MVA
Z pu Z
MVA
kV
 
 
  
 
 
32
.
0
50
100
275
275
16
.
0
)
( 2
2



pu
X g p.u.
8
Transformer T1:
1
.
0
)
(
1 
pu
XT
p.u.
Transmission line TL:
 
base
base
base
MVA
kV
Z
2

actual
pu
base
Z
Z
Z
 where
Therefore,
 
0195
.
0
132
100
4
.
3
2
2
.)
.
( j
j
kV
MVA
Z
Z
base
base
actual
u
p
TL 



 p.u.
9
Transformer T2:
 
2
2
base OLD base NEW
NEW OLD
base OLD
base NEW
kV MVA
Z pu Z
MVA
kV
 
 
  
 
 
08
.
0
50
100
66
66
04
.
0 2
2
.)
.
(
2 


u
p
T
X
Now, we have all the impedance values in per-unit with a common
base and we can now combine all the impedances and determine
the overall impedance.
10
Inductive load:
A
39
.
437
8
.
0
10
66
3
10
40
cos
3 6
6










LL
L
V
MVA
I
Magnitude of load current is
Since the load is inductive, so we can write
Given:
8
.
0
cos 

Therefore,
  

 
87
.
36
8
.
0
cos 1

A
87
.
36
39
.
437 



L
I
11












 87
.
36
12
.
87
87
.
36
39
.
437
0
3
10
66 3
)
(
L
Phase
actual
L
I
V
Z
Therefore,
 






 2
.
1
6
.
1
56
.
43
87
.
36
12
.
87
)
(
.)
.
( j
Z
Z
Z
base
actual
L
u
p
L
and
  


 56
.
43
100
662
2
base
base
base
MVA
kV
Z
Therefore,
12
Load
G
j 0.32 p.u.
j 0.1 p.u. j 0.0195 p.u.
Transformer
T1
Transformer
T2
Transmission Line
TL
j 0.08 p.u.
1.6 p.u..
j 1.2 p.u.
Generator
XT1 = 0.1 p.u
5 MVA
Xg = 16%
100 MVA
275 kV/132 kV
50 MVA
132 kV/66 kV
Transmission line
j 3.48 
XT2 = 0.04 p.u Load
40 MW, 0.8 p.f. lagging
13
Solution
Transmission line current
p.u.
06
.
47
426
.
0
j1.72
1.6
0
1
.)
.
(
.)
.
(
.)
.
( 








u
p
total
u
p
S
u
p
TL
Z
V
I
 
 
A
39
.
437
10
132
3
10
100
3 3
6
)
( 






base
base
base
TL
V
MVA
I
Therefore,
A
06
.
47
3
.
186
39
.
437
06
.
47
426
.
0
.)
.
(
)
(










 base
u
p
TL
actual
TL I
I
I
14
END

More Related Content

PPT
Per unit system
PDF
1_Intro + Per Unit.pdf
PPT
IMPEDANCE AND REACTANCE DIAGRAM OF THE PS.ppt
PPTX
per_unit_system.pptx
PPT
Lecture 8
PPT
UNIT -I per unit calculation,EQUIVALENT CIRCUIT
PPTX
Power-System-Slide-1.pptx
PPT
Power system analysis per unit calculations
Per unit system
1_Intro + Per Unit.pdf
IMPEDANCE AND REACTANCE DIAGRAM OF THE PS.ppt
per_unit_system.pptx
Lecture 8
UNIT -I per unit calculation,EQUIVALENT CIRCUIT
Power-System-Slide-1.pptx
Power system analysis per unit calculations

Similar to BEF 23803 - Lecture 14 - Per Unit Analysis of Three Phase System.ppt (20)

PDF
[LEC-04] Per Unit Calculations (Part-2).pdf
PPT
Lecture_8 transformer per unit analysis in power system
PDF
Assignment 1 170901 interconnected power system
PDF
Assignment 1 170901 interconnected power system
PDF
Power system calculations
PDF
Power System Analysis and Design
PDF
Ee423 fault analysis_notes
PDF
Power System Analysis!
PPT
CHAPTER 3 - Three Phase Network.ppt
PDF
International Journal of Engineering Research and Development
PDF
Ee 1351 power system analysis
PPT
Lecture 3
PPT
UNIT-III complex reactive three phase.ppt
PPTX
Unit-1 Per Unit System.pptx
PPT
Power system analysis three phase system and power system operation
DOC
Unit 2 Questions_Nagrath kothari
PPT
chapter_1_per_unit_power system_august_2011.ppt
PPT
per unit system chapter_1_per_unit_august_2011.ppt
PPT
Power system analysis complex power reactive compensation
PDF
Circuit theory
[LEC-04] Per Unit Calculations (Part-2).pdf
Lecture_8 transformer per unit analysis in power system
Assignment 1 170901 interconnected power system
Assignment 1 170901 interconnected power system
Power system calculations
Power System Analysis and Design
Ee423 fault analysis_notes
Power System Analysis!
CHAPTER 3 - Three Phase Network.ppt
International Journal of Engineering Research and Development
Ee 1351 power system analysis
Lecture 3
UNIT-III complex reactive three phase.ppt
Unit-1 Per Unit System.pptx
Power system analysis three phase system and power system operation
Unit 2 Questions_Nagrath kothari
chapter_1_per_unit_power system_august_2011.ppt
per unit system chapter_1_per_unit_august_2011.ppt
Power system analysis complex power reactive compensation
Circuit theory
Ad

More from LiewChiaPing (20)

PPT
chapter4 DC to AC Converter.ppt
PPTX
chapter_2 AC to DC Converter.pptx
PPT
chapter_1 Intro. to electonic Devices.ppt
PDF
Chapter 7 Application of Electronic Converters.pdf
PDF
Chapter 6 AC-AC Converters.pdf
PDF
Chapter 5 DC-DC Converters.pdf
PDF
Chapter 4 Inverters.pdf
PDF
Chapter 3 Controlled Rectifier.pdf
PDF
Chapter 2 Uncontrolled Rectifiers.pdf
PDF
Chapter 1 Introduction to power Electronic Devices.pdf
PDF
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
PDF
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
PDF
BEF43303_-_201620171_W11 Distance Protection.pdf
PDF
BEF43303_-_201620171_W10.pdf
PDF
BEF43303_-_201620171_W8 Power System Stability.pdf
PDF
BEF43303_-_201620171_W7 Power System Stability.pdf
PDF
BEF43303_-_201620171_W6 Analysis of Fault.pdf
PDF
BEF43303_-_201620171_W5 Analysis of fault.pdf
PDF
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
PDF
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
chapter4 DC to AC Converter.ppt
chapter_2 AC to DC Converter.pptx
chapter_1 Intro. to electonic Devices.ppt
Chapter 7 Application of Electronic Converters.pdf
Chapter 6 AC-AC Converters.pdf
Chapter 5 DC-DC Converters.pdf
Chapter 4 Inverters.pdf
Chapter 3 Controlled Rectifier.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 1 Introduction to power Electronic Devices.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
Ad

Recently uploaded (20)

PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
01-Introduction-to-Information-Management.pdf
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Lesson notes of climatology university.
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Pharma ospi slides which help in ospi learning
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
STATICS OF THE RIGID BODIES Hibbelers.pdf
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
01-Introduction-to-Information-Management.pdf
Complications of Minimal Access Surgery at WLH
Lesson notes of climatology university.
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Cell Types and Its function , kingdom of life
FourierSeries-QuestionsWithAnswers(Part-A).pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Microbial diseases, their pathogenesis and prophylaxis
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Module 4: Burden of Disease Tutorial Slides S2 2025
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Supply Chain Operations Speaking Notes -ICLT Program
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
human mycosis Human fungal infections are called human mycosis..pptx
Pharma ospi slides which help in ospi learning
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...

BEF 23803 - Lecture 14 - Per Unit Analysis of Three Phase System.ppt

  • 1. Lecture 14 Per Unit Analysis of Three Phase System
  • 2. 2 After completing this unit you will be able to: • Apply per unit models of power system components such as generators, transformers, transmission lines, etc. to analyse a balanced three-phase power system. Learning Outcomes
  • 3. 3 Per-Unit System for Three Phase System For a given single-line (one-line) diagram of a power network, all component parameters are expressed in 3- quantity whether it is the rating (capacity) expressed as MVA or voltage as kV. Lets begin with 3- base quantity of base base base I V S 3  where Vbase = line voltage, Ibase = line or phase current Per phase base impedance, base base base I V Z 3  This is line-to-neutral impedance. (i) (ii)
  • 4. 4 Combining (i) and (ii) yields,   base base base base base base MVA kV V S V Z 2 3 3   where kVbase and MVAbase are 3- qualtities
  • 5. 5 Sometimes the parameters for two elements in the same circuit (network) are quoted in per-unit on a different base. The changing base impedance is given as, Changing base impedance (Znew]   2 2 base OLD base NEW NEW OLD base OLD base NEW kV MVA Z pu Z MVA kV           
  • 6. 6 Determine the per-unit values of the following single-line diagram and draw the impedance diagram. From the impedance diagram obtained find the transmission line current. Example XT1 = 0.1 p.u 5 MVA Xg = 16% 100 MVA 275 kV/132 kV 50 MVA 132 kV/66 kV Transmission line j 3.48  XT2 = 0.04 p.u Load 40 MW, 0.8 p.f. lagging
  • 7. 7 Chosen base: Always choose the largest rating, therefore Sbase = 100 MVA, V = 66 kV, 132 kV and 275 kV Solution Per-unit calculations Generator G1:   2 2 base OLD base NEW NEW OLD base OLD base NEW kV MVA Z pu Z MVA kV            32 . 0 50 100 275 275 16 . 0 ) ( 2 2    pu X g p.u.
  • 8. 8 Transformer T1: 1 . 0 ) ( 1  pu XT p.u. Transmission line TL:   base base base MVA kV Z 2  actual pu base Z Z Z  where Therefore,   0195 . 0 132 100 4 . 3 2 2 .) . ( j j kV MVA Z Z base base actual u p TL      p.u.
  • 9. 9 Transformer T2:   2 2 base OLD base NEW NEW OLD base OLD base NEW kV MVA Z pu Z MVA kV            08 . 0 50 100 66 66 04 . 0 2 2 .) . ( 2    u p T X Now, we have all the impedance values in per-unit with a common base and we can now combine all the impedances and determine the overall impedance.
  • 10. 10 Inductive load: A 39 . 437 8 . 0 10 66 3 10 40 cos 3 6 6           LL L V MVA I Magnitude of load current is Since the load is inductive, so we can write Given: 8 . 0 cos   Therefore,       87 . 36 8 . 0 cos 1  A 87 . 36 39 . 437     L I
  • 11. 11              87 . 36 12 . 87 87 . 36 39 . 437 0 3 10 66 3 ) ( L Phase actual L I V Z Therefore,          2 . 1 6 . 1 56 . 43 87 . 36 12 . 87 ) ( .) . ( j Z Z Z base actual L u p L and       56 . 43 100 662 2 base base base MVA kV Z Therefore,
  • 12. 12 Load G j 0.32 p.u. j 0.1 p.u. j 0.0195 p.u. Transformer T1 Transformer T2 Transmission Line TL j 0.08 p.u. 1.6 p.u.. j 1.2 p.u. Generator XT1 = 0.1 p.u 5 MVA Xg = 16% 100 MVA 275 kV/132 kV 50 MVA 132 kV/66 kV Transmission line j 3.48  XT2 = 0.04 p.u Load 40 MW, 0.8 p.f. lagging
  • 13. 13 Solution Transmission line current p.u. 06 . 47 426 . 0 j1.72 1.6 0 1 .) . ( .) . ( .) . (          u p total u p S u p TL Z V I     A 39 . 437 10 132 3 10 100 3 3 6 ) (        base base base TL V MVA I Therefore, A 06 . 47 3 . 186 39 . 437 06 . 47 426 . 0 .) . ( ) (            base u p TL actual TL I I I