SlideShare a Scribd company logo
BIG DATA
What ?

Issues

Business Opportunies

How ?
Definition
         big data consists of datasets that grow so large that they become
            awkward to work with using on-hand database management
            tools. Difficulties include capture, storage, search, sharing,
            analytics, and visualizing. « WIKIPEDIA »



« The increasing volume and detail of information captured by enterprises,
the rise of multimedia, social media, and the Internet of Things will fuel
exponential growth in data for the foreseeable future ».
McKinsey Global Institute, http://bit.ly/tE7fiZ
Data Deluge : Evolution 2010-2015

                                                     e
                                                  bas
                                              Data
                                                             X 11
  3, 4 milliards                                      4          50 000
      d’abonnés                                                      pétaoctects
      3G en 2015
      contre 500                                                                            250 000
      millions en                                                                              pétaoctects
                                                                                        s
      2010                                                                         F ile
      Ericson
                                    ail
                                          s               30 000                        X 10
                                   M
                                                              pétaoctects
                                          X6

1 pétaoctet (Po)= 1 000 To= 1 000 000 000 000 000 d'octets                  International Communication Union
1 zettaoctect (Zo) = 10puissance 21 octets.
Non Structured Data
Données non structurées




                          Données structurées
Available DATA
                                                     files
            mail
…                                                     Mobile

    Social Network                                  Apps….




                   Comportemental DATA     RFM


Socio-psycho-demographic
                                                 Text DATA
          DATA
                Life Instant             Non structured
Contextual DATA
DATA Road Map



                                                 ----->
                                       -2015----
                            -----------
           2013-------------
    2012
BIG DATA : Theorical & practical
         Landscape
                      Human Societi
                                     es
                        IT system?
                  Customers, Co
                                nsumers ?
                           Privacy ?
                  Knowledges, H
                                abilities ?
                    Management, W
                                    ork
                       Organisation ?
BIG DATA : A Thermodinamic
        Evolution
                 Species (Human societies..)
                      produce energy &
  modify environment (human competition, natural resources..)




The Red Queen                                    Energy          Information
effect : Run                                   Maximization     memorization
faster to stay in
place!
IT ecosystem
Industries



               Data Created &
                 duplicated
IT system, today
                          Competitivity


                      Réduce Cost (not Only)
              4                                       1



                                                   Environment
Environment impact                 3
                                                    adaptation
                  5                            2
                          Information              6….
                          Memorization
  Resources




              Moore Law
Like that, the future is a BIG DATA
              CRUNCH
In a thermodynamic Schéma, BIG DATA Is
  Increase STORAGE + Inscrease TREATMENT +
  Increase DATA PRODUCTION +…

        Energy Dissipation
                             critical threshold



                                  ??
IT System Tomorrow

Entropy Management
DATA sens
Reduce Energie consumption
A BIG DATA Process
DATA Management       Multi canal (today)                    Cross Canal
                                                               (Tomorrow)
                                                   Life Instants
                                                                  Comportemental
                           web              mail
    Emission                                                        DATA
                                 …
                                                             voice
     Capture
                                                                  ….




                                                                                     Network &
                                                                         real Time
     Storage
                    Silo




    traitment
                                                     Predictive        Actions
                                                       Analysis         making
     Reuse
                                                     Contextual information PUSH
Consumers, customers Voice
                     Professionnal
                       Consumer
Privacy by Design
Visibility
                                    Security




        Transparency
                                Prevention
BIG DATA = A Co-adaptativ
          Environment
E       Hyperstructure
X
T                                Technologic Model
I
N
C
T
                                  Specialization
I
O
N

E
V                        U   C
                                             Decentralized
O                        S E                    collective
L                        E N                    intelligence
U                        R T                 Memetic
T
                             R                 Evolutiv
I                                              Environment
                             I
O
N                            c
Data Hominem = BIG DATA
         Knowledges
DATA Specialists who know collect, analyze
and reuse efficiency the data in a business
way
Few Ways BIG DATA

Capture Voice = Life Instant &
 Comportemental DATA
Understanding = Few to one,
 One to One.
Interaction = ATAWAD « any
  time, any where, any device »
Industrialize singularity
 Several years, Customers have good technology and
 consumption habits since they use different Medias to
 behave and stay informed: internet, mobile, touch pad,
 interactive interface, so on. The ways of consumption
 could be defined as a set of situations (probably
 circumstances) experienced by the customers. We
 observe an increase of the used medias combinations
 during the purchase process. So it becomes very
 difficult to understand real customers needing in only
 using statistical indicators. And however it’s the goal of
 everyone in the company. So, how can we measure the
 customer experience especially to understanding their
 new purchases habits? Customer reality would be
 elusive? Our process should be as complex as their
 behavior? No, smarter but not especially complex.
 Sometimes, expanded uses methods can be a good
 alternative. Finally, understanding user experience
 within customer centricity seems the best way to
 industrialize singularity.
                                                    ME…
Business in Progress




                 Transaction
                 space between
                 financial and
                 retail actors
BIG DATA, an opportunity for
        the Retail
Find DATA Connexity : Ex.
      WallMart Lab




 with Social Genome   wihtout Social Genome
DATA Matching : Ex. DATALIFT
       R&D Project
 In order to see the Web of data emerge, it is necessary to provide methods and
     tools all along the semantic lifting process. The main objective of
     DATALIFT is to bootstrap semantic lifting of raw data on the Web.




                                           Interconnexion des données avec d'autres jeux
                                               de données
                                           Publication sur le web de données
                                           Conversion des données en RDF en rapport
                                               avec la ou les ontologies selectionnées

                                           Sélection des ontologies pouvant décrire les
                                               données
BIG DATA Interaction : a
diagram of Customer evolution
Bring a lot of information on current changes and
emerging phenomena.

Communication on the efficiency and
performance will focus on the essentials
iteration.

The dashboard of the future can not be
compared, but it will tell us that is most important
in analysis and decision making.
Build a BIG DATA vision
     1. Capture Voice

Life Instants                           2. Understanding
                Comportemental
                  DATA            F
                                  O
                                  N                                  …
                                  C
                                  T
                                  I                        Scoring
                                  O
                                  N            Predictiv
                                  N            Analysis
                                  I   Expert
                                  T    rules
                                  Y
                                                    GRANULARITY
                3. Interaction

Diagram of            Dashboard
   evolution             360°
                  Alerts          …
HOW ?
DATACRUNCH, 13 APRIL 2012, LILLE, France




            RESEAU & ABLE
           www.reseaunable.net

More Related Content

PPT
Konceptuelt overblik over Big Data, Flemming Bagger, IBM
PPTX
Dr. Shahbaz Ali, CEO at Tarmin - Business Transformation in the Age of Big Data
PDF
Big data and big content
PDF
Smarter computing : an introduction to a new era of IT
PDF
The Future of ERP by Bertrand Andries
PPTX
Progress with confidence into next generation IT
PPT
Hadoop, Big Data, and the Future of the Enterprise Data Warehouse
PPT
Ibm swg day 2012 jhb big data (white)
Konceptuelt overblik over Big Data, Flemming Bagger, IBM
Dr. Shahbaz Ali, CEO at Tarmin - Business Transformation in the Age of Big Data
Big data and big content
Smarter computing : an introduction to a new era of IT
The Future of ERP by Bertrand Andries
Progress with confidence into next generation IT
Hadoop, Big Data, and the Future of the Enterprise Data Warehouse
Ibm swg day 2012 jhb big data (white)

What's hot (17)

PDF
Cutting Big Data Down to Size with AMD and Dell
 
PDF
Scenari evolutivi nello snellimento dei sistemi informativi
PPT
Stefan Decker Keynote at CSHALS
PDF
MICROSTRATEGY - Sessione introduttiva sulla piattaforma di Business Intelligence
PDF
Understanding The Big Data Opportunity Final
PPTX
Introduction to Open Data
PDF
The Diverse and Exploding Digital Universe
PDF
The Digital Universe in 2020
PDF
Mobile game changer 2011
PDF
Trends in business intelligence 2012
PDF
Opportunities and limitations of big data in evidence based policy making
PPSX
Nyu Poly 2012 R Lyle V1.0
PDF
sones company presentation
PPT
What happens when data start living their own life?
PDF
101 ab 1415-1445
PDF
Barclaycard Payment Security Newsletter Jan11
PPTX
Big Data Is Here - Now What?
Cutting Big Data Down to Size with AMD and Dell
 
Scenari evolutivi nello snellimento dei sistemi informativi
Stefan Decker Keynote at CSHALS
MICROSTRATEGY - Sessione introduttiva sulla piattaforma di Business Intelligence
Understanding The Big Data Opportunity Final
Introduction to Open Data
The Diverse and Exploding Digital Universe
The Digital Universe in 2020
Mobile game changer 2011
Trends in business intelligence 2012
Opportunities and limitations of big data in evidence based policy making
Nyu Poly 2012 R Lyle V1.0
sones company presentation
What happens when data start living their own life?
101 ab 1415-1445
Barclaycard Payment Security Newsletter Jan11
Big Data Is Here - Now What?
Ad

Viewers also liked (10)

PDF
HappyTrainees Aspirations-2015
PPTX
Microscope lab presentation
PPTX
Micro lab presentation
PPTX
Introductory Quiz : August 2011
PDF
Big Data @ Orange - Dev Day 2013 - part 1
PDF
Big Data... Big Analytics à travers les âges, les industries et les technologies
DOCX
Sample Rpms for Teachers
DOCX
Sample RPMS for MT II
PPTX
Open Science Quiz Prelims
PDF
[FW Invest] Près de 340 millions levés dans la Tech en novembre, un record en...
HappyTrainees Aspirations-2015
Microscope lab presentation
Micro lab presentation
Introductory Quiz : August 2011
Big Data @ Orange - Dev Day 2013 - part 1
Big Data... Big Analytics à travers les âges, les industries et les technologies
Sample Rpms for Teachers
Sample RPMS for MT II
Open Science Quiz Prelims
[FW Invest] Près de 340 millions levés dans la Tech en novembre, un record en...
Ad

Similar to Big data datacrunch (20)

PDF
Intel Cloud summit: Big Data by Nick Knupffer
PDF
Intel Cloud Summit: Big Data
PDF
Yahoo & Hadoop
PDF
hadoop @ Ibmbigdata
PPTX
Big Data, Hadoop, Hortonworks and Microsoft HDInsight
PPTX
Webinar | Using Hadoop Analytics to Gain a Big Data Advantage
PDF
Kim Escherich - How Big Data Transforms Our World
PPTX
Smarter Planet: How Big Data changes our world
PDF
Unexperienced pasts
PDF
Hadoop's Role in the Big Data Architecture, OW2con'12, Paris
 
PDF
Big data overview external
PPTX
Presentatie Big Data Forum 22 januari 2013 - Big Data en Big Society
PDF
1524 how ibm's big data solution can help you gain insight into your data cen...
 
PDF
Kave Salamatian, Universite de Savoie and Eiko Yoneki, University of Cambridg...
PPTX
Future of technical innovation 3 trends that impact enterprise users
PDF
The Age of Exabytes: Tools & Approaches for Managing Big Data
PPT
Big Data = Big Decisions
PPTX
CentriLogic's Downtown Toronto Data Center Grand Opening
PPTX
Big Data, Big Content, and Aligning Your Storage Strategy
PPTX
Future of cloud up presentation m_dawson
Intel Cloud summit: Big Data by Nick Knupffer
Intel Cloud Summit: Big Data
Yahoo & Hadoop
hadoop @ Ibmbigdata
Big Data, Hadoop, Hortonworks and Microsoft HDInsight
Webinar | Using Hadoop Analytics to Gain a Big Data Advantage
Kim Escherich - How Big Data Transforms Our World
Smarter Planet: How Big Data changes our world
Unexperienced pasts
Hadoop's Role in the Big Data Architecture, OW2con'12, Paris
 
Big data overview external
Presentatie Big Data Forum 22 januari 2013 - Big Data en Big Society
1524 how ibm's big data solution can help you gain insight into your data cen...
 
Kave Salamatian, Universite de Savoie and Eiko Yoneki, University of Cambridg...
Future of technical innovation 3 trends that impact enterprise users
The Age of Exabytes: Tools & Approaches for Managing Big Data
Big Data = Big Decisions
CentriLogic's Downtown Toronto Data Center Grand Opening
Big Data, Big Content, and Aligning Your Storage Strategy
Future of cloud up presentation m_dawson

Recently uploaded (20)

PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
sap open course for s4hana steps from ECC to s4
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
cuic standard and advanced reporting.pdf
PDF
Encapsulation theory and applications.pdf
PPTX
Big Data Technologies - Introduction.pptx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
KodekX | Application Modernization Development
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Reach Out and Touch Someone: Haptics and Empathic Computing
Building Integrated photovoltaic BIPV_UPV.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
Programs and apps: productivity, graphics, security and other tools
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Chapter 3 Spatial Domain Image Processing.pdf
sap open course for s4hana steps from ECC to s4
Understanding_Digital_Forensics_Presentation.pptx
cuic standard and advanced reporting.pdf
Encapsulation theory and applications.pdf
Big Data Technologies - Introduction.pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Unlocking AI with Model Context Protocol (MCP)
Diabetes mellitus diagnosis method based random forest with bat algorithm
20250228 LYD VKU AI Blended-Learning.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
The AUB Centre for AI in Media Proposal.docx
KodekX | Application Modernization Development
Network Security Unit 5.pdf for BCA BBA.
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows

Big data datacrunch

  • 2. Definition big data consists of datasets that grow so large that they become awkward to work with using on-hand database management tools. Difficulties include capture, storage, search, sharing, analytics, and visualizing. « WIKIPEDIA » « The increasing volume and detail of information captured by enterprises, the rise of multimedia, social media, and the Internet of Things will fuel exponential growth in data for the foreseeable future ». McKinsey Global Institute, http://bit.ly/tE7fiZ
  • 3. Data Deluge : Evolution 2010-2015 e bas Data X 11 3, 4 milliards 4 50 000 d’abonnés pétaoctects 3G en 2015 contre 500 250 000 millions en pétaoctects s 2010 F ile Ericson ail s 30 000 X 10 M pétaoctects X6 1 pétaoctet (Po)= 1 000 To= 1 000 000 000 000 000 d'octets International Communication Union 1 zettaoctect (Zo) = 10puissance 21 octets.
  • 4. Non Structured Data Données non structurées Données structurées
  • 5. Available DATA files mail … Mobile Social Network Apps…. Comportemental DATA RFM Socio-psycho-demographic Text DATA DATA Life Instant Non structured
  • 7. DATA Road Map -----> -2015---- ----------- 2013------------- 2012
  • 8. BIG DATA : Theorical & practical Landscape Human Societi es IT system? Customers, Co nsumers ? Privacy ? Knowledges, H abilities ? Management, W ork Organisation ?
  • 9. BIG DATA : A Thermodinamic Evolution Species (Human societies..) produce energy & modify environment (human competition, natural resources..) The Red Queen Energy Information effect : Run Maximization memorization faster to stay in place!
  • 10. IT ecosystem Industries Data Created & duplicated
  • 11. IT system, today Competitivity Réduce Cost (not Only) 4 1 Environment Environment impact 3 adaptation 5 2 Information 6…. Memorization Resources Moore Law
  • 12. Like that, the future is a BIG DATA CRUNCH In a thermodynamic Schéma, BIG DATA Is Increase STORAGE + Inscrease TREATMENT + Increase DATA PRODUCTION +… Energy Dissipation critical threshold ??
  • 13. IT System Tomorrow Entropy Management DATA sens Reduce Energie consumption
  • 14. A BIG DATA Process DATA Management Multi canal (today) Cross Canal (Tomorrow) Life Instants Comportemental web mail Emission DATA … voice Capture …. Network & real Time Storage Silo traitment Predictive Actions Analysis making Reuse Contextual information PUSH
  • 15. Consumers, customers Voice Professionnal Consumer
  • 16. Privacy by Design Visibility Security Transparency Prevention
  • 17. BIG DATA = A Co-adaptativ Environment E Hyperstructure X T Technologic Model I N C T Specialization I O N E V U C Decentralized O S E collective L E N intelligence U R T Memetic T R Evolutiv I Environment I O N c
  • 18. Data Hominem = BIG DATA Knowledges DATA Specialists who know collect, analyze and reuse efficiency the data in a business way
  • 19. Few Ways BIG DATA Capture Voice = Life Instant & Comportemental DATA Understanding = Few to one, One to One. Interaction = ATAWAD « any time, any where, any device »
  • 20. Industrialize singularity Several years, Customers have good technology and consumption habits since they use different Medias to behave and stay informed: internet, mobile, touch pad, interactive interface, so on. The ways of consumption could be defined as a set of situations (probably circumstances) experienced by the customers. We observe an increase of the used medias combinations during the purchase process. So it becomes very difficult to understand real customers needing in only using statistical indicators. And however it’s the goal of everyone in the company. So, how can we measure the customer experience especially to understanding their new purchases habits? Customer reality would be elusive? Our process should be as complex as their behavior? No, smarter but not especially complex. Sometimes, expanded uses methods can be a good alternative. Finally, understanding user experience within customer centricity seems the best way to industrialize singularity. ME…
  • 21. Business in Progress Transaction space between financial and retail actors
  • 22. BIG DATA, an opportunity for the Retail
  • 23. Find DATA Connexity : Ex. WallMart Lab with Social Genome wihtout Social Genome
  • 24. DATA Matching : Ex. DATALIFT R&D Project In order to see the Web of data emerge, it is necessary to provide methods and tools all along the semantic lifting process. The main objective of DATALIFT is to bootstrap semantic lifting of raw data on the Web. Interconnexion des données avec d'autres jeux de données Publication sur le web de données Conversion des données en RDF en rapport avec la ou les ontologies selectionnées Sélection des ontologies pouvant décrire les données
  • 25. BIG DATA Interaction : a diagram of Customer evolution Bring a lot of information on current changes and emerging phenomena. Communication on the efficiency and performance will focus on the essentials iteration. The dashboard of the future can not be compared, but it will tell us that is most important in analysis and decision making.
  • 26. Build a BIG DATA vision 1. Capture Voice Life Instants 2. Understanding Comportemental DATA F O N … C T I Scoring O N Predictiv N Analysis I Expert T rules Y GRANULARITY 3. Interaction Diagram of Dashboard evolution 360° Alerts …
  • 27. HOW ? DATACRUNCH, 13 APRIL 2012, LILLE, France RESEAU & ABLE www.reseaunable.net