SlideShare a Scribd company logo
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Blind Polychromatic X-ray CT Reconstruction
from Poisson MeasurementsŽ
Renliang Gu and Aleksandar Dogandžić
Electrical and Computer Engineering
Iowa State University
Ž presented by Aleksandar Dogandžić
supported by
1 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
References
R. G. and A. D., “Blind polychromatic X-ray CT
reconstruction from Poisson measurements,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process.,
Shanghai, China, Mar. 2016, pp. 898–902.
R. G. and A. D., “Blind X-ray CT image reconstruction
from polychromatic Poisson measurements,” IEEE
Trans. Comput. Imag., vol. 2, no. 2, pp. 150–165,
2016. DOI: 10.1109/TCI.2016.2523431.
2 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Terminology and Notation I
“ ” is the elementwise version of “ ”;
B1 spline means B-spline of order 1,
For a vector a D .an/ 2 RN , define
nonnegativity indicator function
IŒ0;C1/.a/ ,
(
0; a 0
C1; o.w.
I
elementwise logarithm
Œlnı an D ln an; 8n:
3 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Terminology and Notation II
ιL.s/ is the Laplace transform of ι.Ä/:
ιL
.s/ ,
Z
ι.Ä/e sÄ
dÄ;
Laplace transform with vector argument:
bL
ı.s/ D bL
ı
ˇ2
6
6
6
6
4
s1
s2
:::
sN
3
7
7
7
7
5
D
2
6
6
6
6
4
bL
.s1/
bL
.s2/
:::
bL
.sN /
3
7
7
7
7
5
:
4 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
X-ray CT
An X-ray computed
tomography (CT) scan
consists of multiple
projections with the beam
intensity measured by
multiple detectors.
Figure 1: Fan-beam CT system.
5 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Third Generation X-ray CT
(a) medical CT
Extremely fast and accurate
For
con
The
feat
con
blad
to r
By v
requ
GE R
When compared with conventional cone beam CT, highly collimated fa
quality CT slice result, due to the reduction of image artifacts caused b
Robotic sample
manipulation
Turbine blade
GE Jupiter linear
detector array
X-ray fan beam
Blade rotation
X-ray projection
imagesAcquisition of
slice projections
ISOVOLT Titan
450 kV X-ray source
In
m
on
tu(b) GE’s system for CT turbine-blade
inspection
6 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Introduction to CT Imaging (Parallel Beam)
A detector array is deployed parallel to the t axis and rotates
against the X-ray source collecting projections. Sinogram is
the set of collected projections as a function of angle at
which they are taken.
x-ray source
Â
t
Image
Â
t
sinogram
7 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Iterative Reconstruction
exactly the inverse of backprojection. It is per-
formed by summing up the intensities along
the potential ray paths for all projections
through the estimated image. The set of
projections (or sinogram) generated from
the estimated image then is compared with
and for this reason have been more slowly
adopted in the clinical setting. However, as
computer speeds continue to improve, and
with a combination of computer acceleration
techniques (e.g., parallel processors), and
intelligent coding (e.g., exploiting symmetries
FIGURE 16-17 Schematic illustration of the steps in iterative reconstruction. An initial image estimate is made and
projections that would have been recorded from the initial estimate then are calculated by forward projection. The
calculated forward projection profiles for the estimated image are compared to the profiles actually recorded from the
object and the difference is used to modify the estimated image to provide a closer match. The process is repeated until
Object
⍺(x,y)
CT system
Measured
projection data
sinogram p(r,φ)
Image
estimate
ɑ *(x,y)
Calculated
projection
data p(r,φ)
Compare
converged?
Yes
No
Update
image
estimate
Forward
projection
Reconstructed
image
from (Cherry et al. 2012)
8 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Exponential Law of Absorption
The fraction dI=I of plane-wave intensity lost in
traversing an infinitesimal thickness d` at Carte-
sian coordinates .x; y/ is proportional to d`:
dI
I
D .x; y; "/™
attenuation
d` D Ä."/˛.x; y/š
separable
d`
where " is photon energy and
Ä."/ 0 is the mass attenuation
function of the material and
˛.x; y/ 0 is the density map of the
inspected object.
(κ, α)
Iin
Iout
9 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Exponential Law of Absorption
The fraction dI=I of plane-wave intensity lost in
traversing an infinitesimal thickness d` at Carte-
sian coordinates .x; y/ is proportional to d`:
dI
I
D .x; y; "/™
attenuation
d` D Ä."/˛.x; y/š
separable
d`
where " is photon energy and
Ä."/ 0 is the mass attenuation
function of the material and
˛.x; y/ 0 is the density map of the
inspected object.
(κ, α)
Iin
Iout
To obtain the intensity decrease along a straight-line path
` D `.x; y/, integrate along ` and over ". The underlying
measurement model is nonlinear.
9 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Polychromatic X-ray CT Model
Incident energy Iin spreads along photon energy " with
density Ã."/:
Z
Ã."/ d" D Iin
:
Noiseless energy measurement
obtained upon traversing a straight
line ` D `.x; y/ through an object
composed of a single material:
Iout
D
l
Ã."/ exp
Ä
Ä."/
Z
`
˛.x; y/ d` d":
(κ, α)
Iin
Iout
10 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Problem with Linear-Model Based Reconstructions
(a) (b)
Figure 3: (a) FBP and (b) linear-model reconstructions from
polychromatic X-ray CT measurements.
11 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Problem Formulation and Goal
Assume that both
o the incident spectrum Ã."/ of X-ray source and
o mass attenuation function Ä."/ of the object
are unknown.
12 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Problem Formulation and Goal
Assume that both
o the incident spectrum Ã."/ of X-ray source and
o mass attenuation function Ä."/ of the object
are unknown.
Goal: Estimate the density map ˛.x; y/.
12 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Polychromatic X-ray CT Model Using
Mass-Attenuation Spectrum
Mass attenuation Ä."/ and incident spectrum density Ã."/ are
both functions of ".
κ(ε)
ι(ε)
0
0
ε
ε
13 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Polychromatic X-ray CT Model Using
Mass-Attenuation Spectrum
Mass attenuation Ä."/ and incident spectrum density Ã."/ are
both functions of ".
Idea. Write the model as integrals of Ä
rather than ":
Iin
D
Z
ι.Ä/ dÄ D ιL
.0/
Iout
D
Z
ι.Ä/ exp
Ä
Ä
Z
`
˛.x; y/ d` dÄ
D ιL
ÂZ
`
˛.x; y/ d`
Ã
:
4 Need to estimate one function, ι.Ä/,
rather than two, Ã."/ and Ä."/!
κ(ε)
ι(ε)
∆κj
∆εj
0
0
ε
ε
13 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Mass-Attenuation Spectrum
κ(ε) κ
ι(ε)
ι(κ)
∆κj ∆κj
∆εj
0
0
0ε
ε
Figure 4: Relation between mass attenuation Ä, incident spectrum
Ã, photon energy ", and mass attenuation spectrum ι.Ä/.
14 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Noiseless Polychromatic X-ray CT Model Using
Mass-Attenuation Spectrum ι.Ä/: Summary
Iin
D ιL
.0/
Iout
D ιL
ÂZ
`
˛.x; y/ d`
Ã
(κ, α)
Iin
Iout
15 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Mass-Attenuation Spectrum and Linearization
Function
For s > 0, the function
ιL
.s/ D
Z C1
0
ι.Ä/e sÄ
dÄ
is an invertible decreasing function of s.
16 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Mass-Attenuation Spectrum and Linearization
Function
For s > 0, the function
ιL
.s/ D
Z C1
0
ι.Ä/e sÄ
dÄ
is an invertible decreasing function of s.
.ιL/ 1 converts the noiseless measurement
Iout
D ιL
ÂZ
`
˛.x; y/ d`
Ã
into a linear noiseless “measurement”
R
` ˛.x; y/ d`.
16 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Mass-Attenuation Spectrum and Linearization
Function
The .ιL/ 1 ı exp. / mapping corresponds to the linearization
function in (Herman 1979) and converts ln Iout into a linear
noiseless “measurement”
R
` ˛.x; y/ d`.
0
1
2
3
4
5
6
7
8
0 2 4 6 8 10 12 14 16
Polychromaticprojections
Monochromatic projections
− ln ιL
(·)
17 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Basis-function expansion of mass-attenuation
spectrum ι.Ä/ D b.Ä/I
š.Ä/
Ä
š.Ä/
b.Ä/I
Figure 5: B1-spline expansion ι.Ä/ D b.Ä/I, where the B1-spline
basis is b.Ä/
“
1 J
D b1.Ä/; b2.Ä/; : : : ; bJ .Ä/ . ι.Ä/ 0 implies I 0.
18 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Discretization of ˛.x; y/
˛ 0 is a p 1 vector
representing the 2D image that
we wish to reconstruct and
0 is a p 1 vector of known
weights quantifying how much
each element of ˛ contributes
to the X-ray attenuation on the
straight-line path `.
detector array
X-ray source
ϕi
αi
R
` ˛.x; y/ d` T
˛.
19 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Multiple Measurements and Projection Matrix
Denote by N the total number of measurements from all
projections collected at the detector array.
For the nth measurement, define its discretized line
integral as T
n ˛.
Stacking all N such integrals into a vector yields
ˆ˛’
monochromatic
projection of ˛
where
ˆ
projection
matrix
D
2
6
6
6
6
4
T
1
T
2
:::
T
N
3
7
7
7
7
5
N p
:
20 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Noiseless Measurement Model
The N 1 vector of noiseless measurements is
Iout
.˛; I/ D bL
ı.ˆ˛/
˜
output
basis-function
matrix
I
where
bL
ı.s/ D
2
6
6
6
6
4
bL
.s1/
bL
.s2/
:::
bL
.sN /
3
7
7
7
7
5
and s D ˆ˛ is the monochromatic projection.
21 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Noise Model
Assume noisy Poisson-distributed measurements
E D .En/N
nD1, with the negative log-likelihood (NLL)
function
L.ˆ˛; I/
where
L.s; I/ D 1T
ŒbL
ı.s/I E ET
˚
lnıŒbL
ı.s/I lnı E
«
:
The Poisson model is a good approximation for the more
precise compound-Poisson distribution (Xu and Tsui
2014; Lasio et al. 2007).
22 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
NLL of I
Define A D bL
ı.ˆ˛/.
The NLL of I for known ˛ reduces to the NLL for Poisson
generalized linear model (GLM)‡ with identity link and design
matrix A:
LA.I/ D 1T
.AI E/ ET
lnı.AI/ lnı E :
‡See (McCullagh and Nelder 1989) for introduction to GLMs.
23 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
NLL of ˛
The NLL of ˛ for fixed ι.Ä/ is also a Poisson GLM:
Lι.˛/ D 1T
ιL
ı.ˆ˛/ E ET
˚
lnı ιL
ı.ˆ˛/ lnı E
«
with the link function equal to the inverse of ιL. /. Since ι.Ä/
is known, we do not need its basis-function expansion.
24 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
NLL of ˛
The NLL of ˛ for fixed ι.Ä/ is also a Poisson GLM:
Lι.˛/ D 1T
ιL
ı.ˆ˛/ E ET
˚
lnı ιL
ı.ˆ˛/ lnı E
«
with the link function equal to the inverse of ιL. /. Since ι.Ä/
is known, we do not need its basis-function expansion.
4 Lι.˛/ is convex, under conditions that we established in (G.
and D. 2016b)!
24 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Penalized NLL
objective
function
f .˛; I/ D L.˛; I/ C u k‰H
˛k1 C IR
p
C
.˛/ C IRJ
C
.I/
25 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Penalized NLL
objective
function
f .˛; I/ D L.˛; I/ C u k‰H
˛k1 C IR
p
C
.˛/ C IRJ
C
.I/
NLL
25 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Penalized NLL
objective
function
f .˛; I/ D L.˛; I/ C u k‰H
˛k1 C IR
p
C
.˛/ C IRJ
C
.I/
NLL
penalty term
u > 0 is a scalar tuning constant
we select gradient-map sparsifying transform k‰H
˛k1
25 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
TV Sparsifying Transform
p pixels
$
grad. map
ˇ
ˇŒ‰H
˛i
ˇ
ˇ
# significant coeffs p
Total-variation (TV) regularization.
26 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Goal and Minimization Approach
Goal: Estimate the density-map and mass-attenuation
spectrum parameters
.˛; I/
by minimizing the penalized NLL f .˛; I/.
Approach: A block coordinate-descent that uses
Nesterov’s proximal-gradient (NPG) (Nesterov 1983) and
limited-memory Broyden-Fletcher-Goldfarb-Shanno with
box constraints (L-BFGS-B) (Byrd et al. 1995; Zhu et al.
1997)
methods to update estimates of the density map and
mass-attenuation spectrum parameters.
We refer to this iteration as NPG-BFGS algorithm.
27 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Numerical Examples
B1-spline constants set to satisfy
J D 20; # basis functions
qJ
D 103
; span
Ä0qd0:5.J C1/e
D 1; centering
28 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Real X-ray CT Example I
360 equi-spaced fan-beam
projections with 1° spacing,
X-ray source to rotation center
is 3492 detector size,
measurement array size of 694
elements,
projection matrix ˆ
constructed directly on GPU,
x
y
detector array
X-ray source
D rotate
imaginary
detector array
yielding a nonlinear estimation problem with N D 694 360
measurements and an 512 512 image to reconstruct.
Implementation available at github.com/isucsp/imgRecSrc.
Real data provided by Joe Gray, CNDE. Thanks!
29 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
(a) FBP (b) NPG-BFGS (u D 10 5
)
Figure 6: Real X-ray CT: Full projections.
30 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Comments
Our reconstruction eliminates
the streaking artifacts across the air around the object,
the cupping artifacts with high intensity along the
border.
The regularization constant u has been tuned for good
reconstruction performance.
31 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Inverse Linearization Function Estimate
0
0.5
1
1.5
2
2.5
3
3.5
4
0 1 2 3 4 5 6 7 8 9
Polychromaticprojections
Monochromatic projections
NPG-BFGS
FBP
fitted − ln
[
bL
(·)I
]
Figure 7: The polychromatic measurements as function of the
monochromatic projections and its corresponding fitted curve.
Observe the biased residual for FBP, the unbiased residual
for NPG-BFGS and its increasing variance.
32 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Real X-ray CT Example II
360 and 120 equi-spaced fan-beam projections,
X-ray source to rotation center is 8696 times of a single
detector size,
measurement array size of 1380 elements,
projection matrix ˆ constructed on GPU with full
circular mask.
yielding a nonlinear estimation problem with
N D 1380 360 measurements and an 1024 1024 image
to reconstruct.
We employ same convergence constants as in the previous
example.
33 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
(a) FBP (b) NPG-BFGS (u D 10 5
)
Figure 8: Reconstructions from 360 fan-beam projections with 1°
spacing.
34 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Figure 9: Estimated ˛ and ln bL
. /I from 360 fan-beam
projections.
35 / 42
0
0.5
1
1.5
2
2.5
3
3.5
0 1 2 3 4 5
Itr=0
poly.proj.−lnImea
mono. proj. ϕT
α
data
fitted − ln ιL
(·)
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Inverse Linearization Function Estimate
−0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Polychromaticprojections
Monochromatic projections
NPG-BFGS
FBP
fitted − ln
[
bL
(·)I
]
Figure 10: The polychromatic measurements as function of the
monochromatic projections and its corresponding fitted curve.
36 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
(a) FBP (b) NPG-BFGS (u D 10 5
)
Figure 11: Reconstructions from 120 fan-beam projections with
3° spacing.
Observe aliasing artifacts in the FBP reconstruction.
37 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
(a) 360 projections (b) 120 projections
Figure 12: NPG-BFGS (u D 10 5
) reconstructions from fan-beam
projections.
The reconstructed density maps are uniform, except the
defect region.
38 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Simulated X-ray CT Example
10−1
100
101
102
103
40 80 120 160 200 240 280 320 360
RSE/%
Number of projections
FBP
linearized FBP
NPG-BFGS0
linearized BPDN
NPG-BFGS
NPG (known ι(κ))
Figure 13: Average relative square errors (RSEs) as functions of
the number of projections.
39 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Biconvexity, KL Property, and Convergence
Under certain condition,
o L.ˆ˛; I/ is biconvex with respect to ˛ and I.
o our objective function f .˛; I/ satisfies the
Kurdyka-Łojasiewicz (KL) inequality.
The above facts can be used to establish the local
convergence for alternating proximal minimization
methods (Attouch et al. 2010; Xu and Yin 2013)
o e.g., PG-BFGS,
o not NPG-BFGS.
See (G. and D. 2016b; G. and D. 2015).
40 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Conclusion
Developed a blind method for sparse density-map image
reconstruction from polychromatic X-ray CT measurements
in Poisson noise.
41 / 42
Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References
Future Work
Generalize our polychromatic signal model to handle multiple
materials and develop corresponding reconstruction
schemes.
42 / 42
References I
H. Attouch, J. Bolte, P. Redont, and A. Soubeyran,
“Proximal alternating minimization and projection
methods for nonconvex problems: An approach based
on the Kurdyka-Łojasiewicz inequality,” Math. Oper.
Res., vol. 35, no. 2, pp. 438–457, May 2010 (cit. on
p. 47).
R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited
memory algorithm for bound constrained optimization,”
SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190–1208,
1995 (cit. on p. 34).
S. R. Cherry, J. A. Sorenson, and M. E. Phelps, 4th ed.
Philadelphia, PA: W. B. Saunders, 2012, pp. 493–523
(cit. on p. 8).
References II
R. G. and A. D. (Sep. 2015), Polychromatic X-ray CT
image reconstruction and mass-attenuation spectrum
estimation, arXiv: 1509.02193 [stat.ME] (cit. on p. 47).
R. G. and A. D., “Blind polychromatic X-ray CT
reconstruction from Poisson measurements,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process.,
Shanghai, China, Mar. 2016, pp. 898–902 (cit. on
p. 2).
R. G. and A. D., “Blind X-ray CT image reconstruction
from polychromatic Poisson measurements,” IEEE
Trans. Comput. Imag., vol. 2, no. 2, pp. 150–165,
2016 (cit. on pp. 2, 28, 29, 47).
G. T. Herman, “Correction for beam hardening in
computed tomography,” Phys. Med. Biol., vol. 24,
no. 1, pp. 81–106, 1979 (cit. on p. 21).
References III
G. M. Lasio, B. R. Whiting, and J. F. Williamson,
“Statistical reconstruction for X-ray computed
tomography using energy-integrating detectors,” Phys.
Med. Biol., vol. 52, no. 8, p. 2247, 2007 (cit. on
p. 26).
P. McCullagh and J. Nelder, Generalized Linear Models,
2nd ed. New York: Chapman & Hall, 1989 (cit. on
p. 27).
Y. Nesterov, “A method of solving a convex
programming problem with convergence rate O.1=k2
/,”
Sov. Math. Dokl., vol. 27, no. 2, pp. 372–376, 1983
(cit. on p. 34).
References IV
J. Xu and B. M. W. Tsui, “Quantifying the importance of
the statistical assumption in statistical X-ray CT image
reconstruction,” IEEE Trans. Med. Imag., vol. 33,
no. 1, pp. 61–73, 2014 (cit. on p. 26).
Y. Xu and W. Yin, “A block coordinate descent method
for regularized multiconvex optimization with
applications to nonnegative tensor factorization and
completion,” SIAM J. Imag. Sci., vol. 6, no. 3,
pp. 1758–1789, 2013 (cit. on p. 47).
C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm
778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization,” ACM Trans. Math.
Softw., vol. 23, no. 4, pp. 550–560, Dec. 1997
(cit. on p. 34).

More Related Content

PDF
Photoacoustic tomography based on the application of virtual detectors
PDF
SPACE TIME ADAPTIVE PROCESSING FOR CLUTTER SUPPRESSION IN RADAR USING SUBSPAC...
PPTX
Presentation_Guccione.pptx
PDF
Enhancing the Radiation Pattern of Phase Array Antenna Using Particle Swarm O...
PDF
PhotonCountingMethods
PDF
Source localization using compressively sampled vector sensor array
PDF
Technical
PDF
Using Subspace Pursuit Algorithm to Improve Performance of the Distributed Co...
Photoacoustic tomography based on the application of virtual detectors
SPACE TIME ADAPTIVE PROCESSING FOR CLUTTER SUPPRESSION IN RADAR USING SUBSPAC...
Presentation_Guccione.pptx
Enhancing the Radiation Pattern of Phase Array Antenna Using Particle Swarm O...
PhotonCountingMethods
Source localization using compressively sampled vector sensor array
Technical
Using Subspace Pursuit Algorithm to Improve Performance of the Distributed Co...

What's hot (19)

PDF
Image compression based on
PDF
Art%3 a10.1155%2fs1110865704401036
PDF
Estimation of Separation and Location of Wave Emitting Sources : A Comparison...
PDF
PPTX
Dct and adaptive filters
PDF
L010628894
PPTX
Non-Local Compressive Sampling Recovery
PDF
An Image Restoration Practical Method
PDF
Gaussian Dictionary for Compressive Sensing of the ECG Signal
PDF
Channel and clipping level estimation for ofdm in io t –based networks a review
PDF
Sparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
PDF
Aeroacoustic simulation of bluff body noise using a hybrid statistical method
PDF
Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM
PDF
Image Fusion Ehancement using DT-CWT Technique
PDF
Internal multiple attenuation using inverse scattering: Results from prestack...
PDF
Performance of cognitive radio networks with maximal ratio combining over cor...
PDF
Noise Removal in SAR Images using Orthonormal Ridgelet Transform
PDF
VISUAL MODEL BASED SINGLE IMAGE DEHAZING USING ARTIFICIAL BEE COLONY OPTIMIZA...
Image compression based on
Art%3 a10.1155%2fs1110865704401036
Estimation of Separation and Location of Wave Emitting Sources : A Comparison...
Dct and adaptive filters
L010628894
Non-Local Compressive Sampling Recovery
An Image Restoration Practical Method
Gaussian Dictionary for Compressive Sensing of the ECG Signal
Channel and clipping level estimation for ofdm in io t –based networks a review
Sparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
Aeroacoustic simulation of bluff body noise using a hybrid statistical method
Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM
Image Fusion Ehancement using DT-CWT Technique
Internal multiple attenuation using inverse scattering: Results from prestack...
Performance of cognitive radio networks with maximal ratio combining over cor...
Noise Removal in SAR Images using Orthonormal Ridgelet Transform
VISUAL MODEL BASED SINGLE IMAGE DEHAZING USING ARTIFICIAL BEE COLONY OPTIMIZA...
Ad

Similar to Blind Beam-Hardening Correction from Poisson Measurements (20)

PDF
1873 1878
PDF
1873 1878
PDF
ALEXANDER FRACTIONAL INTEGRAL FILTERING OF WAVELET COEFFICIENTS FOR IMAGE DEN...
PDF
Lecture 3 sapienza 2017
PDF
Design of Linear Array Transducer Using Ultrasound Simulation Program Field-II
PDF
Ijri ece-01-02 image enhancement aided denoising using dual tree complex wave...
PDF
Ijri ece-01-02 image enhancement aided denoising using dual tree complex wave...
PDF
Paper id 252014114
PPTX
Nuclear imaging, PET CT MEDICAL PHYSICS
PDF
Conference_paper.pdf
PDF
Investigation of repeated blasts at Aitik mine using waveform cross correlation
PDF
Noise Removal in SAR Images using Orthonormal Ridgelet Transform
PDF
wireless power transfer
PDF
40120130406008
PDF
DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...
PDF
DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...
PDF
Mimo radar detection in compound gaussian clutter using orthogonal discrete f...
PDF
A Review on Image Denoising using Wavelet Transform
PDF
K147897
PDF
IRJET-Design and Implementation of Haze Removal System
1873 1878
1873 1878
ALEXANDER FRACTIONAL INTEGRAL FILTERING OF WAVELET COEFFICIENTS FOR IMAGE DEN...
Lecture 3 sapienza 2017
Design of Linear Array Transducer Using Ultrasound Simulation Program Field-II
Ijri ece-01-02 image enhancement aided denoising using dual tree complex wave...
Ijri ece-01-02 image enhancement aided denoising using dual tree complex wave...
Paper id 252014114
Nuclear imaging, PET CT MEDICAL PHYSICS
Conference_paper.pdf
Investigation of repeated blasts at Aitik mine using waveform cross correlation
Noise Removal in SAR Images using Orthonormal Ridgelet Transform
wireless power transfer
40120130406008
DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...
DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...
Mimo radar detection in compound gaussian clutter using orthogonal discrete f...
A Review on Image Denoising using Wavelet Transform
K147897
IRJET-Design and Implementation of Haze Removal System
Ad

Recently uploaded (20)

PDF
Visual Aids for Exploratory Data Analysis.pdf
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPT
Total quality management ppt for engineering students
PDF
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
PPTX
Feature types and data preprocessing steps
PPTX
CyberSecurity Mobile and Wireless Devices
PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PPTX
Module 8- Technological and Communication Skills.pptx
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Soil Improvement Techniques Note - Rabbi
PDF
III.4.1.2_The_Space_Environment.p pdffdf
Visual Aids for Exploratory Data Analysis.pdf
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Total quality management ppt for engineering students
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
Feature types and data preprocessing steps
CyberSecurity Mobile and Wireless Devices
Fundamentals of Mechanical Engineering.pptx
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Module 8- Technological and Communication Skills.pptx
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
distributed database system" (DDBS) is often used to refer to both the distri...
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
August 2025 - Top 10 Read Articles in Network Security & Its Applications
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
Information Storage and Retrieval Techniques Unit III
Soil Improvement Techniques Note - Rabbi
III.4.1.2_The_Space_Environment.p pdffdf

Blind Beam-Hardening Correction from Poisson Measurements

  • 1. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Blind Polychromatic X-ray CT Reconstruction from Poisson MeasurementsŽ Renliang Gu and Aleksandar Dogandžić Electrical and Computer Engineering Iowa State University Ž presented by Aleksandar Dogandžić supported by 1 / 42
  • 2. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References References R. G. and A. D., “Blind polychromatic X-ray CT reconstruction from Poisson measurements,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Shanghai, China, Mar. 2016, pp. 898–902. R. G. and A. D., “Blind X-ray CT image reconstruction from polychromatic Poisson measurements,” IEEE Trans. Comput. Imag., vol. 2, no. 2, pp. 150–165, 2016. DOI: 10.1109/TCI.2016.2523431. 2 / 42
  • 3. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Terminology and Notation I “ ” is the elementwise version of “ ”; B1 spline means B-spline of order 1, For a vector a D .an/ 2 RN , define nonnegativity indicator function IŒ0;C1/.a/ , ( 0; a 0 C1; o.w. I elementwise logarithm Œlnı an D ln an; 8n: 3 / 42
  • 4. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Terminology and Notation II ιL.s/ is the Laplace transform of ι.Ä/: ιL .s/ , Z ι.Ä/e sÄ dÄ; Laplace transform with vector argument: bL ı.s/ D bL ı ˇ2 6 6 6 6 4 s1 s2 ::: sN 3 7 7 7 7 5 D 2 6 6 6 6 4 bL .s1/ bL .s2/ ::: bL .sN / 3 7 7 7 7 5 : 4 / 42
  • 5. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References X-ray CT An X-ray computed tomography (CT) scan consists of multiple projections with the beam intensity measured by multiple detectors. Figure 1: Fan-beam CT system. 5 / 42
  • 6. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Third Generation X-ray CT (a) medical CT Extremely fast and accurate For con The feat con blad to r By v requ GE R When compared with conventional cone beam CT, highly collimated fa quality CT slice result, due to the reduction of image artifacts caused b Robotic sample manipulation Turbine blade GE Jupiter linear detector array X-ray fan beam Blade rotation X-ray projection imagesAcquisition of slice projections ISOVOLT Titan 450 kV X-ray source In m on tu(b) GE’s system for CT turbine-blade inspection 6 / 42
  • 7. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Introduction to CT Imaging (Parallel Beam) A detector array is deployed parallel to the t axis and rotates against the X-ray source collecting projections. Sinogram is the set of collected projections as a function of angle at which they are taken. x-ray source  t Image  t sinogram 7 / 42
  • 8. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Iterative Reconstruction exactly the inverse of backprojection. It is per- formed by summing up the intensities along the potential ray paths for all projections through the estimated image. The set of projections (or sinogram) generated from the estimated image then is compared with and for this reason have been more slowly adopted in the clinical setting. However, as computer speeds continue to improve, and with a combination of computer acceleration techniques (e.g., parallel processors), and intelligent coding (e.g., exploiting symmetries FIGURE 16-17 Schematic illustration of the steps in iterative reconstruction. An initial image estimate is made and projections that would have been recorded from the initial estimate then are calculated by forward projection. The calculated forward projection profiles for the estimated image are compared to the profiles actually recorded from the object and the difference is used to modify the estimated image to provide a closer match. The process is repeated until Object ⍺(x,y) CT system Measured projection data sinogram p(r,φ) Image estimate ɑ *(x,y) Calculated projection data p(r,φ) Compare converged? Yes No Update image estimate Forward projection Reconstructed image from (Cherry et al. 2012) 8 / 42
  • 9. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Exponential Law of Absorption The fraction dI=I of plane-wave intensity lost in traversing an infinitesimal thickness d` at Carte- sian coordinates .x; y/ is proportional to d`: dI I D .x; y; "/™ attenuation d` D Ä."/˛.x; y/š separable d` where " is photon energy and Ä."/ 0 is the mass attenuation function of the material and ˛.x; y/ 0 is the density map of the inspected object. (κ, α) Iin Iout 9 / 42
  • 10. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Exponential Law of Absorption The fraction dI=I of plane-wave intensity lost in traversing an infinitesimal thickness d` at Carte- sian coordinates .x; y/ is proportional to d`: dI I D .x; y; "/™ attenuation d` D Ä."/˛.x; y/š separable d` where " is photon energy and Ä."/ 0 is the mass attenuation function of the material and ˛.x; y/ 0 is the density map of the inspected object. (κ, α) Iin Iout To obtain the intensity decrease along a straight-line path ` D `.x; y/, integrate along ` and over ". The underlying measurement model is nonlinear. 9 / 42
  • 11. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Polychromatic X-ray CT Model Incident energy Iin spreads along photon energy " with density Ã."/: Z Ã."/ d" D Iin : Noiseless energy measurement obtained upon traversing a straight line ` D `.x; y/ through an object composed of a single material: Iout D l Ã."/ exp Ä Ä."/ Z ` ˛.x; y/ d` d": (κ, α) Iin Iout 10 / 42
  • 12. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Problem with Linear-Model Based Reconstructions (a) (b) Figure 3: (a) FBP and (b) linear-model reconstructions from polychromatic X-ray CT measurements. 11 / 42
  • 13. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Problem Formulation and Goal Assume that both o the incident spectrum Ã."/ of X-ray source and o mass attenuation function Ä."/ of the object are unknown. 12 / 42
  • 14. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Problem Formulation and Goal Assume that both o the incident spectrum Ã."/ of X-ray source and o mass attenuation function Ä."/ of the object are unknown. Goal: Estimate the density map ˛.x; y/. 12 / 42
  • 15. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Polychromatic X-ray CT Model Using Mass-Attenuation Spectrum Mass attenuation Ä."/ and incident spectrum density Ã."/ are both functions of ". κ(ε) ι(ε) 0 0 ε ε 13 / 42
  • 16. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Polychromatic X-ray CT Model Using Mass-Attenuation Spectrum Mass attenuation Ä."/ and incident spectrum density Ã."/ are both functions of ". Idea. Write the model as integrals of Ä rather than ": Iin D Z ι.Ä/ dÄ D ιL .0/ Iout D Z ι.Ä/ exp Ä Ä Z ` ˛.x; y/ d` dÄ D ιL ÂZ ` ˛.x; y/ d` Ã : 4 Need to estimate one function, ι.Ä/, rather than two, Ã."/ and Ä."/! κ(ε) ι(ε) ∆κj ∆εj 0 0 ε ε 13 / 42
  • 17. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Mass-Attenuation Spectrum κ(ε) κ ι(ε) ι(κ) ∆κj ∆κj ∆εj 0 0 0ε ε Figure 4: Relation between mass attenuation Ä, incident spectrum Ã, photon energy ", and mass attenuation spectrum ι.Ä/. 14 / 42
  • 18. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Noiseless Polychromatic X-ray CT Model Using Mass-Attenuation Spectrum ι.Ä/: Summary Iin D ιL .0/ Iout D ιL ÂZ ` ˛.x; y/ d` Ã (κ, α) Iin Iout 15 / 42
  • 19. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Mass-Attenuation Spectrum and Linearization Function For s > 0, the function ιL .s/ D Z C1 0 ι.Ä/e sÄ dÄ is an invertible decreasing function of s. 16 / 42
  • 20. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Mass-Attenuation Spectrum and Linearization Function For s > 0, the function ιL .s/ D Z C1 0 ι.Ä/e sÄ dÄ is an invertible decreasing function of s. .ιL/ 1 converts the noiseless measurement Iout D ιL ÂZ ` ˛.x; y/ d` Ã into a linear noiseless “measurement” R ` ˛.x; y/ d`. 16 / 42
  • 21. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Mass-Attenuation Spectrum and Linearization Function The .ιL/ 1 ı exp. / mapping corresponds to the linearization function in (Herman 1979) and converts ln Iout into a linear noiseless “measurement” R ` ˛.x; y/ d`. 0 1 2 3 4 5 6 7 8 0 2 4 6 8 10 12 14 16 Polychromaticprojections Monochromatic projections − ln ιL (·) 17 / 42
  • 22. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Basis-function expansion of mass-attenuation spectrum ι.Ä/ D b.Ä/I š.Ä/ Ä š.Ä/ b.Ä/I Figure 5: B1-spline expansion ι.Ä/ D b.Ä/I, where the B1-spline basis is b.Ä/ “ 1 J D b1.Ä/; b2.Ä/; : : : ; bJ .Ä/ . ι.Ä/ 0 implies I 0. 18 / 42
  • 23. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Discretization of ˛.x; y/ ˛ 0 is a p 1 vector representing the 2D image that we wish to reconstruct and 0 is a p 1 vector of known weights quantifying how much each element of ˛ contributes to the X-ray attenuation on the straight-line path `. detector array X-ray source ϕi αi R ` ˛.x; y/ d` T ˛. 19 / 42
  • 24. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Multiple Measurements and Projection Matrix Denote by N the total number of measurements from all projections collected at the detector array. For the nth measurement, define its discretized line integral as T n ˛. Stacking all N such integrals into a vector yields ˆ˛’ monochromatic projection of ˛ where ˆ projection matrix D 2 6 6 6 6 4 T 1 T 2 ::: T N 3 7 7 7 7 5 N p : 20 / 42
  • 25. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Noiseless Measurement Model The N 1 vector of noiseless measurements is Iout .˛; I/ D bL ı.ˆ˛/ ˜ output basis-function matrix I where bL ı.s/ D 2 6 6 6 6 4 bL .s1/ bL .s2/ ::: bL .sN / 3 7 7 7 7 5 and s D ˆ˛ is the monochromatic projection. 21 / 42
  • 26. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Noise Model Assume noisy Poisson-distributed measurements E D .En/N nD1, with the negative log-likelihood (NLL) function L.ˆ˛; I/ where L.s; I/ D 1T ŒbL ı.s/I E ET ˚ lnıŒbL ı.s/I lnı E « : The Poisson model is a good approximation for the more precise compound-Poisson distribution (Xu and Tsui 2014; Lasio et al. 2007). 22 / 42
  • 27. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References NLL of I Define A D bL ı.ˆ˛/. The NLL of I for known ˛ reduces to the NLL for Poisson generalized linear model (GLM)‡ with identity link and design matrix A: LA.I/ D 1T .AI E/ ET lnı.AI/ lnı E : ‡See (McCullagh and Nelder 1989) for introduction to GLMs. 23 / 42
  • 28. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References NLL of ˛ The NLL of ˛ for fixed ι.Ä/ is also a Poisson GLM: Lι.˛/ D 1T ιL ı.ˆ˛/ E ET ˚ lnı ιL ı.ˆ˛/ lnı E « with the link function equal to the inverse of ιL. /. Since ι.Ä/ is known, we do not need its basis-function expansion. 24 / 42
  • 29. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References NLL of ˛ The NLL of ˛ for fixed ι.Ä/ is also a Poisson GLM: Lι.˛/ D 1T ιL ı.ˆ˛/ E ET ˚ lnı ιL ı.ˆ˛/ lnı E « with the link function equal to the inverse of ιL. /. Since ι.Ä/ is known, we do not need its basis-function expansion. 4 Lι.˛/ is convex, under conditions that we established in (G. and D. 2016b)! 24 / 42
  • 30. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Penalized NLL objective function f .˛; I/ D L.˛; I/ C u k‰H ˛k1 C IR p C .˛/ C IRJ C .I/ 25 / 42
  • 31. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Penalized NLL objective function f .˛; I/ D L.˛; I/ C u k‰H ˛k1 C IR p C .˛/ C IRJ C .I/ NLL 25 / 42
  • 32. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Penalized NLL objective function f .˛; I/ D L.˛; I/ C u k‰H ˛k1 C IR p C .˛/ C IRJ C .I/ NLL penalty term u > 0 is a scalar tuning constant we select gradient-map sparsifying transform k‰H ˛k1 25 / 42
  • 33. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References TV Sparsifying Transform p pixels $ grad. map ˇ ˇŒ‰H ˛i ˇ ˇ # significant coeffs p Total-variation (TV) regularization. 26 / 42
  • 34. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Goal and Minimization Approach Goal: Estimate the density-map and mass-attenuation spectrum parameters .˛; I/ by minimizing the penalized NLL f .˛; I/. Approach: A block coordinate-descent that uses Nesterov’s proximal-gradient (NPG) (Nesterov 1983) and limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) (Byrd et al. 1995; Zhu et al. 1997) methods to update estimates of the density map and mass-attenuation spectrum parameters. We refer to this iteration as NPG-BFGS algorithm. 27 / 42
  • 35. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Numerical Examples B1-spline constants set to satisfy J D 20; # basis functions qJ D 103 ; span Ä0qd0:5.J C1/e D 1; centering 28 / 42
  • 36. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Real X-ray CT Example I 360 equi-spaced fan-beam projections with 1° spacing, X-ray source to rotation center is 3492 detector size, measurement array size of 694 elements, projection matrix ˆ constructed directly on GPU, x y detector array X-ray source D rotate imaginary detector array yielding a nonlinear estimation problem with N D 694 360 measurements and an 512 512 image to reconstruct. Implementation available at github.com/isucsp/imgRecSrc. Real data provided by Joe Gray, CNDE. Thanks! 29 / 42
  • 37. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References (a) FBP (b) NPG-BFGS (u D 10 5 ) Figure 6: Real X-ray CT: Full projections. 30 / 42
  • 38. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Comments Our reconstruction eliminates the streaking artifacts across the air around the object, the cupping artifacts with high intensity along the border. The regularization constant u has been tuned for good reconstruction performance. 31 / 42
  • 39. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Inverse Linearization Function Estimate 0 0.5 1 1.5 2 2.5 3 3.5 4 0 1 2 3 4 5 6 7 8 9 Polychromaticprojections Monochromatic projections NPG-BFGS FBP fitted − ln [ bL (·)I ] Figure 7: The polychromatic measurements as function of the monochromatic projections and its corresponding fitted curve. Observe the biased residual for FBP, the unbiased residual for NPG-BFGS and its increasing variance. 32 / 42
  • 40. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Real X-ray CT Example II 360 and 120 equi-spaced fan-beam projections, X-ray source to rotation center is 8696 times of a single detector size, measurement array size of 1380 elements, projection matrix ˆ constructed on GPU with full circular mask. yielding a nonlinear estimation problem with N D 1380 360 measurements and an 1024 1024 image to reconstruct. We employ same convergence constants as in the previous example. 33 / 42
  • 41. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References (a) FBP (b) NPG-BFGS (u D 10 5 ) Figure 8: Reconstructions from 360 fan-beam projections with 1° spacing. 34 / 42
  • 42. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Figure 9: Estimated ˛ and ln bL . /I from 360 fan-beam projections. 35 / 42 0 0.5 1 1.5 2 2.5 3 3.5 0 1 2 3 4 5 Itr=0 poly.proj.−lnImea mono. proj. ϕT α data fitted − ln ιL (·)
  • 43. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Inverse Linearization Function Estimate −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Polychromaticprojections Monochromatic projections NPG-BFGS FBP fitted − ln [ bL (·)I ] Figure 10: The polychromatic measurements as function of the monochromatic projections and its corresponding fitted curve. 36 / 42
  • 44. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References (a) FBP (b) NPG-BFGS (u D 10 5 ) Figure 11: Reconstructions from 120 fan-beam projections with 3° spacing. Observe aliasing artifacts in the FBP reconstruction. 37 / 42
  • 45. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References (a) 360 projections (b) 120 projections Figure 12: NPG-BFGS (u D 10 5 ) reconstructions from fan-beam projections. The reconstructed density maps are uniform, except the defect region. 38 / 42
  • 46. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Simulated X-ray CT Example 10−1 100 101 102 103 40 80 120 160 200 240 280 320 360 RSE/% Number of projections FBP linearized FBP NPG-BFGS0 linearized BPDN NPG-BFGS NPG (known ι(κ)) Figure 13: Average relative square errors (RSEs) as functions of the number of projections. 39 / 42
  • 47. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Biconvexity, KL Property, and Convergence Under certain condition, o L.ˆ˛; I/ is biconvex with respect to ˛ and I. o our objective function f .˛; I/ satisfies the Kurdyka-Łojasiewicz (KL) inequality. The above facts can be used to establish the local convergence for alternating proximal minimization methods (Attouch et al. 2010; Xu and Yin 2013) o e.g., PG-BFGS, o not NPG-BFGS. See (G. and D. 2016b; G. and D. 2015). 40 / 42
  • 48. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Conclusion Developed a blind method for sparse density-map image reconstruction from polychromatic X-ray CT measurements in Poisson noise. 41 / 42
  • 49. Background Mass-Attenuation Spectrum Parameter Estimation Numerical Examples Conclusion References Future Work Generalize our polychromatic signal model to handle multiple materials and develop corresponding reconstruction schemes. 42 / 42
  • 50. References I H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality,” Math. Oper. Res., vol. 35, no. 2, pp. 438–457, May 2010 (cit. on p. 47). R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound constrained optimization,” SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190–1208, 1995 (cit. on p. 34). S. R. Cherry, J. A. Sorenson, and M. E. Phelps, 4th ed. Philadelphia, PA: W. B. Saunders, 2012, pp. 493–523 (cit. on p. 8).
  • 51. References II R. G. and A. D. (Sep. 2015), Polychromatic X-ray CT image reconstruction and mass-attenuation spectrum estimation, arXiv: 1509.02193 [stat.ME] (cit. on p. 47). R. G. and A. D., “Blind polychromatic X-ray CT reconstruction from Poisson measurements,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Shanghai, China, Mar. 2016, pp. 898–902 (cit. on p. 2). R. G. and A. D., “Blind X-ray CT image reconstruction from polychromatic Poisson measurements,” IEEE Trans. Comput. Imag., vol. 2, no. 2, pp. 150–165, 2016 (cit. on pp. 2, 28, 29, 47). G. T. Herman, “Correction for beam hardening in computed tomography,” Phys. Med. Biol., vol. 24, no. 1, pp. 81–106, 1979 (cit. on p. 21).
  • 52. References III G. M. Lasio, B. R. Whiting, and J. F. Williamson, “Statistical reconstruction for X-ray computed tomography using energy-integrating detectors,” Phys. Med. Biol., vol. 52, no. 8, p. 2247, 2007 (cit. on p. 26). P. McCullagh and J. Nelder, Generalized Linear Models, 2nd ed. New York: Chapman & Hall, 1989 (cit. on p. 27). Y. Nesterov, “A method of solving a convex programming problem with convergence rate O.1=k2 /,” Sov. Math. Dokl., vol. 27, no. 2, pp. 372–376, 1983 (cit. on p. 34).
  • 53. References IV J. Xu and B. M. W. Tsui, “Quantifying the importance of the statistical assumption in statistical X-ray CT image reconstruction,” IEEE Trans. Med. Imag., vol. 33, no. 1, pp. 61–73, 2014 (cit. on p. 26). Y. Xu and W. Yin, “A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion,” SIAM J. Imag. Sci., vol. 6, no. 3, pp. 1758–1789, 2013 (cit. on p. 47). C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization,” ACM Trans. Math. Softw., vol. 23, no. 4, pp. 550–560, Dec. 1997 (cit. on p. 34).