SlideShare a Scribd company logo
Carc 03.01
alessandro.bogliolo@uniurb.it
03. Logic Networks
03.01. Boolean algebra and logic synthesis
• Definitions
• Boolean functions
• Properties
• Canonical forms
• Synthesis and minimization
Computer Architecture
alessandro.bogliolo@uniurb.it
Carc 03.01
alessandro.bogliolo@uniurb.it
Definitions
• Boolean set:
• Boolean constants: 0, 1
• Boolean variable:
• Boolean functions: z=f(x1,x2,...,xn)
• Operations:
 10,B
xyyxz)y,x(
:and

 BBB
yxz)y,x(
:or

 BBB
x'xzx
:not

 BB
 10,x
x y xy
0 0 0
0 1 0
1 0 0
1 1 1
x y x+y
0 0 0
0 1 1
1 0 1
1 1 1
x x'
0 1
1 0
BB n
:f
Carc 03.01
alessandro.bogliolo@uniurb.it
Boolean functions
• Truth table:
Table of 2n rows that associates
a Boolean value to each configuration
of n independent variables
There are 22n
different functions of n
variables
• Boolean expression:
Expression of Boolean variables,
Boolean constants and operators
c)ab(cab'cbaf 
BB n
:f a b c f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1
Carc 03.01
alessandro.bogliolo@uniurb.it
Properties
xxx  xxx 
)zx()yx()zy(x  )zx()yx()zy(x 
z)xy()yz(xxyz  z)yx()zy(xzyx 
xyyx yxxy
xx 1 xx 0
00x 11x
0 'xx 1 'xx
xxyx  x)yx(x 
'y'x)'xy(  'y'x)'yx( 
Idempotent laws
Distributive laws
Associative laws
Commutative laws
Identity elements
Null laws (forcing elements)
Complement laws
Absorption laws
De Morgan’s laws (duality principle)
Carc 03.01
alessandro.bogliolo@uniurb.it
Idempotent laws
xxx  xxx 
Idempotent laws
x y xy
0 0 0
0 1 0
1 0 0
1 1 1
x x*x
0 0*0 0
1 1*1 1
x y x+y
0 0 0
0 1 1
1 0 1
1 1 1
x x+x
0 0+0 0
1 1+1 1
By perfect induction:
Carc 03.01
alessandro.bogliolo@uniurb.it
xxyx  x)yx(x 
Absorption laws
Absorption laws
xx)y(xyxx  11
xyxxyxxx)yx(x 
By Boolean manipulation:
Carc 03.01
alessandro.bogliolo@uniurb.it
'y'x)'xy(  'y'x)'yx( 
De Morgan’s laws
De Morgan’s laws
By perfect induction:
x=0, y=0  (00)’=0’=1 0’+0’=1+1=1
x=0, y=1  (01)’=0’=1 0’+1’=1+0=1
x=1, y=0  (10)’=0’=1 1’+0’=0+1=1
x=1, y=1  (11)’=1’=0 1’+1’=0+0=0
x=0, y=0  (0+0)’=0’=1 0’0’=11=1
x=0, y=1  (0+1)’=1’=0 0’1’=10=0
x=1, y=0  (1+0)’=1’=0 1’0’=01=0
x=1, y=1  (1+1)’=1’=0 1’1’=00=0
Carc 03.01
alessandro.bogliolo@uniurb.it
Canonical forms
• There are infinite equivalent Boolean expressions.
• The equivalence (i.e., identity) between two expressions
can be demonstrated:
1. By perfect induction
2. By Boolean manipulation
• Canonical forms associate unique expressions to each
function
• Checking the equivalence between two functions
reduces to a comparison of their canonical
representations
Carc 03.01
alessandro.bogliolo@uniurb.it
Canonical forms (Sum of Products)
• Literal: independent variable taken either in true or
complemented form (e.g., x, x’)
• Minterm: Product of all independent variables taken
either in true or complemented form
• A minterm represents a Boolean function that takes value 1
corresponding to a unique configuration of input variables (e.g.,
f(a,b,c)=ab’c takes vale 1 for abc=101)
• A Boolean function that takes value 1 for M different
configurations (that has M 1’s in the truth table) can be
expressed as the sum of the M minterms associated with the M
1’s
• Any Boolean function can be expressed as a sum of
products
• A sum of minterms, with fixed variable order, is a
canonical form
Carc 03.01
alessandro.bogliolo@uniurb.it
From truth tables to SoPs
a b c f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1
f = a’b’c’+ a’bc’+ ab’c’+ abc’+ abc
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
= + + + +
Carc 03.01
alessandro.bogliolo@uniurb.it
Boolean minimization
Given a Boolean function,
find a Boolean expression that represents the function
using a minimum number of literals
• In general, this is not an easy task
• There is a closed-form solution for 2-level SoP expressions
• There is no closed-form solution for general multi-level
expressions.
• Heuristic solutions found by Boolean manipulation
f = a’b’c’+ a’bc’+ ab’c’+ abc’+ abc 15 literals
f = a’c’+ ab’c’+ ab 7 literals
f = a’c’+ ab’c’+ abc’+ abc 11 literals
Carc 03.01
alessandro.bogliolo@uniurb.it
Boolean minimization (example)
f = a’b’c’+ a’bc’+ ab’c’+ abc’+ abc 15 literals (SoP)
= a’c’(b’+ b) + ab’c’+ ab (c’+ c) 11 literals (distributive)
= a’c’+ ab’c’+ ab 7 literals (complement)
= a’c’+ a (b’c’+ b) 6 literals (distributive)
= a’c’+ a (b’c’+ b c’+ b) 8 literals (absorption)
= a’c’+ a ((b’+b) c’+ b) 7 literals (distributive)
= a’c’+ a (c’+ b) 5 literals (complement)
= a’c’+ a c’+ ab 6 literals (distributive)
= (a’+ a) c’+ ab 5 literals (distributive)
= c’+ ab 3 literals (complement)
Remark: the number of literals doesn’t decrease at every step.
This makes the process non trivial

More Related Content

KEY
0708 ch 7 day 8
PPT
First order differential equations
PDF
Calculus of hyperbolic functions
PDF
Derivatives of Trigonometric Functions, Part 2
PPT
Ch02 6
PDF
Day 3 examples
PDF
Mathcad - modified secant method 2
0708 ch 7 day 8
First order differential equations
Calculus of hyperbolic functions
Derivatives of Trigonometric Functions, Part 2
Ch02 6
Day 3 examples
Mathcad - modified secant method 2

What's hot (18)

PPT
Top School in Delhi NCR
PPTX
BBMP1103 - Sept 2011 exam workshop - part 8
PDF
Maxwell's equations
PPT
Mba admission in india
DOCX
8 vo meme
PDF
Math powerpoint- Polynomial equations and graph of polynomial functions
PDF
Probability cheatsheet
PPT
Hyperbolic functions
PDF
Additional notes EC220
PPTX
Integration
PPTX
Complex form fourier series
PDF
Stuff You Must Know Cold for the AP Calculus BC Exam!
PPTX
8.2 integration by parts
PPT
Calculus of variations
PPT
Longest Common Subsequence
PPTX
Hyperbolic functions dfs
PDF
Calculus cheat sheet_integrals
PPT
Integration by parts
Top School in Delhi NCR
BBMP1103 - Sept 2011 exam workshop - part 8
Maxwell's equations
Mba admission in india
8 vo meme
Math powerpoint- Polynomial equations and graph of polynomial functions
Probability cheatsheet
Hyperbolic functions
Additional notes EC220
Integration
Complex form fourier series
Stuff You Must Know Cold for the AP Calculus BC Exam!
8.2 integration by parts
Calculus of variations
Longest Common Subsequence
Hyperbolic functions dfs
Calculus cheat sheet_integrals
Integration by parts
Ad

Viewers also liked (7)

PDF
CArcMOOC 03.05 - RTL design
PDF
CArcMOOC 03.02 - Switching networks and combinational circuits
PDF
CArcMOOC 01.01 - Automated information processing
PDF
CArcMOOC 02.04 - Special encodings
PDF
CArcMOOC 02.02 - Encodings of numerical sets
PDF
CArcMOOC 02.03 - Encodings of non-numerical sets
PPT
CodyRoby at INTED2015
CArcMOOC 03.05 - RTL design
CArcMOOC 03.02 - Switching networks and combinational circuits
CArcMOOC 01.01 - Automated information processing
CArcMOOC 02.04 - Special encodings
CArcMOOC 02.02 - Encodings of numerical sets
CArcMOOC 02.03 - Encodings of non-numerical sets
CodyRoby at INTED2015
Ad

Similar to CArcMOOC 03.01 - Boolean algebra and Logic Synthesis (20)

PPTX
ANALOG AND DIGITAL ELECTRONICS unit 4
PPT
Boolean Algebra and Logic gates ( Chapter 2)
PPTX
FALLSEM2022-23_BECE102L_TH_VL2022230104428_Reference_Material_I_25-07-2022_Mo...
PDF
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
PDF
Chapter 2.pdf
PDF
ESTUDO DE ALGEBRA BOOLEANA PARA ESTUDOS.
PDF
DigitalLogic_BooleanAlgebra_P.pdf
PDF
DigitalLogic_BooleanAlgebra_P.pdf basics
PPTX
CcchcufugufufyfyfDE - UEEB02 - L 10-11.pptx
PPT
Boolean algebra And Logic Gates
PPT
2-Boolean-Algebra.ppt logic and computer design fundamental
PPT
boolean algebra and logic simplification
PPTX
Boolean expression org.
PPTX
WINSEM2024-25_ISWE201L_TH_VL2024250503341_2024-12-18_Reference-Material-I.pptx
PPT
boolean_algebra.ppt of all of us and the family will not even have to worry
PPT
CHAPTER_3.1.ppt
PDF
Chapter 2: Boolean Algebra and Logic Gates
PPTX
Sum of Product or SOP and Product of Sum or POS+ Karnaugh Map or K-Map .pptx
PPTX
Asima Final Presentation.pptx
ANALOG AND DIGITAL ELECTRONICS unit 4
Boolean Algebra and Logic gates ( Chapter 2)
FALLSEM2022-23_BECE102L_TH_VL2022230104428_Reference_Material_I_25-07-2022_Mo...
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
Chapter 2.pdf
ESTUDO DE ALGEBRA BOOLEANA PARA ESTUDOS.
DigitalLogic_BooleanAlgebra_P.pdf
DigitalLogic_BooleanAlgebra_P.pdf basics
CcchcufugufufyfyfDE - UEEB02 - L 10-11.pptx
Boolean algebra And Logic Gates
2-Boolean-Algebra.ppt logic and computer design fundamental
boolean algebra and logic simplification
Boolean expression org.
WINSEM2024-25_ISWE201L_TH_VL2024250503341_2024-12-18_Reference-Material-I.pptx
boolean_algebra.ppt of all of us and the family will not even have to worry
CHAPTER_3.1.ppt
Chapter 2: Boolean Algebra and Logic Gates
Sum of Product or SOP and Product of Sum or POS+ Karnaugh Map or K-Map .pptx
Asima Final Presentation.pptx

More from Alessandro Bogliolo (20)

PDF
AIXMOOC 2.6 - Come funzionano i Large Language Models
PDF
AIXMOOC 6.1 - Non sono un robot (Dom Holdaway)
PDF
AIXMOOC 5.3 - L'essere umano di fronte all'I.A. (Cristiano Maria Bellei)
PDF
AIXMOOC 4.3 - Geopolitica dell'intelligenza artificiale (Alessandro Aresu)
PDF
AIXMOOC 3.3 - Linguaggio e capacità cognitive (Gabriella Bottini)
PDF
AIXMOOC 3.2 - Linguaggio e memoria (Manuela Berlingeri)
PDF
AIXMOOC 4.2 - IA e informazione (Fabio Giglietto)
PDF
AIXMOOC 2.5 - CPU e GPU per Machine Learning (Luca Benini)
PDF
AIXMOOC 5.2 - IA generativa e creatività
PDF
AIXMOOC 3.1 - L'acquisizione del linguaggio (Mirta Vernice)
PPTX
AIXMOOC 4.1 - Comunicare con l'IA (Giovanni Boccia Artieri)
PDF
AIXMOOC 2.4 - Intelligenza artificiale generativa (Mirco Musolesi)
PDF
AIXMOOC 2.3 - Modelli di reti neurali con esperimenti di addestramento
PDF
AIXMOOC 2.2 - Reti neurali e machine learning (Valerio Freschi)
PDF
AIXMOOC 2.1 - Il modello del neurone (Stefano Sartini)
PDF
AIXMOOC 1.4 - Macchine Calcolatrici e Intelligenza, di A. Turing
PDF
AIXMOOC 5.1 - EU AI Act - Il regolamento europeo (Lucilla Sioli)
PPTX
AIXMOOC 1.2 - Quando le macchine impararono a parlare
PDF
AIXMOOC 1.1 - L'esplosione dell'Intelligenza Artificiale - Introduzione
PDF
BIBMOOC 05.03 - Codici in biblioteca
AIXMOOC 2.6 - Come funzionano i Large Language Models
AIXMOOC 6.1 - Non sono un robot (Dom Holdaway)
AIXMOOC 5.3 - L'essere umano di fronte all'I.A. (Cristiano Maria Bellei)
AIXMOOC 4.3 - Geopolitica dell'intelligenza artificiale (Alessandro Aresu)
AIXMOOC 3.3 - Linguaggio e capacità cognitive (Gabriella Bottini)
AIXMOOC 3.2 - Linguaggio e memoria (Manuela Berlingeri)
AIXMOOC 4.2 - IA e informazione (Fabio Giglietto)
AIXMOOC 2.5 - CPU e GPU per Machine Learning (Luca Benini)
AIXMOOC 5.2 - IA generativa e creatività
AIXMOOC 3.1 - L'acquisizione del linguaggio (Mirta Vernice)
AIXMOOC 4.1 - Comunicare con l'IA (Giovanni Boccia Artieri)
AIXMOOC 2.4 - Intelligenza artificiale generativa (Mirco Musolesi)
AIXMOOC 2.3 - Modelli di reti neurali con esperimenti di addestramento
AIXMOOC 2.2 - Reti neurali e machine learning (Valerio Freschi)
AIXMOOC 2.1 - Il modello del neurone (Stefano Sartini)
AIXMOOC 1.4 - Macchine Calcolatrici e Intelligenza, di A. Turing
AIXMOOC 5.1 - EU AI Act - Il regolamento europeo (Lucilla Sioli)
AIXMOOC 1.2 - Quando le macchine impararono a parlare
AIXMOOC 1.1 - L'esplosione dell'Intelligenza Artificiale - Introduzione
BIBMOOC 05.03 - Codici in biblioteca

Recently uploaded (20)

PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
01-Introduction-to-Information-Management.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
master seminar digital applications in india
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
Lesson notes of climatology university.
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
Supply Chain Operations Speaking Notes -ICLT Program
Anesthesia in Laparoscopic Surgery in India
Microbial disease of the cardiovascular and lymphatic systems
Abdominal Access Techniques with Prof. Dr. R K Mishra
Module 4: Burden of Disease Tutorial Slides S2 2025
01-Introduction-to-Information-Management.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
GDM (1) (1).pptx small presentation for students
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
master seminar digital applications in india
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Lesson notes of climatology university.
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
STATICS OF THE RIGID BODIES Hibbelers.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Cell Types and Its function , kingdom of life
Supply Chain Operations Speaking Notes -ICLT Program

CArcMOOC 03.01 - Boolean algebra and Logic Synthesis

  • 1. Carc 03.01 alessandro.bogliolo@uniurb.it 03. Logic Networks 03.01. Boolean algebra and logic synthesis • Definitions • Boolean functions • Properties • Canonical forms • Synthesis and minimization Computer Architecture alessandro.bogliolo@uniurb.it
  • 2. Carc 03.01 alessandro.bogliolo@uniurb.it Definitions • Boolean set: • Boolean constants: 0, 1 • Boolean variable: • Boolean functions: z=f(x1,x2,...,xn) • Operations:  10,B xyyxz)y,x( :and   BBB yxz)y,x( :or   BBB x'xzx :not   BB  10,x x y xy 0 0 0 0 1 0 1 0 0 1 1 1 x y x+y 0 0 0 0 1 1 1 0 1 1 1 1 x x' 0 1 1 0 BB n :f
  • 3. Carc 03.01 alessandro.bogliolo@uniurb.it Boolean functions • Truth table: Table of 2n rows that associates a Boolean value to each configuration of n independent variables There are 22n different functions of n variables • Boolean expression: Expression of Boolean variables, Boolean constants and operators c)ab(cab'cbaf  BB n :f a b c f 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1
  • 4. Carc 03.01 alessandro.bogliolo@uniurb.it Properties xxx  xxx  )zx()yx()zy(x  )zx()yx()zy(x  z)xy()yz(xxyz  z)yx()zy(xzyx  xyyx yxxy xx 1 xx 0 00x 11x 0 'xx 1 'xx xxyx  x)yx(x  'y'x)'xy(  'y'x)'yx(  Idempotent laws Distributive laws Associative laws Commutative laws Identity elements Null laws (forcing elements) Complement laws Absorption laws De Morgan’s laws (duality principle)
  • 5. Carc 03.01 alessandro.bogliolo@uniurb.it Idempotent laws xxx  xxx  Idempotent laws x y xy 0 0 0 0 1 0 1 0 0 1 1 1 x x*x 0 0*0 0 1 1*1 1 x y x+y 0 0 0 0 1 1 1 0 1 1 1 1 x x+x 0 0+0 0 1 1+1 1 By perfect induction:
  • 6. Carc 03.01 alessandro.bogliolo@uniurb.it xxyx  x)yx(x  Absorption laws Absorption laws xx)y(xyxx  11 xyxxyxxx)yx(x  By Boolean manipulation:
  • 7. Carc 03.01 alessandro.bogliolo@uniurb.it 'y'x)'xy(  'y'x)'yx(  De Morgan’s laws De Morgan’s laws By perfect induction: x=0, y=0  (00)’=0’=1 0’+0’=1+1=1 x=0, y=1  (01)’=0’=1 0’+1’=1+0=1 x=1, y=0  (10)’=0’=1 1’+0’=0+1=1 x=1, y=1  (11)’=1’=0 1’+1’=0+0=0 x=0, y=0  (0+0)’=0’=1 0’0’=11=1 x=0, y=1  (0+1)’=1’=0 0’1’=10=0 x=1, y=0  (1+0)’=1’=0 1’0’=01=0 x=1, y=1  (1+1)’=1’=0 1’1’=00=0
  • 8. Carc 03.01 alessandro.bogliolo@uniurb.it Canonical forms • There are infinite equivalent Boolean expressions. • The equivalence (i.e., identity) between two expressions can be demonstrated: 1. By perfect induction 2. By Boolean manipulation • Canonical forms associate unique expressions to each function • Checking the equivalence between two functions reduces to a comparison of their canonical representations
  • 9. Carc 03.01 alessandro.bogliolo@uniurb.it Canonical forms (Sum of Products) • Literal: independent variable taken either in true or complemented form (e.g., x, x’) • Minterm: Product of all independent variables taken either in true or complemented form • A minterm represents a Boolean function that takes value 1 corresponding to a unique configuration of input variables (e.g., f(a,b,c)=ab’c takes vale 1 for abc=101) • A Boolean function that takes value 1 for M different configurations (that has M 1’s in the truth table) can be expressed as the sum of the M minterms associated with the M 1’s • Any Boolean function can be expressed as a sum of products • A sum of minterms, with fixed variable order, is a canonical form
  • 10. Carc 03.01 alessandro.bogliolo@uniurb.it From truth tables to SoPs a b c f 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 f = a’b’c’+ a’bc’+ ab’c’+ abc’+ abc 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 = + + + +
  • 11. Carc 03.01 alessandro.bogliolo@uniurb.it Boolean minimization Given a Boolean function, find a Boolean expression that represents the function using a minimum number of literals • In general, this is not an easy task • There is a closed-form solution for 2-level SoP expressions • There is no closed-form solution for general multi-level expressions. • Heuristic solutions found by Boolean manipulation f = a’b’c’+ a’bc’+ ab’c’+ abc’+ abc 15 literals f = a’c’+ ab’c’+ ab 7 literals f = a’c’+ ab’c’+ abc’+ abc 11 literals
  • 12. Carc 03.01 alessandro.bogliolo@uniurb.it Boolean minimization (example) f = a’b’c’+ a’bc’+ ab’c’+ abc’+ abc 15 literals (SoP) = a’c’(b’+ b) + ab’c’+ ab (c’+ c) 11 literals (distributive) = a’c’+ ab’c’+ ab 7 literals (complement) = a’c’+ a (b’c’+ b) 6 literals (distributive) = a’c’+ a (b’c’+ b c’+ b) 8 literals (absorption) = a’c’+ a ((b’+b) c’+ b) 7 literals (distributive) = a’c’+ a (c’+ b) 5 literals (complement) = a’c’+ a c’+ ab 6 literals (distributive) = (a’+ a) c’+ ab 5 literals (distributive) = c’+ ab 3 literals (complement) Remark: the number of literals doesn’t decrease at every step. This makes the process non trivial