Chapter 5 - 1
ISSUES TO ADDRESS...
• How does diffusion occur?
• Why is it an important part of processing?
• How can the rate of diffusion be predicted for
some simple cases?
• How does diffusion depend on structure
and temperature?
Chapter 5: Diffusion in Solids
Chapter 5 - 2
Diffusion
Diffusion - Mass transport by atomic motion
Mechanisms
• Gases & Liquids – random (Brownian) motion
• Solids – vacancy diffusion or interstitial diffusion
Chapter 5 - 3
• Interdiffusion: In an alloy, atoms tend to migrate
from regions of high conc. to regions of low conc.
Initially
Adapted
from Figs.
5.1 and 5.2,
Callister 7e.
Diffusion
After some time
Chapter 5 - 4
• Self-diffusion: In an elemental solid, atoms
also migrate.
Label some atoms After some time
Diffusion
A
B
C
D
A
B
C
D
Chapter 5 - 5
Diffusion Mechanisms
Vacancy Diffusion:
• atoms exchange with vacancies
• applies to substitutional impurities atoms
• rate depends on:
--number of vacancies
--activation energy to exchange.
increasing elapsed time
Chapter 5 - 6
• Simulation of
interdiffusion
across an interface:
• Rate of substitutional
diffusion depends on:
--vacancy concentration
--frequency of jumping.
(Courtesy P.M. Anderson)
Diffusion Simulation
Chapter 5 - 7
Diffusion Mechanisms
• Interstitial diffusion – smaller atoms can
diffuse between atoms.
More rapid than vacancy diffusion
Adapted from Fig. 5.3 (b), Callister
7e.
Chapter 5 - 8
Adapted from
chapter-opening
photograph,
Chapter 5,
Callister 7e.
(Courtesy of
Surface Division,
Midland-Ross.)
• Case Hardening:
--Diffuse carbon atoms
into the host iron atoms
at the surface.
--Example of interstitial
diffusion is a case
hardened gear.
• Result: The presence of C
atoms makes iron (steel) harder.
Processing Using Diffusion
Chapter 5 - 9
• Doping silicon with phosphorus for n-type semiconductors:
• Process:
3. Result: Doped
semiconductor
regions.
silicon
Processing Using Diffusion
magnified image of a computer chip
0.5mm
light regions: Si atoms
light regions: Al atoms
2. Heat it.
1. Deposit P rich
layers on surface.
silicon
Adapted from chapter-opening
photograph, Chapter 18, Callister 7e.
Chapter 5 - 10
Diffusion
• How do we quantify the amount or rate of diffusion?
• Measured empirically
– Make thin film (membrane) of known surface area
– Impose concentration gradient
– Measure how fast atoms or molecules diffuse through the
membrane
( )( ) sm
kg
or
scm
mol
timeareasurface
diffusingmass)(ormoles
Flux
22
=≡≡J
dt
dM
A
l
At
M
J ==
M =
mass
diffused
time
J ∝ slope
Chapter 5 - 11
Steady-State Diffusion
dx
dC
DJ −=
Fick’s first law of diffusionC1
C2
x
C1
C2
x1 x2
D ≡ diffusion coefficient
Rate of diffusion independent of time
Flux proportional to concentration gradient =
dx
dC
12
12linearif
xx
CC
x
C
dx
dC
−
−
=
∆
∆
≅
Chapter 5 - 12
Example: Chemical Protective
Clothing (CPC)
• Methylene chloride is a common ingredient of paint
removers. Besides being an irritant, it also may be
absorbed through skin. When using this paint
remover, protective gloves should be worn.
• If butyl rubber gloves (0.04 cm thick) are used, what
is the diffusive flux of methylene chloride through the
glove?
• Data:
– diffusion coefficient in butyl rubber:
D = 110x10-8
cm2
/s
– surface concentrations:
C2 = 0.02 g/cm3
C1 = 0.44 g/cm3
Chapter 5 - 13
scm
g
10x16.1
cm)04.0(
)g/cm44.0g/cm02.0(
/s)cm10x110(
2
5-
33
28-
=
−
−=J
Example (cont).
12
12-
xx
CC
D
dx
dC
DJ
−
−
−≅=
D
tb
6
2

=
glove
C1
C2
skinpaint
remover
x1 x2
• Solution – assuming linear conc. gradient
D = 110x10-8
cm2
/s
C2 = 0.02 g/cm3
C1 = 0.44 g/cm3
x2 – x1 = 0.04 cm
Data:
Chapter 5 - 14
Diffusion and Temperature
• Diffusion coefficient increases with increasing T.
D = Do exp





−
Qd
RT
= pre-exponential [m2
/s]
= diffusion coefficient [m2
/s]
= activation energy [J/mol or eV/atom]
= gas constant [8.314 J/mol-K]
= absolute temperature [K]
D
Do
Qd
R
T
Chapter 5 - 15
Diffusion and Temperature
Adapted from Fig. 5.7, Callister 7e. (Date for Fig. 5.7 taken from E.A.
Brandes and G.B. Brook (Ed.) Smithells Metals Reference Book, 7th
ed., Butterworth-Heinemann, Oxford, 1992.)
D has exponential dependence on T
Dinterstitial >> Dsubstitutional
C in α-Fe
C in γ-Fe
Al in Al
Fe in α-Fe
Fe in γ-Fe
1000K/T
D (m2
/s) C in α-Fe
C
in
γ-Fe
Alin
Al
Fe
in
α-Fe
Feinγ-Fe
0.5 1.0 1.5
10-20
10-14
10-8
T(°C)
1500
1000
600
300
Chapter 5 - 16
Example: At 300ºC the diffusion coefficient and
activation energy for Cu in Si are
D(300ºC) = 7.8 x 10-11
m2
/s
Qd = 41.5 kJ/mol
What is the diffusion coefficient at 350ºC?






−=





−=
1
01
2
02
1
lnlnand
1
lnln
TR
Q
DD
TR
Q
DD dd






−−==−∴
121
2
12
11
lnlnln
TTR
Q
D
D
DD d
transform
data
D
Temp = T
ln D
1/T
Chapter 5 - 17
Example (cont.)












−
−
= −
K573
1
K623
1
K-J/mol314.8
J/mol500,41
exp/s)m10x8.7( 211
2D












−−=
12
12
11
exp
TTR
Q
DD d
T1 = 273 + 300 = 573K
T2 = 273 + 350 = 623K
D2 = 15.7 x 10-11
m2
/s
Chapter 5 - 18
Non-steady State Diffusion
• The concentration of diffucing species is a function of
both time and position C = C(x,t)
• In this case Fick’s Second Law is used
2
2
x
C
D
t
C
∂
∂
=
∂
∂Fick’s Second Law
Chapter 5 - 19
Non-steady State Diffusion
Adapted from
Fig. 5.5,
Callister 7e.
B.C. at t = 0, C = Co for 0 ≤ x ≤ ∞
at t > 0, C = CS for x = 0 (const. surf. conc.)
C = Co for x = ∞
• Copper diffuses into a bar of aluminum.
pre-existing conc., Co of copper atoms
Surface conc.,
C of Cu atoms bar
s
Cs
Chapter 5 - 20
Solution:
C(x,t) = Conc. at point x at
time t
erf (z) = error function
erf(z) values are given in
Table 5.1
CS
Co
C(x,t)
( )






−=
−
−
Dt
x
CC
Ct,xC
os
o
2
erf1
dye y
z 2
0
2 −
∫π
=
Chapter 5 - 21
Non-steady State Diffusion
• Sample Problem: An FCC iron-carbon alloy initially
containing 0.20 wt% C is carburized at an elevated
temperature and in an atmosphere that gives a
surface carbon concentration constant at 1.0 wt%. If
after 49.5 h the concentration of carbon is 0.35 wt%
at a position 4.0 mm below the surface, determine
the temperature at which the treatment was carried
out.
• Solution: use Eqn. 5.5 





−=
−
−
Dt
x
CC
CtxC
os
o
2
erf1
),(
Chapter 5 - 22
Solution (cont.):
– t = 49.5 h x = 4 x 10-3
m
– Cx = 0.35 wt% Cs = 1.0 wt%
– Co = 0.20 wt%






−=
−
−
Dt
x
CC
C)t,x(C
os
o
2
erf1
)(erf1
2
erf1
20.00.1
20.035.0),(
z
Dt
x
CC
CtxC
os
o −=





−=
−
−
=
−
−
∴ erf(z) = 0.8125
Chapter 5 - 23
Solution (cont.):
We must now determine from Table 5.1 the value of z for which the
error function is 0.8125. An interpolation is necessary as follows
z erf(z)
0.90 0.7970
z 0.8125
0.95 0.8209
7970.08209.0
7970.08125.0
90.095.0
90.0
−
−
=
−
−z
z = 0.93
Now solve for D
Dt
x
z
2
=
tz
x
D
2
2
4
=
/sm10x6.2
s3600
h1
h)5.49()93.0()4(
m)10x4(
4
211
2
23
2
2
−
−
==








=∴
tz
x
D
Chapter 5 - 24
• To solve for the temperature at
which D has above value, we
use a rearranged form of
Equation (5.9a);
)lnln( DDR
Q
T
o
d
−
=
from Table 5.2, for diffusion of C in FCC Fe
Do = 2.3 x 10-5
m2
/s Qd = 148,000 J/mol
/s)m10x6.2ln/sm10x3.2K)(ln-J/mol314.8(
J/mol000,148
21125 −−
−
=T∴
Solution (cont.):
T = 1300 K = 1027°C
Chapter 5 - 25
Example: Chemical Protective
Clothing (CPC)
• Methylene chloride is a common ingredient of paint removers.
Besides being an irritant, it also may be absorbed through skin.
When using this paint remover, protective gloves should be
worn.
• If butyl rubber gloves (0.04 cm thick) are used, what is the
breakthrough time (tb), i.e., how long could the gloves be used
before methylene chloride reaches the hand?
• Data (from Table 22.5)
– diffusion coefficient in butyl rubber:
D = 110x10-8
cm2
/s
Chapter 5 - 26
Example (cont).
Time required for breakthrough ca. 4 min
glove
C1
C2
skinpaint
remover
x1 x2
• Solution – assuming linear conc. gradient
D
tb
6
2

= Equation 22.24
cm0.0412 =−= xx
D = 110x10-8
cm2
/s
min4s240
/s)cm10x110)(6(
cm)04.0(
28-
2
===bt
Chapter 5 - 27
Diffusion FASTER for...
• open crystal structures
• materials w/secondary
bonding
• smaller diffusing atoms
• lower density materials
Diffusion SLOWER for...
• close-packed structures
• materials w/covalent
bonding
• larger diffusing atoms
• higher density materials
Summary
Chapter 5 - 28
Core Problems:
Self-help Problems:
ANNOUNCEMENTS
Reading:

More Related Content

PPT
Material Science Chapter 4
PPT
Ch09
PDF
Solution manual 9
PPTX
Material science.pptx
PDF
Sintering
PPTX
Necking
PPTX
Dr.R.Narayanasamy - Super Plasticity
Material Science Chapter 4
Ch09
Solution manual 9
Material science.pptx
Sintering
Necking
Dr.R.Narayanasamy - Super Plasticity

What's hot (20)

PPTX
Dislocations in FCC Metals_Radwan
PPT
Imperfections lecture 2
PPT
Ch07 ppts material
PPTX
Creep Failure
PDF
Lecture: Diffusion in Metals and Alloys
PPTX
Focused ion beam lithography
PPTX
Crystal structure
PDF
Effect of Temperature and Strain Rate on the Mechanical Properties of Polycar...
PDF
Techniques for synthesis of nanomaterials (II)
PPTX
Phase Transformation.
PPT
structure_factor_calculations.ppt
PDF
Solution manual 7 8
PPTX
Fracture Mechanics & Failure Analysis: Griffith theory of brittle fracture
PPTX
Failure mechanism part: Fracture
PDF
Solution manual 1 3
PPTX
Lattice dynamics
PPTX
Atomic packing factor
PPTX
L 05
PPT
Phase transformation edited.ppt1
Dislocations in FCC Metals_Radwan
Imperfections lecture 2
Ch07 ppts material
Creep Failure
Lecture: Diffusion in Metals and Alloys
Focused ion beam lithography
Crystal structure
Effect of Temperature and Strain Rate on the Mechanical Properties of Polycar...
Techniques for synthesis of nanomaterials (II)
Phase Transformation.
structure_factor_calculations.ppt
Solution manual 7 8
Fracture Mechanics & Failure Analysis: Griffith theory of brittle fracture
Failure mechanism part: Fracture
Solution manual 1 3
Lattice dynamics
Atomic packing factor
L 05
Phase transformation edited.ppt1
Ad

Viewers also liked (11)

PPTX
Phase Transformation Lecture 3
PPTX
Diffusion report
PDF
P diffusion_1
PPTX
Em321 lesson 08a solutions ch5 - diffusion
PPT
Lect5 Diffusion
PPTX
Diffusion (Physical Pharmacy)
PPT
Diffusion
PPSX
Diffusion in Materials
PPT
Diffusion final
PDF
Transport phenomena-Mass Transfer 31-Jul-2016
PPTX
Diffusion ppt ak
Phase Transformation Lecture 3
Diffusion report
P diffusion_1
Em321 lesson 08a solutions ch5 - diffusion
Lect5 Diffusion
Diffusion (Physical Pharmacy)
Diffusion
Diffusion in Materials
Diffusion final
Transport phenomena-Mass Transfer 31-Jul-2016
Diffusion ppt ak
Ad

Similar to Ch05 ppts callister7e (20)

PDF
ch05_.pdf.pdf
PDF
chapter Seven diffusion from Materials Science and Engineering An Introducti...
PPT
diffusion final PPT.ppt
PDF
Ch05 diffusion-updated sept2016-sent fall2016
PPTX
Diffusion_7.pptx
PDF
PDF
Reinforced Concrete Elevated tank Analysis and Design (Wind & Seismic) Accord...
PPT
Creep II.ppt
PDF
Fractal Kinetics Bruyères-le-Châtel
PPTX
section 9.pptx
PDF
Mechanics Of Fluids 4th Edition Potter Solutions Manual
PPTX
Material 8
PPTX
Numerical and analytical studies of single and multiphase starting jets and p...
PPT
AS-0-General physics vernier calipers.ppt
PDF
2016 CHE2163 Tutorial 5
PDF
Autochem
PPT
DIFFUSION in materials and its basic understandings
PDF
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
PPT
Mass spectroscopy
ch05_.pdf.pdf
chapter Seven diffusion from Materials Science and Engineering An Introducti...
diffusion final PPT.ppt
Ch05 diffusion-updated sept2016-sent fall2016
Diffusion_7.pptx
Reinforced Concrete Elevated tank Analysis and Design (Wind & Seismic) Accord...
Creep II.ppt
Fractal Kinetics Bruyères-le-Châtel
section 9.pptx
Mechanics Of Fluids 4th Edition Potter Solutions Manual
Material 8
Numerical and analytical studies of single and multiphase starting jets and p...
AS-0-General physics vernier calipers.ppt
2016 CHE2163 Tutorial 5
Autochem
DIFFUSION in materials and its basic understandings
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
Mass spectroscopy

More from Julyanne Rodrigues (20)

PDF
Aula 02 a política nacional de resíduos sólidos e a reciclagem de materiais
PDF
Logística reversa de lâmpadas fluorescentes
PDF
Cerâmicas
PDF
PDF
Quiv354a54
PDF
classificacao e_nomenclatura_de_acidos_bases_e_sais
PDF
Equilibrio ionico hidrolise_farias_brito_antonino_fontenelle
PDF
hidrolise-salina
PDF
Capitulo 4 para internet
PDF
Aula8acidos
PDF
Acido, base e sal
PDF
Equilibrio químico
PDF
PDF
PDF
DOC
Exercícios de-hidrólise-lista-3
PPTX
Polaridadedasmolculaseforasintermoleculares 101024102915-phpapp02
PPTX
fisicoquimica forcas intermoleculares e propriedades
PDF
Propriedades mecânicas dos materiais
PDF
Tecnologia dos materiais
Aula 02 a política nacional de resíduos sólidos e a reciclagem de materiais
Logística reversa de lâmpadas fluorescentes
Cerâmicas
Quiv354a54
classificacao e_nomenclatura_de_acidos_bases_e_sais
Equilibrio ionico hidrolise_farias_brito_antonino_fontenelle
hidrolise-salina
Capitulo 4 para internet
Aula8acidos
Acido, base e sal
Equilibrio químico
Exercícios de-hidrólise-lista-3
Polaridadedasmolculaseforasintermoleculares 101024102915-phpapp02
fisicoquimica forcas intermoleculares e propriedades
Propriedades mecânicas dos materiais
Tecnologia dos materiais

Recently uploaded (20)

PPTX
Modernising the Digital Integration Hub
PDF
Convolutional neural network based encoder-decoder for efficient real-time ob...
PDF
OpenACC and Open Hackathons Monthly Highlights July 2025
PPTX
Benefits of Physical activity for teenagers.pptx
PPT
What is a Computer? Input Devices /output devices
PPTX
Configure Apache Mutual Authentication
PDF
UiPath Agentic Automation session 1: RPA to Agents
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
Getting started with AI Agents and Multi-Agent Systems
PPTX
Custom Battery Pack Design Considerations for Performance and Safety
PPTX
TEXTILE technology diploma scope and career opportunities
PDF
A proposed approach for plagiarism detection in Myanmar Unicode text
PDF
Architecture types and enterprise applications.pdf
PDF
Comparative analysis of machine learning models for fake news detection in so...
PPT
Geologic Time for studying geology for geologist
PDF
Credit Without Borders: AI and Financial Inclusion in Bangladesh
PDF
A review of recent deep learning applications in wood surface defect identifi...
PPTX
2018-HIPAA-Renewal-Training for executives
PDF
Five Habits of High-Impact Board Members
Modernising the Digital Integration Hub
Convolutional neural network based encoder-decoder for efficient real-time ob...
OpenACC and Open Hackathons Monthly Highlights July 2025
Benefits of Physical activity for teenagers.pptx
What is a Computer? Input Devices /output devices
Configure Apache Mutual Authentication
UiPath Agentic Automation session 1: RPA to Agents
NewMind AI Weekly Chronicles – August ’25 Week III
Zenith AI: Advanced Artificial Intelligence
Getting started with AI Agents and Multi-Agent Systems
Custom Battery Pack Design Considerations for Performance and Safety
TEXTILE technology diploma scope and career opportunities
A proposed approach for plagiarism detection in Myanmar Unicode text
Architecture types and enterprise applications.pdf
Comparative analysis of machine learning models for fake news detection in so...
Geologic Time for studying geology for geologist
Credit Without Borders: AI and Financial Inclusion in Bangladesh
A review of recent deep learning applications in wood surface defect identifi...
2018-HIPAA-Renewal-Training for executives
Five Habits of High-Impact Board Members

Ch05 ppts callister7e

  • 1. Chapter 5 - 1 ISSUES TO ADDRESS... • How does diffusion occur? • Why is it an important part of processing? • How can the rate of diffusion be predicted for some simple cases? • How does diffusion depend on structure and temperature? Chapter 5: Diffusion in Solids
  • 2. Chapter 5 - 2 Diffusion Diffusion - Mass transport by atomic motion Mechanisms • Gases & Liquids – random (Brownian) motion • Solids – vacancy diffusion or interstitial diffusion
  • 3. Chapter 5 - 3 • Interdiffusion: In an alloy, atoms tend to migrate from regions of high conc. to regions of low conc. Initially Adapted from Figs. 5.1 and 5.2, Callister 7e. Diffusion After some time
  • 4. Chapter 5 - 4 • Self-diffusion: In an elemental solid, atoms also migrate. Label some atoms After some time Diffusion A B C D A B C D
  • 5. Chapter 5 - 5 Diffusion Mechanisms Vacancy Diffusion: • atoms exchange with vacancies • applies to substitutional impurities atoms • rate depends on: --number of vacancies --activation energy to exchange. increasing elapsed time
  • 6. Chapter 5 - 6 • Simulation of interdiffusion across an interface: • Rate of substitutional diffusion depends on: --vacancy concentration --frequency of jumping. (Courtesy P.M. Anderson) Diffusion Simulation
  • 7. Chapter 5 - 7 Diffusion Mechanisms • Interstitial diffusion – smaller atoms can diffuse between atoms. More rapid than vacancy diffusion Adapted from Fig. 5.3 (b), Callister 7e.
  • 8. Chapter 5 - 8 Adapted from chapter-opening photograph, Chapter 5, Callister 7e. (Courtesy of Surface Division, Midland-Ross.) • Case Hardening: --Diffuse carbon atoms into the host iron atoms at the surface. --Example of interstitial diffusion is a case hardened gear. • Result: The presence of C atoms makes iron (steel) harder. Processing Using Diffusion
  • 9. Chapter 5 - 9 • Doping silicon with phosphorus for n-type semiconductors: • Process: 3. Result: Doped semiconductor regions. silicon Processing Using Diffusion magnified image of a computer chip 0.5mm light regions: Si atoms light regions: Al atoms 2. Heat it. 1. Deposit P rich layers on surface. silicon Adapted from chapter-opening photograph, Chapter 18, Callister 7e.
  • 10. Chapter 5 - 10 Diffusion • How do we quantify the amount or rate of diffusion? • Measured empirically – Make thin film (membrane) of known surface area – Impose concentration gradient – Measure how fast atoms or molecules diffuse through the membrane ( )( ) sm kg or scm mol timeareasurface diffusingmass)(ormoles Flux 22 =≡≡J dt dM A l At M J == M = mass diffused time J ∝ slope
  • 11. Chapter 5 - 11 Steady-State Diffusion dx dC DJ −= Fick’s first law of diffusionC1 C2 x C1 C2 x1 x2 D ≡ diffusion coefficient Rate of diffusion independent of time Flux proportional to concentration gradient = dx dC 12 12linearif xx CC x C dx dC − − = ∆ ∆ ≅
  • 12. Chapter 5 - 12 Example: Chemical Protective Clothing (CPC) • Methylene chloride is a common ingredient of paint removers. Besides being an irritant, it also may be absorbed through skin. When using this paint remover, protective gloves should be worn. • If butyl rubber gloves (0.04 cm thick) are used, what is the diffusive flux of methylene chloride through the glove? • Data: – diffusion coefficient in butyl rubber: D = 110x10-8 cm2 /s – surface concentrations: C2 = 0.02 g/cm3 C1 = 0.44 g/cm3
  • 13. Chapter 5 - 13 scm g 10x16.1 cm)04.0( )g/cm44.0g/cm02.0( /s)cm10x110( 2 5- 33 28- = − −=J Example (cont). 12 12- xx CC D dx dC DJ − − −≅= D tb 6 2  = glove C1 C2 skinpaint remover x1 x2 • Solution – assuming linear conc. gradient D = 110x10-8 cm2 /s C2 = 0.02 g/cm3 C1 = 0.44 g/cm3 x2 – x1 = 0.04 cm Data:
  • 14. Chapter 5 - 14 Diffusion and Temperature • Diffusion coefficient increases with increasing T. D = Do exp      − Qd RT = pre-exponential [m2 /s] = diffusion coefficient [m2 /s] = activation energy [J/mol or eV/atom] = gas constant [8.314 J/mol-K] = absolute temperature [K] D Do Qd R T
  • 15. Chapter 5 - 15 Diffusion and Temperature Adapted from Fig. 5.7, Callister 7e. (Date for Fig. 5.7 taken from E.A. Brandes and G.B. Brook (Ed.) Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, 1992.) D has exponential dependence on T Dinterstitial >> Dsubstitutional C in α-Fe C in γ-Fe Al in Al Fe in α-Fe Fe in γ-Fe 1000K/T D (m2 /s) C in α-Fe C in γ-Fe Alin Al Fe in α-Fe Feinγ-Fe 0.5 1.0 1.5 10-20 10-14 10-8 T(°C) 1500 1000 600 300
  • 16. Chapter 5 - 16 Example: At 300ºC the diffusion coefficient and activation energy for Cu in Si are D(300ºC) = 7.8 x 10-11 m2 /s Qd = 41.5 kJ/mol What is the diffusion coefficient at 350ºC?       −=      −= 1 01 2 02 1 lnlnand 1 lnln TR Q DD TR Q DD dd       −−==−∴ 121 2 12 11 lnlnln TTR Q D D DD d transform data D Temp = T ln D 1/T
  • 17. Chapter 5 - 17 Example (cont.)             − − = − K573 1 K623 1 K-J/mol314.8 J/mol500,41 exp/s)m10x8.7( 211 2D             −−= 12 12 11 exp TTR Q DD d T1 = 273 + 300 = 573K T2 = 273 + 350 = 623K D2 = 15.7 x 10-11 m2 /s
  • 18. Chapter 5 - 18 Non-steady State Diffusion • The concentration of diffucing species is a function of both time and position C = C(x,t) • In this case Fick’s Second Law is used 2 2 x C D t C ∂ ∂ = ∂ ∂Fick’s Second Law
  • 19. Chapter 5 - 19 Non-steady State Diffusion Adapted from Fig. 5.5, Callister 7e. B.C. at t = 0, C = Co for 0 ≤ x ≤ ∞ at t > 0, C = CS for x = 0 (const. surf. conc.) C = Co for x = ∞ • Copper diffuses into a bar of aluminum. pre-existing conc., Co of copper atoms Surface conc., C of Cu atoms bar s Cs
  • 20. Chapter 5 - 20 Solution: C(x,t) = Conc. at point x at time t erf (z) = error function erf(z) values are given in Table 5.1 CS Co C(x,t) ( )       −= − − Dt x CC Ct,xC os o 2 erf1 dye y z 2 0 2 − ∫π =
  • 21. Chapter 5 - 21 Non-steady State Diffusion • Sample Problem: An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere that gives a surface carbon concentration constant at 1.0 wt%. If after 49.5 h the concentration of carbon is 0.35 wt% at a position 4.0 mm below the surface, determine the temperature at which the treatment was carried out. • Solution: use Eqn. 5.5       −= − − Dt x CC CtxC os o 2 erf1 ),(
  • 22. Chapter 5 - 22 Solution (cont.): – t = 49.5 h x = 4 x 10-3 m – Cx = 0.35 wt% Cs = 1.0 wt% – Co = 0.20 wt%       −= − − Dt x CC C)t,x(C os o 2 erf1 )(erf1 2 erf1 20.00.1 20.035.0),( z Dt x CC CtxC os o −=      −= − − = − − ∴ erf(z) = 0.8125
  • 23. Chapter 5 - 23 Solution (cont.): We must now determine from Table 5.1 the value of z for which the error function is 0.8125. An interpolation is necessary as follows z erf(z) 0.90 0.7970 z 0.8125 0.95 0.8209 7970.08209.0 7970.08125.0 90.095.0 90.0 − − = − −z z = 0.93 Now solve for D Dt x z 2 = tz x D 2 2 4 = /sm10x6.2 s3600 h1 h)5.49()93.0()4( m)10x4( 4 211 2 23 2 2 − − ==         =∴ tz x D
  • 24. Chapter 5 - 24 • To solve for the temperature at which D has above value, we use a rearranged form of Equation (5.9a); )lnln( DDR Q T o d − = from Table 5.2, for diffusion of C in FCC Fe Do = 2.3 x 10-5 m2 /s Qd = 148,000 J/mol /s)m10x6.2ln/sm10x3.2K)(ln-J/mol314.8( J/mol000,148 21125 −− − =T∴ Solution (cont.): T = 1300 K = 1027°C
  • 25. Chapter 5 - 25 Example: Chemical Protective Clothing (CPC) • Methylene chloride is a common ingredient of paint removers. Besides being an irritant, it also may be absorbed through skin. When using this paint remover, protective gloves should be worn. • If butyl rubber gloves (0.04 cm thick) are used, what is the breakthrough time (tb), i.e., how long could the gloves be used before methylene chloride reaches the hand? • Data (from Table 22.5) – diffusion coefficient in butyl rubber: D = 110x10-8 cm2 /s
  • 26. Chapter 5 - 26 Example (cont). Time required for breakthrough ca. 4 min glove C1 C2 skinpaint remover x1 x2 • Solution – assuming linear conc. gradient D tb 6 2  = Equation 22.24 cm0.0412 =−= xx D = 110x10-8 cm2 /s min4s240 /s)cm10x110)(6( cm)04.0( 28- 2 ===bt
  • 27. Chapter 5 - 27 Diffusion FASTER for... • open crystal structures • materials w/secondary bonding • smaller diffusing atoms • lower density materials Diffusion SLOWER for... • close-packed structures • materials w/covalent bonding • larger diffusing atoms • higher density materials Summary
  • 28. Chapter 5 - 28 Core Problems: Self-help Problems: ANNOUNCEMENTS Reading:

Editor's Notes

  • #3: Diffusion mechanism depends on material
  • #8: this is essentially mechanism in amorphous materials such as polymer membranes
  • #19: In the non-steady state the concentration profile develops with time.