A
F
t
CMOS Digital Integrated Circuits Analysis and Design 4th Edition
Kang Solutions Manual
Download:http://testbanklive.com/download/cmos-digital-integrated-
circuits-analysis-and-design-4th-edition-kang-solutions-manual/
Exercise Problems
3.1 Consider a MOS system with the following parameters:
tox 1.6nm
GC
1.04V
N =2.8 1018
cm-3
QOX
q4 1010
C/cm2
a. Determine the threshold voltage VT0 under zero bias at room temperature (T = 300 K).
Note that ox 3.970 and si 11.70 .
SOLUTION :
First, calculate the Fermi potentials for the p-type substrate and for the n-type polysilicon gate:
kT n 1.451010
(substrate)  ln i
0.026V ln 0.49V
q NA  2.81018
The depletion region charge density at VSB
= 0 is found as follows:
QB0
2 q NA Si 2F (substrate)
21.61019
(2.81018
)11.7 8.851014
2 0.49
9.53107
C/cm2
The oxide-interface charge is:
Q q N 1.61019
C 41010
cm-2
6.4109
C/cm2
ox ox
The gate oxide capacitance per unit area is calculated using the dielectric constant of silicon dioxide and
the oxide thickness tox.
3.97 8.851014
F/cm
C ox
2.2106
F/cm2
ox
ox 1.6107
cm
Now, we can combine all components and calculate the threshold voltage.
VT 0 GC 2
F (substrate)
QB0 Qox
Cox Cox
1.04 (0.98) (0.53) (0.03) 0.44V
b. Determine the type (p-type or n-type) and amount of channel implant (NI/cm2
) required to change the
threshold voltage to 0.6V
D
A
n

SOLUTION :
p-type implanted needed in the amount of:
V 0.6 VT0 0.6 0.44 1.04 
qNI
Cox
1.04C 1.04 2.2106
N ox
1.431013
cm-2
I
q 1.61019
3.2 Consider a diffusion area that has the dimensions 0.4m 0.2m and the abrupt junction depth is
32 nm . Its n-type impurity doping level is N =21020
cm-3
and the surrounding p-type substrate doping
level is N =21020
cm-3
. Determine the capacitance when the diffusion area is biased at 1.2V and
substrate is biased at 0V. In this problem, assume that there is no channel-stop implant.
SOLUTION :
C (V ) A
 si q NA ND 1
j
2 N N

VA D 0
kT
0 
q
ln
N A ND
2
i
0.026ln
21020
21020
(1.451010
)2
1.21
A 0.2 0.4 20.2 0.032 20.4 0.032 1.18109
[cm2
]
14 19 40
C (V ) 1.18109 11.7 8.85410 1.610 410 1
j
2
2.181015
[F]
41020
 1.21 1.2
3.3 Describe the relationship between the mask channel length, LM, and the electrical channel length, L.
Are they identical? If not, how would you express L in terms of LM and other parameters?
SOLUTION :
The electrical channel length is related to the mask channel length by:
L LM 2LD
Where LD is the lateral diffusion length.
D
A
3.4 How is the device junction temperature affected by the power dissipation of the chip and its package?
Can you describe the relationship between the device junction temperature, ambient temperature, chip
power dissipation and the packaging quality?
SOLUTION :
The device junction temperature at operating condition is given as Tj Ta Pdiss , where Ta is the ambient
temperature; Pdiss is the power dissipated in the chip; is the thermal resistance of the packaging. A cheap
package will have high which will result in large and possibly damaging junction temperature. Thus the
choice of packaging must be such that it is both economic and pretective of the device.
3.5 Describe the three components of the load capacitance Cload , where a logic gate is driving other fanout
gates.
SOLUTION :
The three major components of the load capacitance are interconnect capacitance, the next stage input
capacitance, i.e., the gate capacitance and the drain parasitic capacitances of the current stage.
3.6 Consider a layout of an nMOS transistor shown in Fig. P3.6.
The process parameters are:
N 21020
cm3
N 21020
cm3
X j 32nm LD
10nm tox
1.6nm VT 0
0.53V
Channelstopdoping16.0( p typesubstratedoping )
Find the effective drain parasitic capacitance when the drain node voltage changes from 1.2V to 0.6V.
GND
n+
Output
n+
i

N

Y=6μm
Wn =10μm
Figure P3.6
SOLUTION :
kT N N 21020
21020
0 ln
q
A D
0.026ln
n 2
(1.451010
)2
1.21
i 
kT N '
N 16 21020
21020
ln A D
0.026ln 2.31osw
q n 2
(1.451010
)2
C si q NA ND 1
j0
2 N N
A D 0
14 19 20
11.7 8.85410 1.610 10
2.61106
[F/cm2
]
21.21
q  N '
N 1
C si A D
josw
2 N '
A D  osw
14 19 20
11.7 8.85410 1.610 1.8810
2.59106
[F/cm2
]
2 2.31
VGS
(V) VDS
(V) VSB
(V) ID
(
0.6 0.6 0.0 6
0.65 0.6 0.0 12
0.9 1.2 0.3 44
1.2 1.2 0.3 156

Cjsw X jCjosw
32109
2.59106
0.083[pF/cm]
A Y W 610 60[m2
]
P 2(Y W ) 2(6 10) 32[m]
0 5


0 2.5
Keq 2 0  5 2.5



5.8967 3.3967 
2 0.8967 0.44
2.5
K '
2

5 2.5 
0 0
eq 0  
5 2.5


5.8967 3.3967 
2 0.8967 0.44
2.5


Cdrain Keq Cj0 A Keq 'Cjsw P
0.44 9.6109
60108
0.461.8471012
32104
5.25[ fF]
3.7 A set of I-V characteristics for an nMOS transistor at room temperature is shown for different
biasing conditions. Figure P3.7 shows the measurement setup.
Using the data, find : (a) the threshold voltage VT0
and, (b) velocity saturation vsat
.
Some of the parameters are given as: W=0.6m, EcL=0.4 V, , tox
= 16 Å, |2F
| = 1.1 V.
A)
T 0
ox 4

t
0 V ID
VDS
VGS VSB
Figure P3.7
SOLUTION :
(a)
First, the MOS transistor is on (ID
> 0) for VGS
> 0 and VDS
> 0. Thus, the transistor must be an n-
channel MOSFET. Assume that the transistor is enhancement-type and, therefore, operating mode.
(V V )2
I W v C GS T
(1 V )
D sat ox
(V V ) E L
DS
GS T c
When VGS and VT are similar, velocity saturation terms are neglected.
Let (V , I ) and (V , I ) be any two current-voltage pairs obtained from the table. Then, the V
GS1 D1 GS2 D2 T0,
can be calculated.
I (V V )2
6A
0.65V 0.6V
12A
D1 GS1 T 0
V 0.48V
(b)
ID2 (VGS 2 V )2 T 0
6A
1
12A
Find velocity saturation
C
3.9 8.851014
21610 F / m
ox
ox 0.16108
(V V )2
I W v C GS T
(1 V )
D sat ox
(V V ) E L
DS
GS T c
2
12 0.6106
v sat
216106 0.17
(1 0.05 0.6)
0.17 0.4
vsat 1.06106
m / s
3.8 Compare the two technology scaling methods, namely, (1) the constant electric field scaling and (2) the
constant power supply voltage scaling. In particular, show analytically by using equations how the delay
Const.E field Const.VDD
W, L,tox 1/ S 1/ S
VDD 1/ S 1
Cox S S
C CoxWL 1/ S 1/ S
kn ,kp S S
IDD 1/ S S
t
CV IDD
1/ S 1/ S2
Power IDDVDD 1/ S2
S
Powerdensity
Power 
Area 

1 S3
ox
20
D D
F
t
time, power dissipation, and power density are affected in terms of the scaling factor, S. To be more
specific, what would happen if the design rules change from, say, 1 μm to 1/S μm (S>1)?
SOLUTION :
delay
3.9 A pMOS transistor was fabricated on an n-type substrate with a bulk doping density of
N 11016
cm3
, gate doping density (n-type poly) of N 1020
cm3
, Q / q 41010
cm2
,
and gate oxide thickness of tox 1.6nm . Calculate the threshold voltage at room temperature for VSB=0.
Use si 11.70
SOLUTION :
kT N 11016
(substrate) ln D,sub
0.026ln 0.348[V]
q ni 1.451010
F (gate) 
kT
ln
ND, poly
q n
0.026ln
110 
1.451010
0.587[V]
i
GC F (substrate) F (gate) 0.348 0.587 0.239[V]
3.9 8.851014
C ox
3.45108
[F / cm2
]ox
ox 0.1104
F
QB0  2qND,sub si 2F
21.61019
1016
11.7 8.851014
2 0.348
4.8108
[C / cm2
]
VT 0 GC 2F
QB0 Qox
Cox Cox
4.8108
41010
1.61019
0.239 2 0.348 
3.45108
3.45108
2.51[V]
3.10 Using the parameters given, calculate the current through two nMOS transistors in series (see Fig.
P3.11), when the drain of the top transistor is tied to VDD
, the source of the bottom transistor is tied
to VSS
= 0 and their gates are tied to VDD
. The substrate is also tied to VSS
= 0 V. Assume that W/L =
10 for both transistors and L=4m.
k' = 168 A/V2
VT0
= 0.48 V
= 0.52 V1/2
|2 | = 1.01 V
Hint : The solution requires several iterations, and the body effect on threshold voltage has to be taken
into account. Start with the KCL equation.
1 V
+1 V
ID= ?
Figure P3.10
SOLUTION :

18
20
10
1 V
+1 V
ID= ?
Vx
Figure P3.10
Since gate voltage is high, the midpoint Vx is expected to be low. Therefore, the load is in saturation and
the driver is in linear region. From KCL
1
k '
W
1 V
ID ID,driver ID,load
V (V )
2 1
k '
W
21 V V V 2
2 L
x T ,L x
2 L
T 0 x x
Using the following two equations to iterate find the solution.
1 V V (V )
2
1.04V V 2
x T ,L x x x
VT ,L (Vx ) 0.48 0.52 1.01 Vx  1.01
The intermediate values are listed in the table:
VT,L(Vx) Vx
0.480 0.1523
0.518 0.1337
0.513 0.1359
0.514 0.1357
0.514 0.1357
I
1
k '
W
(1.04V V 2
) 0.516810 1.04 0.1357 0.13572
103.1[A]
D
2 L
x x
3.11 The following parameters are given for an nMOS process:
tox
= 16 Å
substrate doping NA
= 4·10 cm-3
polysilicon gate doping ND
= 2·10 cm-3
oxide-interface fixed-charge density Nox
= 2·10 cm-3
(a) Calculate VT
for an unimplanted transistor.
(b) What type and what concentration of impurities must be implanted
to achieve VT
= + 0.6 V and VT
= – 0.6 V ?

F
t
SOLUTION :
(a) For unimplanted transistor,
kT n 1.451010
(substrate)  ln i
0.026V ln 0.51V
q NA  41018
( )
kT
ln
ND, poly
 21020 
0.026V ln 0.61V
F gate 
q

ni

 1.451010
GC F (substrate) F (gate) 0.51V 0.61V 1.12V
QB0
2 q NA Si 2F (substrate)
21.61019
(41018
)11.7 8.851014
2 0.51
1.16106
C/cm2
14
C ox 3.97 8.8510 F/cm
2.2106
F/cm2
ox
ox 1.6107
cm
VT 0 GC
 2F (substrate)
QB0 Qox
Cox Cox
(b) For VT= 2V;
1.06 (1.12) (0.53) (0.03) 0.56V
V 2 V
QII
T T 0
C
0.56
QII
C
ox ox
Negative charges needed in this case, so it must be p-type implant in the amount of
QII qNI (VT VT 0 )Cox
2.2106
N (2 0.56) 1.981013
cm3 
I
1.61019

For VT=-2V, positive charges need, must be n-type implant,
6
N (2 0.56)
2.210
3.521013
cm3 
I
1.61019

3.12 Using the measured data given, determine the device parameters VT0
, k, , andassuming F
= –
1.1 V and L=4m.


VGS (V) VDS
(V) VBS
(V) ID
(A)
0.6 0.8 0 8
0.8 0.8 0 59
0.8 0.8 -0.3 37
SOLUTION :
0.8 1.0 0 60
18
20
Because the given device is a long channel device, when VDS≥VGS, the transistor operates in s
aturation region, therefore
I
k
V V
2
1 V
a) Find 
DSAT
2
GS T DS
IDSAT Row4 1VDS Row4 1 60
IDSAT Row2 1 VDS Row2
0.09 V 1

1 0.8 59
b) Find V
I Row2 0.8 V
2
DSAT T 0
I Row1 0.6 V
2
c) Find k:
From Row2 data,
DSAT T 0
VT0=0.48V
59
k
0.8 0.48
2
1 0.09 0.8
2
k 1.08mA/V2
d) Find :
From Row3 data,
37
1075
0.8 V (V 0.3)
2
1 0.09 0.8
2
T BS
VT (VBS 0.3) 0.55V
0.55 0.48  0.3 1.1  1.1
0.52 V1/2
3.13 Using the design rules specified in Chapter 2, sketch a simple layout of an
nMOS transistor on grid paper. Use a minimum feature size of 60 nm. Neglect
the substrate connection. After you complete the layout, calculate approximate
values for Cg
, Csb
, and Cdb
. The following parameters are given.
Substrate doping NA
= 4·10 cm-3
Junction depth = 32 nm
Drain/source doping ND
= 2·10 cm-3
Sidewall doping = 4·109
cm-3
W = 300 nm Drain bias = 0 V
L = 60 nm
tox
= 1.6 nm
t
SOLUTION :
Because the drain bias is equal to 0V, there is no current in the device.
First of all, Cox is calculated like below:
3.97 8.851014
F/cm
C ox
2.2106
F/cm2
ox
ox 1.6107
cm
So total gate capacitance Cg is
Cg Cgb Cgd Cgs
CoxWL CoxWLD CoxWLD
CoxWL(totallength )
2.2102
F/m2
300109
m 60109
m
0.396fF
kT N N 41018
21020
0

q
ln A D
0.026V ln 
n 2 2.1 1020
1.11V
i 
kT N (sw) N 4109
21020
0sw

q
ln A D
0.026V ln
n 2 2.1 1020
0.57V
i 


jsw j0sw j
F
Cj0
 Si q NA ND 1
2 NA ND 0
11.7 8.851014
F/cm1.61019
41018
21020
1
2
54.1108
F/cm2
41018
21020
 1.11V
Cj0sw
 Si q NA ND 1
2 NA ND 0
11.7 8.851014
F/cm 1.61019
4109
21020
1
2
24.11012
F/cm2
4109
21020
 0.57V
The zero-bias sidewall junction capacitance per unit length can also be found as follows.
C C x 24.11012
F/cm2
32107
cm 77.15aF/cm
The total area of the n+/p junctions is calculated as the sum of the bottom area and the sidewall area facing
the channel region.
A (0.3 0.15)m2
(0.15 0.032)m2
0.05m2
P 2 0.3 m 0.15m 0.75m
Cdb A Cj0 P Cjsw
0.05108
cm2
54.1108
F/cm2
0.75104
cm 77.21018
F/cm 0.2711015
F
0.271fF Csb
3.14 An enhancement-type nMOS transistor has the following parameters:
VT0
= 0.48 V
= 0.52 V1/2
= 0.05 V-1
|2 | = 1.01 V
k' = 168 A/V2
(a) When the transistor is biased with VG
= 0.6 V, VD
= 0.22 V, VS
= 0.2 V,
and VB
= 0 V, the drain current is ID
= 24A. Determine W/L.
(b) Calculate ID
for VG
= 1 V, VD
= 0.8 V, VS
= 0.4 V, and VB
= 0 V.
(c) If n = 76.3 cm2/V·s and Cg = Cox·W·L = 1.0 x 10-15 F, find W and L.
SOLUTION :
15


(a) For enhancement transistor and VT0 > 0, it must be nMOS.
VT VT 0  2F VSB  2F
0.48 0.52  1.01 0.2  1.01 0.529V
VDS 4 VGS VT 0.6 0.52 0.08
nMOS transistor is in saturation.
I sat
k
V V
2
1 V
D
2
GS T DS
W 2ID (sat)
L k 'V V
2
1 V
(b)
GS T DS
2 24106
42.92
168106
0.082
1 0.05 0.8
VT VT 0  2F VSB  2F
0.48 0.52  1.01 0.4  1.01 0.575V
VDS 0.02 VGS VT 0.6 0.575 0.025
nMOS transistor is in linear region.
I (lin.)
k ' W
2V V V V 2
1 V
D
2 L  GS T DS DS DS
(c)
84106
42.92
2.16 A
2 0.025 0.02 0.022 1 0.05 0.02
k ' 168106
C 2.2106
F/cm2
ox
n 76.3
L
Cg 10
4.5 10 8
F/cm2
W
Cox

W
42.92
2.2106
L
Solve for W and L,
W 14.2m
L 0.33m
3.15 An nMOS transistor is fabricated with the following physical parameters:
N = 2.4·1018 cm-3
D

A D
2
j
j
j
N (substrate) = 2.4·1018 cm-3
A
+
N (chan. stop) = 1019 cm-3
A
W =400 nm
Y = 175 nm
L = 60 nm
L = 0.01 mD
X = 32 nmj
(a) Determine the drain diffusion capacitance for VDB
= 1.2 V and 0.6 V.
(b) Calculate the overlap capacitance between gate and drain for an
oxide thickness of tox = 18 Å.
SOLUTION :
(a)
kT N N 2.41018
2.41018
0 ln A D
0.026V ln
20
984mV
q
Cj0
ni  2.110
 Si q NA ND 1
2 NA ND 0
11.7 8.851014
F/cm 1.61019
2.41018
2.41018
1
2
31.8108
F/cm2

A W Y W X j
2.41018
2.41018

0.4 0.175 0.4 0.32 0.198 m2

A C
984mV
C V
j0
1
V
0
8 8
C 1.2
0.19810 31.810
0.4231015
F
1
1.2
0.984
8 8
C 0.6
0.19810 31.810
0.496 1015
F
1
0.6
0.984
For sidewall capacitance calculation,
kT N swN 1019
2.41018
ln 0.026V ln 1.02 V
osw
q n 2
2.11020
i


15

t
Cjosw
 Si q NA swND 1
2 NA sw ND  osw
11.7 8.851014
F/cm1.61019
2.41018
1019
1
2
39.6108
F/cm2

2.41018
1019
 1.02V
P X C 2175 400 107
32107
39.6108
Cjsw (V )
j josw

1
V
osw
1.771014
F
1
V
osw
1
V
osw
14
Cjsw
Cjsw
(1.2V )
1.7710
121015
F
1
1.2
1.02
1.771014
(0.6V ) 1410 F
1
0.6
1.02
Cdb
Cdb
1.2V Cj 1.2V Cjsw 1.2V 0.423 12 12.423 fF
0.6V Cj 0.6V Cjsw 0.6V 0.496 39.6 40.096 fF
(b)
3.9 8.851014
C ox
1.92106
F / cm3
ox
ox 18108
C C W L 1.92106
400107
0.01104
0.077 fF
gd ox D
CMOS Digital Integrated Circuits Analysis and Design 4th Edition
Kang Solutions Manual
Download:http://testbanklive.com/download/cmos-digital-integrated-
circuits-analysis-and-design-4th-edition-kang-solutions-manual/
cmos digital integrated circuits 4th edition pdf
cmos digital integrated circuits analysis & design 4th edition
cmos digital integrated circuits analysis and design 3rd edition solution manual
cmos kang solutions chapter 6
cmos digital circuits
analysis and design of digital integrated circuits hodges pdf free download
digital integrated circuits pdf
analysis and design of digital integrated circuits pdf

More Related Content

PPTX
Rc delay modelling in vlsi
PPT
Cmos process flow
PPTX
Vlsi physical design automation on partitioning
PPTX
PDF
Mos transistor
PPTX
Twin well process
PDF
Solutions manual for cmos digital integrated circuits analysis and design 4th...
PDF
Understanding cts log_messages
Rc delay modelling in vlsi
Cmos process flow
Vlsi physical design automation on partitioning
Mos transistor
Twin well process
Solutions manual for cmos digital integrated circuits analysis and design 4th...
Understanding cts log_messages

What's hot (20)

PPTX
Device isolation Techniques
PPT
EC6601 VLSI Design CMOS Fabrication
PPTX
Lightly Doped Drain
PPTX
Saw filters
PPTX
MOS transistor 13
PPTX
Crosstalk
PPT
PPTX
SCALING OF MOS CIRCUITS m .pptx
PPTX
CMOS LOGIC STRUCTURES
PPTX
Short channel effects
PDF
Electromigration and IR Voltage Drop- EMIR.pdf
PPTX
PPT
Timing and Design Closure in Physical Design Flows
PPTX
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGN
PPTX
Radix-2 DIT FFT
PDF
Chapter2 - Linear Time-Invariant System
PDF
RF Module Design - [Chapter 4] Transceiver Architecture
PPT
Design challenges in physical design
PPTX
Threshold Voltage & Channel Length Modulation
PPTX
Silicon on Insulator (SOI) Technology
Device isolation Techniques
EC6601 VLSI Design CMOS Fabrication
Lightly Doped Drain
Saw filters
MOS transistor 13
Crosstalk
SCALING OF MOS CIRCUITS m .pptx
CMOS LOGIC STRUCTURES
Short channel effects
Electromigration and IR Voltage Drop- EMIR.pdf
Timing and Design Closure in Physical Design Flows
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGN
Radix-2 DIT FFT
Chapter2 - Linear Time-Invariant System
RF Module Design - [Chapter 4] Transceiver Architecture
Design challenges in physical design
Threshold Voltage & Channel Length Modulation
Silicon on Insulator (SOI) Technology
Ad

Similar to Cmos digital integrated circuits analysis and design 4th edition kang solutions manual (20)

PDF
657867625-Solution-Manual-for-Electronic-Devices-and-Circuit-Theory-11th-Edit...
PDF
Basic electronics Tutorial 2
PPT
Stability with analysis and psa and load flow.ppt
PPTX
PSpice Tutorial
PDF
Lecture slides Ist & 2nd Order Circuits[282].pdf
PPT
Load flow study Part-II
PDF
Basic electronics Tutorial 3
PPT
[06] Chapter06_Electrical Characteristic of MOSFETs.ppt
PDF
Tluenotes lehmann
PPT
Chapter 2 AC to DC Converters (.........)
PDF
thermal science Ch 04
PDF
Original Mosfet F3205S 3205 IRF3205S IRF3205 55V 110A D2Pak New
PDF
Original Transistor 2SC2026-Y KTC2026 C2026 3A 60V TO-220 New KEC
PPT
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
PPTX
Charged-Current Pion Production in T2K
PPTX
Newton raphson method
PDF
File for basic electronics btech electrical
PPT
Oscillatorsppt
PDF
2 n2222a motorola
657867625-Solution-Manual-for-Electronic-Devices-and-Circuit-Theory-11th-Edit...
Basic electronics Tutorial 2
Stability with analysis and psa and load flow.ppt
PSpice Tutorial
Lecture slides Ist & 2nd Order Circuits[282].pdf
Load flow study Part-II
Basic electronics Tutorial 3
[06] Chapter06_Electrical Characteristic of MOSFETs.ppt
Tluenotes lehmann
Chapter 2 AC to DC Converters (.........)
thermal science Ch 04
Original Mosfet F3205S 3205 IRF3205S IRF3205 55V 110A D2Pak New
Original Transistor 2SC2026-Y KTC2026 C2026 3A 60V TO-220 New KEC
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Charged-Current Pion Production in T2K
Newton raphson method
File for basic electronics btech electrical
Oscillatorsppt
2 n2222a motorola
Ad

Recently uploaded (20)

PDF
semiconductor packaging in vlsi design fab
PPTX
Module on health assessment of CHN. pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Climate Change and Its Global Impact.pptx
PDF
English Textual Question & Ans (12th Class).pdf
PDF
CRP102_SAGALASSOS_Final_Projects_2025.pdf
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PPTX
DRUGS USED FOR HORMONAL DISORDER, SUPPLIMENTATION, CONTRACEPTION, & MEDICAL T...
PDF
International_Financial_Reporting_Standa.pdf
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
PDF
Empowerment Technology for Senior High School Guide
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
Climate and Adaptation MCQs class 7 from chatgpt
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Hazard Identification & Risk Assessment .pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
HVAC Specification 2024 according to central public works department
semiconductor packaging in vlsi design fab
Module on health assessment of CHN. pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Climate Change and Its Global Impact.pptx
English Textual Question & Ans (12th Class).pdf
CRP102_SAGALASSOS_Final_Projects_2025.pdf
FORM 1 BIOLOGY MIND MAPS and their schemes
DRUGS USED FOR HORMONAL DISORDER, SUPPLIMENTATION, CONTRACEPTION, & MEDICAL T...
International_Financial_Reporting_Standa.pdf
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
Empowerment Technology for Senior High School Guide
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
Share_Module_2_Power_conflict_and_negotiation.pptx
Introduction to pro and eukaryotes and differences.pptx
Climate and Adaptation MCQs class 7 from chatgpt
Computer Architecture Input Output Memory.pptx
Hazard Identification & Risk Assessment .pdf
AI-driven educational solutions for real-life interventions in the Philippine...
HVAC Specification 2024 according to central public works department

Cmos digital integrated circuits analysis and design 4th edition kang solutions manual

  • 1. A F t CMOS Digital Integrated Circuits Analysis and Design 4th Edition Kang Solutions Manual Download:http://testbanklive.com/download/cmos-digital-integrated- circuits-analysis-and-design-4th-edition-kang-solutions-manual/ Exercise Problems 3.1 Consider a MOS system with the following parameters: tox 1.6nm GC 1.04V N =2.8 1018 cm-3 QOX q4 1010 C/cm2 a. Determine the threshold voltage VT0 under zero bias at room temperature (T = 300 K). Note that ox 3.970 and si 11.70 . SOLUTION : First, calculate the Fermi potentials for the p-type substrate and for the n-type polysilicon gate: kT n 1.451010 (substrate)  ln i 0.026V ln 0.49V q NA  2.81018 The depletion region charge density at VSB = 0 is found as follows: QB0 2 q NA Si 2F (substrate) 21.61019 (2.81018 )11.7 8.851014 2 0.49 9.53107 C/cm2 The oxide-interface charge is: Q q N 1.61019 C 41010 cm-2 6.4109 C/cm2 ox ox The gate oxide capacitance per unit area is calculated using the dielectric constant of silicon dioxide and the oxide thickness tox. 3.97 8.851014 F/cm C ox 2.2106 F/cm2 ox ox 1.6107 cm Now, we can combine all components and calculate the threshold voltage. VT 0 GC 2 F (substrate) QB0 Qox Cox Cox 1.04 (0.98) (0.53) (0.03) 0.44V
  • 2. b. Determine the type (p-type or n-type) and amount of channel implant (NI/cm2 ) required to change the threshold voltage to 0.6V
  • 3. D A n  SOLUTION : p-type implanted needed in the amount of: V 0.6 VT0 0.6 0.44 1.04  qNI Cox 1.04C 1.04 2.2106 N ox 1.431013 cm-2 I q 1.61019 3.2 Consider a diffusion area that has the dimensions 0.4m 0.2m and the abrupt junction depth is 32 nm . Its n-type impurity doping level is N =21020 cm-3 and the surrounding p-type substrate doping level is N =21020 cm-3 . Determine the capacitance when the diffusion area is biased at 1.2V and substrate is biased at 0V. In this problem, assume that there is no channel-stop implant. SOLUTION : C (V ) A  si q NA ND 1 j 2 N N  VA D 0 kT 0  q ln N A ND 2 i 0.026ln 21020 21020 (1.451010 )2 1.21 A 0.2 0.4 20.2 0.032 20.4 0.032 1.18109 [cm2 ] 14 19 40 C (V ) 1.18109 11.7 8.85410 1.610 410 1 j 2 2.181015 [F] 41020  1.21 1.2 3.3 Describe the relationship between the mask channel length, LM, and the electrical channel length, L. Are they identical? If not, how would you express L in terms of LM and other parameters? SOLUTION : The electrical channel length is related to the mask channel length by: L LM 2LD Where LD is the lateral diffusion length.
  • 4. D A 3.4 How is the device junction temperature affected by the power dissipation of the chip and its package? Can you describe the relationship between the device junction temperature, ambient temperature, chip power dissipation and the packaging quality? SOLUTION : The device junction temperature at operating condition is given as Tj Ta Pdiss , where Ta is the ambient temperature; Pdiss is the power dissipated in the chip; is the thermal resistance of the packaging. A cheap package will have high which will result in large and possibly damaging junction temperature. Thus the choice of packaging must be such that it is both economic and pretective of the device. 3.5 Describe the three components of the load capacitance Cload , where a logic gate is driving other fanout gates. SOLUTION : The three major components of the load capacitance are interconnect capacitance, the next stage input capacitance, i.e., the gate capacitance and the drain parasitic capacitances of the current stage. 3.6 Consider a layout of an nMOS transistor shown in Fig. P3.6. The process parameters are: N 21020 cm3 N 21020 cm3 X j 32nm LD 10nm tox 1.6nm VT 0 0.53V Channelstopdoping16.0( p typesubstratedoping ) Find the effective drain parasitic capacitance when the drain node voltage changes from 1.2V to 0.6V.
  • 5. GND n+ Output n+ i  N  Y=6μm Wn =10μm Figure P3.6 SOLUTION : kT N N 21020 21020 0 ln q A D 0.026ln n 2 (1.451010 )2 1.21 i  kT N ' N 16 21020 21020 ln A D 0.026ln 2.31osw q n 2 (1.451010 )2 C si q NA ND 1 j0 2 N N A D 0 14 19 20 11.7 8.85410 1.610 10 2.61106 [F/cm2 ] 21.21 q  N ' N 1 C si A D josw 2 N ' A D  osw 14 19 20 11.7 8.85410 1.610 1.8810 2.59106 [F/cm2 ] 2 2.31
  • 6. VGS (V) VDS (V) VSB (V) ID ( 0.6 0.6 0.0 6 0.65 0.6 0.0 12 0.9 1.2 0.3 44 1.2 1.2 0.3 156  Cjsw X jCjosw 32109 2.59106 0.083[pF/cm] A Y W 610 60[m2 ] P 2(Y W ) 2(6 10) 32[m] 0 5   0 2.5 Keq 2 0  5 2.5    5.8967 3.3967  2 0.8967 0.44 2.5 K ' 2  5 2.5  0 0 eq 0   5 2.5   5.8967 3.3967  2 0.8967 0.44 2.5   Cdrain Keq Cj0 A Keq 'Cjsw P 0.44 9.6109 60108 0.461.8471012 32104 5.25[ fF] 3.7 A set of I-V characteristics for an nMOS transistor at room temperature is shown for different biasing conditions. Figure P3.7 shows the measurement setup. Using the data, find : (a) the threshold voltage VT0 and, (b) velocity saturation vsat . Some of the parameters are given as: W=0.6m, EcL=0.4 V, , tox = 16 Å, |2F | = 1.1 V. A)
  • 7. T 0 ox 4  t 0 V ID VDS VGS VSB Figure P3.7 SOLUTION : (a) First, the MOS transistor is on (ID > 0) for VGS > 0 and VDS > 0. Thus, the transistor must be an n- channel MOSFET. Assume that the transistor is enhancement-type and, therefore, operating mode. (V V )2 I W v C GS T (1 V ) D sat ox (V V ) E L DS GS T c When VGS and VT are similar, velocity saturation terms are neglected. Let (V , I ) and (V , I ) be any two current-voltage pairs obtained from the table. Then, the V GS1 D1 GS2 D2 T0, can be calculated. I (V V )2 6A 0.65V 0.6V 12A D1 GS1 T 0 V 0.48V (b) ID2 (VGS 2 V )2 T 0 6A 1 12A Find velocity saturation C 3.9 8.851014 21610 F / m ox ox 0.16108 (V V )2 I W v C GS T (1 V ) D sat ox (V V ) E L DS GS T c 2 12 0.6106 v sat 216106 0.17 (1 0.05 0.6) 0.17 0.4 vsat 1.06106 m / s 3.8 Compare the two technology scaling methods, namely, (1) the constant electric field scaling and (2) the constant power supply voltage scaling. In particular, show analytically by using equations how the delay
  • 8. Const.E field Const.VDD W, L,tox 1/ S 1/ S VDD 1/ S 1 Cox S S C CoxWL 1/ S 1/ S kn ,kp S S IDD 1/ S S t CV IDD 1/ S 1/ S2 Power IDDVDD 1/ S2 S Powerdensity Power  Area   1 S3 ox 20 D D F t time, power dissipation, and power density are affected in terms of the scaling factor, S. To be more specific, what would happen if the design rules change from, say, 1 μm to 1/S μm (S>1)? SOLUTION : delay 3.9 A pMOS transistor was fabricated on an n-type substrate with a bulk doping density of N 11016 cm3 , gate doping density (n-type poly) of N 1020 cm3 , Q / q 41010 cm2 , and gate oxide thickness of tox 1.6nm . Calculate the threshold voltage at room temperature for VSB=0. Use si 11.70 SOLUTION : kT N 11016 (substrate) ln D,sub 0.026ln 0.348[V] q ni 1.451010 F (gate)  kT ln ND, poly q n 0.026ln 110  1.451010 0.587[V] i GC F (substrate) F (gate) 0.348 0.587 0.239[V] 3.9 8.851014 C ox 3.45108 [F / cm2 ]ox ox 0.1104
  • 9. F QB0  2qND,sub si 2F 21.61019 1016 11.7 8.851014 2 0.348 4.8108 [C / cm2 ] VT 0 GC 2F QB0 Qox Cox Cox 4.8108 41010 1.61019 0.239 2 0.348  3.45108 3.45108 2.51[V] 3.10 Using the parameters given, calculate the current through two nMOS transistors in series (see Fig. P3.11), when the drain of the top transistor is tied to VDD , the source of the bottom transistor is tied to VSS = 0 and their gates are tied to VDD . The substrate is also tied to VSS = 0 V. Assume that W/L = 10 for both transistors and L=4m. k' = 168 A/V2 VT0 = 0.48 V = 0.52 V1/2 |2 | = 1.01 V Hint : The solution requires several iterations, and the body effect on threshold voltage has to be taken into account. Start with the KCL equation. 1 V +1 V ID= ? Figure P3.10 SOLUTION :
  • 10.  18 20 10 1 V +1 V ID= ? Vx Figure P3.10 Since gate voltage is high, the midpoint Vx is expected to be low. Therefore, the load is in saturation and the driver is in linear region. From KCL 1 k ' W 1 V ID ID,driver ID,load V (V ) 2 1 k ' W 21 V V V 2 2 L x T ,L x 2 L T 0 x x Using the following two equations to iterate find the solution. 1 V V (V ) 2 1.04V V 2 x T ,L x x x VT ,L (Vx ) 0.48 0.52 1.01 Vx  1.01 The intermediate values are listed in the table: VT,L(Vx) Vx 0.480 0.1523 0.518 0.1337 0.513 0.1359 0.514 0.1357 0.514 0.1357 I 1 k ' W (1.04V V 2 ) 0.516810 1.04 0.1357 0.13572 103.1[A] D 2 L x x 3.11 The following parameters are given for an nMOS process: tox = 16 Å substrate doping NA = 4·10 cm-3 polysilicon gate doping ND = 2·10 cm-3 oxide-interface fixed-charge density Nox = 2·10 cm-3 (a) Calculate VT for an unimplanted transistor. (b) What type and what concentration of impurities must be implanted to achieve VT = + 0.6 V and VT = – 0.6 V ?
  • 11.  F t SOLUTION : (a) For unimplanted transistor, kT n 1.451010 (substrate)  ln i 0.026V ln 0.51V q NA  41018 ( ) kT ln ND, poly  21020  0.026V ln 0.61V F gate  q  ni   1.451010 GC F (substrate) F (gate) 0.51V 0.61V 1.12V QB0 2 q NA Si 2F (substrate) 21.61019 (41018 )11.7 8.851014 2 0.51 1.16106 C/cm2 14 C ox 3.97 8.8510 F/cm 2.2106 F/cm2 ox ox 1.6107 cm VT 0 GC  2F (substrate) QB0 Qox Cox Cox (b) For VT= 2V; 1.06 (1.12) (0.53) (0.03) 0.56V V 2 V QII T T 0 C 0.56 QII C ox ox Negative charges needed in this case, so it must be p-type implant in the amount of QII qNI (VT VT 0 )Cox 2.2106 N (2 0.56) 1.981013 cm3  I 1.61019  For VT=-2V, positive charges need, must be n-type implant, 6 N (2 0.56) 2.210 3.521013 cm3  I 1.61019  3.12 Using the measured data given, determine the device parameters VT0 , k, , andassuming F = – 1.1 V and L=4m.   VGS (V) VDS (V) VBS (V) ID (A) 0.6 0.8 0 8
  • 12. 0.8 0.8 0 59 0.8 0.8 -0.3 37 SOLUTION : 0.8 1.0 0 60
  • 13. 18 20 Because the given device is a long channel device, when VDS≥VGS, the transistor operates in s aturation region, therefore I k V V 2 1 V a) Find  DSAT 2 GS T DS IDSAT Row4 1VDS Row4 1 60 IDSAT Row2 1 VDS Row2 0.09 V 1  1 0.8 59 b) Find V I Row2 0.8 V 2 DSAT T 0 I Row1 0.6 V 2 c) Find k: From Row2 data, DSAT T 0 VT0=0.48V 59 k 0.8 0.48 2 1 0.09 0.8 2 k 1.08mA/V2 d) Find : From Row3 data, 37 1075 0.8 V (V 0.3) 2 1 0.09 0.8 2 T BS VT (VBS 0.3) 0.55V 0.55 0.48  0.3 1.1  1.1 0.52 V1/2 3.13 Using the design rules specified in Chapter 2, sketch a simple layout of an nMOS transistor on grid paper. Use a minimum feature size of 60 nm. Neglect the substrate connection. After you complete the layout, calculate approximate values for Cg , Csb , and Cdb . The following parameters are given. Substrate doping NA = 4·10 cm-3 Junction depth = 32 nm Drain/source doping ND = 2·10 cm-3 Sidewall doping = 4·109 cm-3 W = 300 nm Drain bias = 0 V L = 60 nm tox = 1.6 nm
  • 14. t SOLUTION : Because the drain bias is equal to 0V, there is no current in the device. First of all, Cox is calculated like below: 3.97 8.851014 F/cm C ox 2.2106 F/cm2 ox ox 1.6107 cm So total gate capacitance Cg is Cg Cgb Cgd Cgs CoxWL CoxWLD CoxWLD CoxWL(totallength ) 2.2102 F/m2 300109 m 60109 m 0.396fF kT N N 41018 21020 0  q ln A D 0.026V ln  n 2 2.1 1020 1.11V i  kT N (sw) N 4109 21020 0sw  q ln A D 0.026V ln n 2 2.1 1020 0.57V i 
  • 15.   jsw j0sw j F Cj0  Si q NA ND 1 2 NA ND 0 11.7 8.851014 F/cm1.61019 41018 21020 1 2 54.1108 F/cm2 41018 21020  1.11V Cj0sw  Si q NA ND 1 2 NA ND 0 11.7 8.851014 F/cm 1.61019 4109 21020 1 2 24.11012 F/cm2 4109 21020  0.57V The zero-bias sidewall junction capacitance per unit length can also be found as follows. C C x 24.11012 F/cm2 32107 cm 77.15aF/cm The total area of the n+/p junctions is calculated as the sum of the bottom area and the sidewall area facing the channel region. A (0.3 0.15)m2 (0.15 0.032)m2 0.05m2 P 2 0.3 m 0.15m 0.75m Cdb A Cj0 P Cjsw 0.05108 cm2 54.1108 F/cm2 0.75104 cm 77.21018 F/cm 0.2711015 F 0.271fF Csb 3.14 An enhancement-type nMOS transistor has the following parameters: VT0 = 0.48 V = 0.52 V1/2 = 0.05 V-1 |2 | = 1.01 V k' = 168 A/V2 (a) When the transistor is biased with VG = 0.6 V, VD = 0.22 V, VS = 0.2 V, and VB = 0 V, the drain current is ID = 24A. Determine W/L. (b) Calculate ID for VG = 1 V, VD = 0.8 V, VS = 0.4 V, and VB = 0 V. (c) If n = 76.3 cm2/V·s and Cg = Cox·W·L = 1.0 x 10-15 F, find W and L. SOLUTION :
  • 16. 15   (a) For enhancement transistor and VT0 > 0, it must be nMOS. VT VT 0  2F VSB  2F 0.48 0.52  1.01 0.2  1.01 0.529V VDS 4 VGS VT 0.6 0.52 0.08 nMOS transistor is in saturation. I sat k V V 2 1 V D 2 GS T DS W 2ID (sat) L k 'V V 2 1 V (b) GS T DS 2 24106 42.92 168106 0.082 1 0.05 0.8 VT VT 0  2F VSB  2F 0.48 0.52  1.01 0.4  1.01 0.575V VDS 0.02 VGS VT 0.6 0.575 0.025 nMOS transistor is in linear region. I (lin.) k ' W 2V V V V 2 1 V D 2 L  GS T DS DS DS (c) 84106 42.92 2.16 A 2 0.025 0.02 0.022 1 0.05 0.02 k ' 168106 C 2.2106 F/cm2 ox n 76.3 L Cg 10 4.5 10 8 F/cm2 W Cox  W 42.92 2.2106 L Solve for W and L, W 14.2m L 0.33m
  • 17. 3.15 An nMOS transistor is fabricated with the following physical parameters: N = 2.4·1018 cm-3 D
  • 18.  A D 2 j j j N (substrate) = 2.4·1018 cm-3 A + N (chan. stop) = 1019 cm-3 A W =400 nm Y = 175 nm L = 60 nm L = 0.01 mD X = 32 nmj (a) Determine the drain diffusion capacitance for VDB = 1.2 V and 0.6 V. (b) Calculate the overlap capacitance between gate and drain for an oxide thickness of tox = 18 Å. SOLUTION : (a) kT N N 2.41018 2.41018 0 ln A D 0.026V ln 20 984mV q Cj0 ni  2.110  Si q NA ND 1 2 NA ND 0 11.7 8.851014 F/cm 1.61019 2.41018 2.41018 1 2 31.8108 F/cm2  A W Y W X j 2.41018 2.41018  0.4 0.175 0.4 0.32 0.198 m2  A C 984mV C V j0 1 V 0 8 8 C 1.2 0.19810 31.810 0.4231015 F 1 1.2 0.984 8 8 C 0.6 0.19810 31.810 0.496 1015 F 1 0.6 0.984 For sidewall capacitance calculation, kT N swN 1019 2.41018 ln 0.026V ln 1.02 V osw q n 2 2.11020 i
  • 19.   15  t Cjosw  Si q NA swND 1 2 NA sw ND  osw 11.7 8.851014 F/cm1.61019 2.41018 1019 1 2 39.6108 F/cm2  2.41018 1019  1.02V P X C 2175 400 107 32107 39.6108 Cjsw (V ) j josw  1 V osw 1.771014 F 1 V osw 1 V osw 14 Cjsw Cjsw (1.2V ) 1.7710 121015 F 1 1.2 1.02 1.771014 (0.6V ) 1410 F 1 0.6 1.02 Cdb Cdb 1.2V Cj 1.2V Cjsw 1.2V 0.423 12 12.423 fF 0.6V Cj 0.6V Cjsw 0.6V 0.496 39.6 40.096 fF (b) 3.9 8.851014 C ox 1.92106 F / cm3 ox ox 18108 C C W L 1.92106 400107 0.01104 0.077 fF gd ox D
  • 20. CMOS Digital Integrated Circuits Analysis and Design 4th Edition Kang Solutions Manual Download:http://testbanklive.com/download/cmos-digital-integrated- circuits-analysis-and-design-4th-edition-kang-solutions-manual/ cmos digital integrated circuits 4th edition pdf cmos digital integrated circuits analysis & design 4th edition cmos digital integrated circuits analysis and design 3rd edition solution manual cmos kang solutions chapter 6 cmos digital circuits analysis and design of digital integrated circuits hodges pdf free download digital integrated circuits pdf analysis and design of digital integrated circuits pdf