SlideShare a Scribd company logo
Why	
  big	
  data	
  is	
  a	
  game	
  changer	
  for	
  terrestrial	
  
ecosystem	
  science	
  and	
  what	
  have	
  we	
  learned	
  
over	
  the	
  last	
  30	
  years	
  
I.	
  Colin	
  Pren,ce	
  
	
  
AXA	
  Chair	
  in	
  Biosphere	
  and	
  Climate	
  Impacts,	
  Imperial	
  
College	
  London	
  
Professor	
  in	
  Ecology	
  and	
  EvoluCon,	
  Macquarie	
  
University	
  
Chair,	
  ecosystem	
  Modelling	
  And	
  Scaling	
  infrasTructure	
  
(eMAST)	
  
The	
  significance	
  of	
  30	
  years	
  ago…	
  
•  Orwell’s	
  1984	
  
•  Murakami’s	
  1Q84	
  
•  Shugart	
  (1984)	
  A	
  Theory	
  of	
  Forest	
  Dynamics	
  
–  “gap	
  models”	
  for	
  tree	
  growth	
  and	
  compeCCon	
  
–  ecosystem-­‐specific,	
  required	
  data	
  on	
  every	
  tree	
  species	
  
–  lack	
  of	
  integraCon	
  of	
  vegetaCon	
  dynamics	
  with	
  ecophysiology,	
  
biogeochemistry,	
  biogeography	
  
Trends	
  in	
  ecosystem	
  science,	
  1984-­‐2004	
  
•  Recognizing	
  large-­‐scale	
  drivers	
  of	
  ecosystem	
  change	
  	
  
	
  	
   	
  GCTE	
  launch	
  (1992):	
  promoCng	
  experimental	
  and	
  
modelling	
  research	
  on	
  global	
  change	
  
•  From	
  ecosystem-­‐specific	
  models	
  to	
  DGVMs	
  
	
  	
   	
  Cramer	
  et	
  al.	
  (2001)	
  GCB:	
  C	
  cycle	
  projecCons,	
  six	
  models	
  
•  Revival	
  of	
  comparaCve	
  funcConal	
  ecology	
  (moCvaCon	
  to	
  
improve	
  DGVMs)	
  
	
  	
   	
  Wright	
  et	
  al.	
  (2004)	
  Nature:	
  leaf	
  economics	
  spectrum	
  
Big	
  data	
  for	
  ecosystem	
  science	
  
•  Steady	
  accumulaCon	
  of	
  precise	
  atmospheric	
  measurements	
  (ramp	
  
up	
  in	
  1980s)	
  
•  Major	
  advances	
  in	
  remote	
  sensing	
  (MODIS	
  launch	
  2000;	
  	
  
Sciamachy,	
  GOME	
  etc.	
  for	
  atmospheric	
  consCtuents)	
  
•  ‘Bodom-­‐up’	
  syntheses	
  of	
  local	
  measurements	
  (flux,	
  traits)	
  =>	
  push	
  
for	
  data	
  sharing	
  (N	
  America	
  first;	
  big	
  push	
  from	
  TERN;	
  WIRADA)	
  
•  ConCnuous	
  exponenCal	
  improvement	
  in	
  data	
  storage	
  and	
  
computaConal	
  capacity	
  
•  Major	
  advances	
  in	
  computaConal	
  tools	
  (especially	
  open-­‐source	
  
languages	
  and	
  codes)	
  
	
  	
  
What	
  can	
  we	
  do	
  with	
  big	
  data?	
  
•  Model	
  evaluaCon	
  and	
  benchmarking	
  (post	
  facto	
  comparison)	
  
•  Data	
  assimilaCon	
  (model	
  structure	
  pre-­‐defined:	
  variables	
  
and/or	
  parameters	
  to	
  be	
  esCmated)	
  
•  New	
  model	
  development	
  (using	
  data	
  to	
  inform	
  model	
  
structure)	
  
1.	
  Process	
  understanding	
  flows	
  from	
  large-­‐scale	
  data	
  analysis.	
  
2.	
  There	
  are	
  huge	
  unexploited	
  opportuniCes	
  –	
  hardly	
  
conceivable	
  30	
  years	
  ago.	
  
	
  	
  
Role	
  of	
  eMAST	
  
•  PredicCve	
  models,	
  fully	
  informed	
  by	
  all	
  relevant	
  data	
  
•  Ecosystems	
  under	
  pressure	
  =>	
  requirement	
  for	
  predicCve	
  
power	
  
Role	
  of	
  eMAST	
  (cont.)	
  
•  Without	
  models,	
  there	
  is	
  no	
  predicCve	
  power.	
  
•  Without	
  data,	
  models	
  are	
  worthless.	
  
•  We	
  need	
  to	
  make	
  it	
  easy	
  for	
  models	
  and	
  data	
  to	
  talk	
  to	
  one	
  
another.	
  
Example	
  1:	
  CO2	
  seasonal	
  cycles	
  
•  Seasonal	
  cycles	
  at	
  different	
  locaCons	
  as	
  a	
  benchmark	
  for	
  
modelled	
  NEE	
  
•  Increasing	
  high-­‐laCtude	
  seasonal	
  cycle	
  as	
  a	
  challenge	
  for	
  
modelling	
  NPP	
  
•  Requires	
  intervenCon	
  of	
  an	
  atmospheric	
  transport	
  model	
  –	
  
but	
  this	
  can	
  be	
  done	
  ‘automaCcally’	
  through	
  inversion	
  
NH	
  
Tropics	
  
SH	
  
Kelley	
  et	
  al.	
  (2013)	
  Biogeosciences	
  	
  
Graven	
  et	
  al.	
  
(2013)	
  Science	
  
Graven	
  et	
  al.	
  
(2013)	
  Science	
  
Example	
  2:	
  Leaf	
  stable	
  carbon	
  isotopes	
  
•  Global	
  leaf	
  δ13C	
  data	
  (for	
  ci:ca	
  raCo	
  –	
  coupling	
  of	
  water	
  and	
  
CO2	
  exchanges):	
  synthesis	
  of	
  >	
  3500	
  measurements	
  led	
  by	
  
Will	
  Cornwell,	
  UNSW	
  
•  Leaf	
  economics	
  theory	
  (PrenCce	
  et	
  al.	
  2013	
  Ecology	
  LeIers)	
  
=>	
  predicts	
  dependence	
  on	
  temperature,	
  aridity,	
  elevaCon	
  
•  Requires	
  climate	
  data	
  and	
  a	
  model	
  to	
  infer	
  bioclimate	
  
variables,	
  e.g.	
  cumulaCve	
  water	
  deficit	
  (proxy	
  for	
  vpd)	
  
ParCal	
  residual	
  plots	
  	
  
H.	
  Wang	
  et	
  al.	
  (unpublished	
  results)	
  	
  
Global	
  slopes:	
  ln	
  χ/(1	
  −	
  χ)	
  vs	
  predictors	
  	
  
	
  
	
  	
   	
   	
   	
   	
  	
  	
  Predicted	
  	
   	
  	
  	
  FiIed	
  (±	
  95%	
  CI)	
  	
  
temperature 	
   	
  	
  	
  	
  0.055	
   	
   	
  	
  	
  	
  0.050	
  ±	
  0.004	
  
ln	
  (dryness) 	
   	
  −	
  0.250 	
   	
  −	
  0.226	
  ±	
  0.012 	
  	
  
elevaCon 	
   	
   	
  −	
  0.082 	
   	
  −	
  0.093	
  ±	
  0.030	
  
	
  
R2	
  	
  =	
  	
  0.450	
  
	
  
Global	
  regression	
  slopes	
  	
  
Example	
  3:	
  IntegraCng	
  remotely	
  sensed	
  and	
  flux	
  
measurements	
  (ePiSaT)	
  
•  OzFlux	
  synthesis	
  (all-­‐site	
  CO2	
  flux	
  measurements)	
  
•  fAPAR	
  synthesis	
  product	
  (Huete	
  et	
  al.)	
  
! ParCConing	
  fluxes	
  into	
  respiraCon	
  and	
  GPP	
  
! Analysis	
  of	
  monthly	
  integrated	
  GPP	
  versus	
  fAPAR	
  x	
  PPFD	
  
! LUE	
  model	
  driven	
  by	
  fAPAR,	
  PPFD,	
  vpd…	
  
•  Also	
  requires	
  climate	
  data,	
  bioclimate	
  variables,	
  parCConing	
  
and	
  gap-­‐filling	
  methods…	
  
	
  
B.J.	
  Evans	
  et	
  al.	
  (2013)	
  unpublished	
  results	
  	
  
Colin Prentice SPEDDEXES 2014
Where	
  do	
  we	
  go	
  from	
  here?	
  
•  Data-­‐model	
  comparison	
  and	
  evaluaCon	
  ‘made	
  easy’.	
  
•  Data	
  assimilaCon	
  ‘made	
  possible’.	
  
•  IntegraCon	
  of	
  data	
  sets	
  with	
  different	
  properCes	
  (e.g.	
  spaCally	
  
versus	
  temporally	
  extensive)	
  ‘made	
  rouCne’.	
  

More Related Content

PPTX
EcoTas13 BradEvans e-Mast UNSW
PPT
PPTX
The Climateprediction.net programme, big data climate modelling
PDF
Climate Modeling and Future Climate Change Projections
DOCX
PDF
Longwave radiation
PDF
UROP Poster
PDF
Ax4301259274
EcoTas13 BradEvans e-Mast UNSW
The Climateprediction.net programme, big data climate modelling
Climate Modeling and Future Climate Change Projections
Longwave radiation
UROP Poster
Ax4301259274

What's hot (20)

PDF
Models in climate science
PDF
STOCHASTIC GENERATION OF ARTIFICIAL WEATHER DATA FOR SUBTROPICAL CLIMATES USI...
PPTX
Evaluating aboveground terrestrial carbon flux as ecosystem planning
PDF
Practices and Challenges in Applying Mesoscale Data to Air Quality Analyses
PPTX
Access MIT: Moving toward flexible, low carbon commuting
PPTX
NOAA's Climate Data Record (CDR) Program
PDF
Iv3615381548
PDF
highFidelityMethodsForCompressibleFlowProblemsOnMovingDomains
PDF
Application of the extreme learning machine algorithm for the
PPT
Feinberg
PDF
01 groundwork clean-powerresearch_sandia_2017-05-09
PDF
Models of cosmic ray modulations in light of new data from AMS-02
PPT
Forecasting Space Time Land Use Change- Hone-Jay Chu, Yu-Pin Lin, Chen-Fa Wu
PDF
Physics-Informed Machine Learning Methods for Data Analytics and Model Diagno...
DOCX
Abstract
PPT
WGI: Overview
PPT
Southern Hemisphere atmospheric circulation: impacts on Antarctic climate and...
PPTX
Control and maximization of energy using pmsg based generator (2)
PDF
J041245863
Models in climate science
STOCHASTIC GENERATION OF ARTIFICIAL WEATHER DATA FOR SUBTROPICAL CLIMATES USI...
Evaluating aboveground terrestrial carbon flux as ecosystem planning
Practices and Challenges in Applying Mesoscale Data to Air Quality Analyses
Access MIT: Moving toward flexible, low carbon commuting
NOAA's Climate Data Record (CDR) Program
Iv3615381548
highFidelityMethodsForCompressibleFlowProblemsOnMovingDomains
Application of the extreme learning machine algorithm for the
Feinberg
01 groundwork clean-powerresearch_sandia_2017-05-09
Models of cosmic ray modulations in light of new data from AMS-02
Forecasting Space Time Land Use Change- Hone-Jay Chu, Yu-Pin Lin, Chen-Fa Wu
Physics-Informed Machine Learning Methods for Data Analytics and Model Diagno...
Abstract
WGI: Overview
Southern Hemisphere atmospheric circulation: impacts on Antarctic climate and...
Control and maximization of energy using pmsg based generator (2)
J041245863
Ad

Similar to Colin Prentice SPEDDEXES 2014 (20)

PPTX
TERN eMAST : Observations and terrestrial ecosystem models : Terrestrial Ecos...
PPTX
NextGen environmental sensing at the National Arboretum
PPTX
Gab Abramowitz_The e-MAST data-model interface
PPT
Francisco J. Doblas-Big Data y cambio climático
PDF
Colin Prentice_What better modelling of ecosystems could achieve - TERN's e-M...
PPTX
2015 05 Scaling from seeds to ecosystems
PPTX
EcoTas13 BradEvans e-MAST
PPTX
Highly Organised, Disruptive Big Data Science in CIAT
PPTX
Undergraduate Modeling Workshop - Forest Cover Working Group Final Presentati...
PPT
Global Modeling of Biodiversity and Climate Change
PDF
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
PDF
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
PPT
"Some Reflections on Data in the Public Sector" : Communia: The European Them...
PPTX
2015-08-13 ESA: NextGen tools for scaling from seeds to traits to ecosystems
PPTX
EcoTas13 BradEvans e-MAST framework
PPTX
EcoTas13 BradEvans e-MAST data
PDF
Overview of Ecosystem Extent and Integrity Slides
PPTX
TraitCapture: NextGen Monitoring and Visualization from seed to ecosystem
PDF
Towards the Wikipedia of World Wide Sensors
TERN eMAST : Observations and terrestrial ecosystem models : Terrestrial Ecos...
NextGen environmental sensing at the National Arboretum
Gab Abramowitz_The e-MAST data-model interface
Francisco J. Doblas-Big Data y cambio climático
Colin Prentice_What better modelling of ecosystems could achieve - TERN's e-M...
2015 05 Scaling from seeds to ecosystems
EcoTas13 BradEvans e-MAST
Highly Organised, Disruptive Big Data Science in CIAT
Undergraduate Modeling Workshop - Forest Cover Working Group Final Presentati...
Global Modeling of Biodiversity and Climate Change
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
"Some Reflections on Data in the Public Sector" : Communia: The European Them...
2015-08-13 ESA: NextGen tools for scaling from seeds to traits to ecosystems
EcoTas13 BradEvans e-MAST framework
EcoTas13 BradEvans e-MAST data
Overview of Ecosystem Extent and Integrity Slides
TraitCapture: NextGen Monitoring and Visualization from seed to ecosystem
Towards the Wikipedia of World Wide Sensors
Ad

More from aceas13tern (20)

PPTX
Risk assessment of Australian ecosystems. Dr Emma Burns. ACEAS Grand 2014
PPTX
Australian seagrass habitats: condition and threats, James Udy, ACEAS Grand 2014
PPTX
Developing an Australian phenology monitoring network, Tim Brown, ACEAS Grand...
PPTX
Vast lands and variable data: patterns and processes of mammal decline. Chris...
PPTX
Unifying principles for modelling, Brad Evans, ACEAS Grand 2014
PPTX
SPatially Explicit Data Discovery, Extraction and Evaluation Services (SPEDDE...
PPTX
Ecosystem services and livelihood opportunities, Jeremy Russell-Smith, ACEAS ...
PPTX
Local to national, Dr Lee Belbin, ACEAS Grand 2014
PPTX
Interactive Games to Value and Manage Ecosystem Services. Prof. Bob Costanza....
PPTX
ACEAS rationale, organisation and status. A. Specht, ACEAS Grand 2014
PPTX
Extinction of Northern Quoll. Euan Ritchie ACEAS Grand 2014
PPTX
Avifaunal disarray Ralph MacNally ACEAS Grand 2014
PPTX
Andrew Treloar, overview of ACEAS Data Workflow, ACEAS Grand 2014
PPTX
Transformation of Australia’s vegetated landscapes. Richard Thackway ACEAS Gr...
PPTX
Drought-induced mortality. Pat Mitchell, ACEAS Grand 2014
PPTX
Australian seagrass habitats. Kathryn McMahon, ACEAS Grand 2014
PPTX
Animal telemetry, Ross Dwyer ACEAS Grand 2014
PPTX
Productivity and freshwater fish abundance. Jian Yen. ACEAS Grand 2014
PPTX
Indigenous bio cultural knowledge ACEAS Grand 2014 Locke and Clark
PPT
Adaptation pathways for aquatic plants. Patrick Driver ACEAS Grand 2014
Risk assessment of Australian ecosystems. Dr Emma Burns. ACEAS Grand 2014
Australian seagrass habitats: condition and threats, James Udy, ACEAS Grand 2014
Developing an Australian phenology monitoring network, Tim Brown, ACEAS Grand...
Vast lands and variable data: patterns and processes of mammal decline. Chris...
Unifying principles for modelling, Brad Evans, ACEAS Grand 2014
SPatially Explicit Data Discovery, Extraction and Evaluation Services (SPEDDE...
Ecosystem services and livelihood opportunities, Jeremy Russell-Smith, ACEAS ...
Local to national, Dr Lee Belbin, ACEAS Grand 2014
Interactive Games to Value and Manage Ecosystem Services. Prof. Bob Costanza....
ACEAS rationale, organisation and status. A. Specht, ACEAS Grand 2014
Extinction of Northern Quoll. Euan Ritchie ACEAS Grand 2014
Avifaunal disarray Ralph MacNally ACEAS Grand 2014
Andrew Treloar, overview of ACEAS Data Workflow, ACEAS Grand 2014
Transformation of Australia’s vegetated landscapes. Richard Thackway ACEAS Gr...
Drought-induced mortality. Pat Mitchell, ACEAS Grand 2014
Australian seagrass habitats. Kathryn McMahon, ACEAS Grand 2014
Animal telemetry, Ross Dwyer ACEAS Grand 2014
Productivity and freshwater fish abundance. Jian Yen. ACEAS Grand 2014
Indigenous bio cultural knowledge ACEAS Grand 2014 Locke and Clark
Adaptation pathways for aquatic plants. Patrick Driver ACEAS Grand 2014

Recently uploaded (20)

PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPTX
COMPUTERS AS DATA ANALYSIS IN PRECLINICAL DEVELOPMENT.pptx
PDF
Pre independence Education in Inndia.pdf
PDF
Business Ethics Teaching Materials for college
PPTX
Week 4 Term 3 Study Techniques revisited.pptx
PPTX
Cardiovascular Pharmacology for pharmacy students.pptx
PPTX
master seminar digital applications in india
PDF
Basic Mud Logging Guide for educational purpose
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Open Quiz Monsoon Mind Game Prelims.pptx
PDF
The Final Stretch: How to Release a Game and Not Die in the Process.
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
COMPUTERS AS DATA ANALYSIS IN PRECLINICAL DEVELOPMENT.pptx
Pre independence Education in Inndia.pdf
Business Ethics Teaching Materials for college
Week 4 Term 3 Study Techniques revisited.pptx
Cardiovascular Pharmacology for pharmacy students.pptx
master seminar digital applications in india
Basic Mud Logging Guide for educational purpose
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Renaissance Architecture: A Journey from Faith to Humanism
O7-L3 Supply Chain Operations - ICLT Program
Anesthesia in Laparoscopic Surgery in India
Open Quiz Monsoon Mind Game Prelims.pptx
The Final Stretch: How to Release a Game and Not Die in the Process.
FourierSeries-QuestionsWithAnswers(Part-A).pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
01-Introduction-to-Information-Management.pdf
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...

Colin Prentice SPEDDEXES 2014

  • 1. Why  big  data  is  a  game  changer  for  terrestrial   ecosystem  science  and  what  have  we  learned   over  the  last  30  years   I.  Colin  Pren,ce     AXA  Chair  in  Biosphere  and  Climate  Impacts,  Imperial   College  London   Professor  in  Ecology  and  EvoluCon,  Macquarie   University   Chair,  ecosystem  Modelling  And  Scaling  infrasTructure   (eMAST)  
  • 2. The  significance  of  30  years  ago…   •  Orwell’s  1984   •  Murakami’s  1Q84   •  Shugart  (1984)  A  Theory  of  Forest  Dynamics   –  “gap  models”  for  tree  growth  and  compeCCon   –  ecosystem-­‐specific,  required  data  on  every  tree  species   –  lack  of  integraCon  of  vegetaCon  dynamics  with  ecophysiology,   biogeochemistry,  biogeography  
  • 3. Trends  in  ecosystem  science,  1984-­‐2004   •  Recognizing  large-­‐scale  drivers  of  ecosystem  change          GCTE  launch  (1992):  promoCng  experimental  and   modelling  research  on  global  change   •  From  ecosystem-­‐specific  models  to  DGVMs        Cramer  et  al.  (2001)  GCB:  C  cycle  projecCons,  six  models   •  Revival  of  comparaCve  funcConal  ecology  (moCvaCon  to   improve  DGVMs)        Wright  et  al.  (2004)  Nature:  leaf  economics  spectrum  
  • 4. Big  data  for  ecosystem  science   •  Steady  accumulaCon  of  precise  atmospheric  measurements  (ramp   up  in  1980s)   •  Major  advances  in  remote  sensing  (MODIS  launch  2000;     Sciamachy,  GOME  etc.  for  atmospheric  consCtuents)   •  ‘Bodom-­‐up’  syntheses  of  local  measurements  (flux,  traits)  =>  push   for  data  sharing  (N  America  first;  big  push  from  TERN;  WIRADA)   •  ConCnuous  exponenCal  improvement  in  data  storage  and   computaConal  capacity   •  Major  advances  in  computaConal  tools  (especially  open-­‐source   languages  and  codes)      
  • 5. What  can  we  do  with  big  data?   •  Model  evaluaCon  and  benchmarking  (post  facto  comparison)   •  Data  assimilaCon  (model  structure  pre-­‐defined:  variables   and/or  parameters  to  be  esCmated)   •  New  model  development  (using  data  to  inform  model   structure)   1.  Process  understanding  flows  from  large-­‐scale  data  analysis.   2.  There  are  huge  unexploited  opportuniCes  –  hardly   conceivable  30  years  ago.      
  • 6. Role  of  eMAST   •  PredicCve  models,  fully  informed  by  all  relevant  data   •  Ecosystems  under  pressure  =>  requirement  for  predicCve   power  
  • 7. Role  of  eMAST  (cont.)   •  Without  models,  there  is  no  predicCve  power.   •  Without  data,  models  are  worthless.   •  We  need  to  make  it  easy  for  models  and  data  to  talk  to  one   another.  
  • 8. Example  1:  CO2  seasonal  cycles   •  Seasonal  cycles  at  different  locaCons  as  a  benchmark  for   modelled  NEE   •  Increasing  high-­‐laCtude  seasonal  cycle  as  a  challenge  for   modelling  NPP   •  Requires  intervenCon  of  an  atmospheric  transport  model  –   but  this  can  be  done  ‘automaCcally’  through  inversion  
  • 9. NH   Tropics   SH   Kelley  et  al.  (2013)  Biogeosciences    
  • 10. Graven  et  al.   (2013)  Science  
  • 11. Graven  et  al.   (2013)  Science  
  • 12. Example  2:  Leaf  stable  carbon  isotopes   •  Global  leaf  δ13C  data  (for  ci:ca  raCo  –  coupling  of  water  and   CO2  exchanges):  synthesis  of  >  3500  measurements  led  by   Will  Cornwell,  UNSW   •  Leaf  economics  theory  (PrenCce  et  al.  2013  Ecology  LeIers)   =>  predicts  dependence  on  temperature,  aridity,  elevaCon   •  Requires  climate  data  and  a  model  to  infer  bioclimate   variables,  e.g.  cumulaCve  water  deficit  (proxy  for  vpd)  
  • 13. ParCal  residual  plots     H.  Wang  et  al.  (unpublished  results)    
  • 14. Global  slopes:  ln  χ/(1  −  χ)  vs  predictors                      Predicted          FiIed  (±  95%  CI)     temperature          0.055            0.050  ±  0.004   ln  (dryness)    −  0.250    −  0.226  ±  0.012     elevaCon      −  0.082    −  0.093  ±  0.030     R2    =    0.450    
  • 16. Example  3:  IntegraCng  remotely  sensed  and  flux   measurements  (ePiSaT)   •  OzFlux  synthesis  (all-­‐site  CO2  flux  measurements)   •  fAPAR  synthesis  product  (Huete  et  al.)   ! ParCConing  fluxes  into  respiraCon  and  GPP   ! Analysis  of  monthly  integrated  GPP  versus  fAPAR  x  PPFD   ! LUE  model  driven  by  fAPAR,  PPFD,  vpd…   •  Also  requires  climate  data,  bioclimate  variables,  parCConing   and  gap-­‐filling  methods…     B.J.  Evans  et  al.  (2013)  unpublished  results    
  • 18. Where  do  we  go  from  here?   •  Data-­‐model  comparison  and  evaluaCon  ‘made  easy’.   •  Data  assimilaCon  ‘made  possible’.   •  IntegraCon  of  data  sets  with  different  properCes  (e.g.  spaCally   versus  temporally  extensive)  ‘made  rouCne’.