SlideShare a Scribd company logo
dld 01-introduction
Overview
• Digital Systems and Computer Systems
• Information Representation
• Number Systems [binary, octal and
hexadecimal]
• Arithmetic Operations
• Base Conversion
• Decimal Codes [BCD (binary coded decimal),
parity]
• Gray Codes
3-May-16 CSE 225: Digital Logic Design 2
Digital System
• Takes a set of discrete information inputs and
discrete internal information (system state) and
generates a set of discrete information outputs.
System State
Discrete
Information
Processing
System
Discrete
Inputs Discrete
Outputs
3-May-16 CSE 225: Digital Logic Design 3
Types of Digital Systems
• No state present
o Combinational Logic System
o Output = Function(Input)
• State present
o State updated at discrete times
=> Synchronous Sequential System
o State updated at any time
=>Asynchronous Sequential System
o State = Function (State, Input)
o Output = Function (State)
or Function (State, Input)
3-May-16 CSE 225: Digital Logic Design 4
Digital System Example:
A Digital Counter (e. g., odometer, a meter that shows mileage traversed):
1 30 0 5 6 4
Count Up
Reset
Inputs: Count Up, Reset
Outputs: Visual Display
State: "Value" of stored digits
Synchronous or Asynchronous?
3-May-16 CSE 225: Digital Logic Design 5
A Digital Computer Example
Synchronous or
Asynchronous?
Inputs:
Keyboard,
mouse,
modem,
microphone
Outputs: CRT,
LCD, modem,
speakers
Memory
Control
unit Datapath
Input/Output
CPU
3-May-16 CSE 225: Digital Logic Design 6
Chapter 1 7
Signal
• An information variable represented by physical
quantity.
• For digital systems, the variable takes on discrete
values.
• Two level, or binary values are the most prevalent
values in digital systems.
• Binary values are represented abstractly by:
o digits 0 and 1
o words (symbols) False (F) and True (T)
o words (symbols) Low (L) and High (H)
o and words On and Off.
• Binary values are represented by values or ranges of
values of physical quantities
Chapter 1 8
Signal Examples Over Time
Analog
Asynchronous
Synchronous
Time
Continuous
in value &
time
Discrete in
value &
continuous
in time
Discrete in
value & time
Digital
5.0
4.0
3.0
2.0
1.0
0.0
Volts
HIGH
LOW
HIGH
LOW
OUTPUT INPUT
Signal Example – Physical Quantity: Voltage
Threshold Region
3-May-16 CSE 225: Digital Logic Design 9
• What are other physical quantities represent 0 and 1?
o CPU Voltage
o Disk
o CD
o Dynamic RAM
Binary Values: Other Physical Quantities
Magnetic Field Direction
Surface Pits/Light
Electrical Charge
3-May-16 CSE 225: Digital Logic Design 10
Binary Representation of Numbers
• 231.45 =
• Here, 10 is called the radix or base of the number
system
• In 10-base systems, there are 10 symbols (‘0’, ‘1’, … ,
‘9’)
• In n-base system, there are n symbols (‘0’, ‘1’, … , ‘n-1’)
• In binary (2-base) system, there are 2 symbols (‘0’, and
‘1’)
11
Class Room Practice
• Consider the binary number 101.011
• Calculate the decimal value of it.
• The reverse process—converting a decimal to
binary—is also straightforward.
• Divide a decimal number is exact sum of positive and
negative power of 2.
• Successively divide by 2 and ½.
12
Decimal to Binary
• Take decimal 14.875
• Hence, 14 = 1110
• For fractional part, we have to divide by ½ or
multiply by 2.
• 14.875 = 1110.111 (binary)
13
Conversion Between Bases
To convert from one base to another:
1) Convert the Integer Part
2) Convert the Fraction Part
3) Join the two results with a radix point
3-May-16 CSE 225: Digital Logic Design 14
Conversion Details
• To Convert the Integral Part:
1. Repeatedly divide the number by the new radix and save
the remainders.
2. The digits for the new radix are the remainders in reverse
order of their computation.
3. If the new radix is > 10, then convert all remainders > 10 to
digits A, B, …
• To Convert the Fractional Part:
1. Repeatedly multiply the fraction by the new radix and save
the integer digits that result.
2. The digits for the new radix are the integer digits in order of
their computation.
3. If the new radix is > 10, then convert all integers > 10 to
digits A, B, …
3-May-16 CSE 225: Digital Logic Design 15
Example: Convert 46.687510 To Base 2
• Convert 46 to Base 2
• Convert 0.6875 to Base 2:
• Join the results together with the radix point:
3-May-16 CSE 225: Digital Logic Design 16
(46)10=(101110)2
(0.6875)10=(0.1011)2
(46.6875)10=(101110.1011)2
Checking the Conversion
• To convert back, sum the digits times their
respective powers of r.
• From the prior conversion of 46.687510
1011102 = 32 + 8 + 4 + 2
= 46
0.10112 = 1/2 + 1/8 + 1/16
= 0.5000 + 0.1250 + 0.0625
= 0.6875
3-May-16 CSE 225: Digital Logic Design 17
Class Room Practice
• Convert decimal 17.375 to binary
• 17.375 = 10001.011 (binary)
CSE 257 Numerical Method 18
Additional Issue - Fractional Part
• Note that in this conversion, the fractional part
became 0 as a result of the repeated
multiplications.
• In general, it may take many bits to get this to
happen or it may never happen.
• Example: Convert 0.6510 to N2
o 0.65 = 0.1010011001001 …
o The fractional part begins repeating every 4 steps
yielding repeating 1001 forever!
• Solution: Specify number of bits to right of
radix point and round or truncate to this
number.
3-May-16 CSE 225: Digital Logic Design 19
General Representation of Numbers
• Positive radix, positional number systems
• A number with radix r is represented by a string of
digits:
An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m + 1 A- m
in which 0 Ai < r and . is the radix point.
• The string of digits represents the power series:
( ) ( )(Number)r =
 +
j = - m
j
j
i
i = 0
i rArA
(Integer Portion) + (Fraction Portion)
i = n - 1 j = - 1
3-May-16 CSE 225: Digital Logic Design 20
General Representation of Numbers:
Example
• Number = 12345.6789
= (1 × 104
+ 2 × 103
+ 3 × 102
+ 4 × 101
+ 5 × 100
) +
(6 × 10−1 + 7 × 10−2 + 8 × 10−3 + 9 × 10−4)
Where,
A4=1 A3=2 A2=3 A1=4 A0=5 . A-1=6 A-2=7 A-3=8 A-9=9
and Radix, r =10
• Number = 10110.0110
= (1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20) + (0 ×
2−1 + 1 × 2−2 + 1 × 2−3 + 0 × 2−4)
Where,
A4=1 A3=0 A2=1 A1=1 A0=0 . A-1=0 A-2=1 A-3=1 A-9=0
and Radix, r =2
3-May-16 CSE 225: Digital Logic Design 21
Number Systems – Examples
General Decimal Binary
Radix (Base) r 10 2
Digits 0 => r - 1 0 => 9 0 => 1
0
1
2
3
Powers of 4
Radix 5
-1
-2
-3
-4
-5
r0
r1
r2
r3
r4
r5
r -1
r -2
r -3
r -4
r -5
1
10
100
1000
10,000
100,000
0.1
0.01
0.001
0.0001
0.00001
1
2
4
8
16
32
0.5
0.25
0.125
0.0625
0.03125
3-May-16 CSE 225: Digital Logic Design 22
Special Powers of 2
210 (1024) is Kilo, denoted "K"
220 (1,048,576) is Mega, denoted "M"
230 (1,073, 741,824)is Giga, denoted "G"
3-May-16 CSE 225: Digital Logic Design 23
• Useful for Base Conversion
Exponent Value Exponent Value
0 1 11 2,048
1 2 12 4,096
2 4 13 8,192
3 8 14 16,384
4 16 15 32,768
5 32 16 65,536
6 64 17 131,072
7 128 18 262,144
19 524,288
20 1,048,576
21 2,097,152
8 256
9 512
10 1024
Positive Powers of 2
3-May-16 CSE 225: Digital Logic Design 24
Commonly Occurring Bases
Name Radix Digits
Binary 2 0,1
Octal 8 0,1,2,3,4,5,6,7
Decimal 10 0,1,2,3,4,5,6,7,8,9
Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
The six letters (in addition to the 10 integers) in
hexadecimal represent:
3-May-16 CSE 225: Digital Logic Design 25
Decimal
(Base 10)
Binary
(Base 2)
Octal
(Base 8)
Hexadecimal
(Base 16)
00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 0E
15 01111 17 0F
16 10000 20 10
• Good idea to memorize!
Numbers in Different Bases
3-May-16 CSE 225: Digital Logic Design 26
Octal Number System
• 8-base number system
• 8 symbols (0, 1, 2, 3, 4, 5, 6, 7)
• Base/radix is power of 2
• One-to-one relation between octal and binary
• A binary number could be converted easily to octal
• Group 3 bits and convert directly to octal
CSE 257 Numerical Method 27
Octal (Hexadecimal) to Binary and Back
• Octal (Hexadecimal) to Binary:
o Restate the octal (hexadecimal) as three (four) binary digits
starting at the radix point and going both ways.
• Binary to Octal (Hexadecimal):
o Group the binary digits into three (four) bit groups starting at
the radix point and going both ways, padding with zeros as
needed in the fractional part.
o Convert each group of three bits to an octal (hexadecimal)
digit.
3-May-16 CSE 225: Digital Logic Design 28
Binary to Octal to Decimal
• Instead of converting binary to decimal
• Faster process is binary to octal to decimal
CSE 257 Numerical Method 29
Hexadecimal
• 16-base number system
• 16 symbols (0—9, A, B, C, D, E)
• Again radix is power of 2
• 4 bits to represent a hexadecimal number
CSE 257 Numerical Method 30
Hexadecimal Conversion
CSE 257 Numerical Method 31
Octal to Hexadecimal via Binary
• Convert octal to binary.
• Use groups of four bits and convert as above
to hexadecimal digits.
• Example: Octal to Binary to Hexadecimal
6 3 5 . 1 7 7 8
(110 011 101. 001 111 111)2
(1 9 D . 3 F 8)16
3-May-16 CSE 225: Digital Logic Design 32
Complements
• Representation of negative number(e.g. -1 or 101) or
in Subtraction operation(e.g. 3-1 or 11-01).
• If base(radix) r, then there are 2types of
complements,
o r’s complement
o (r-1)’s complement
• If radix=10,
o 10’s complement
o 9’s complement
• If radix=2
o 2’s complement
o 1’s complement
3-May-16 CSE 225: Digital Logic Design 33
The r’s complement
• Positive Number, N in base r with integer part of n
digits,
• Complement of N =
𝑟 𝑛
− 𝑁, 𝑖𝑓 𝑁 ≠ 0
0 , 𝑖𝑓 𝑁 = 0
• If radix=10, N=25.639
o 10’s complement of 25.639 10
= 102 − 25.639 = 74.361
• If radix=2, N=1011.01
o 2’s complement of 1011.01 2
= 24 − 1011.01 = 100.11
3-May-16 CSE 225: Digital Logic Design 34
The (r-1)’s complement
• Positive Number, N in base r with integer part of n
digits and fraction part of m digits,
• Complement of N =
𝑟 𝑛
− 𝑟−𝑚
− 𝑁, 𝑖𝑓 𝑁 ≠ 0
0, 𝑖𝑓 𝑁 = 0
• If radix=10, N=25.639
o 9’s complement of 25.639 10
= 102 − 10−3 − 25.639 =
74.360
• If radix=2, N=1011.01
o 1’s complement of 1011.01 2
= 24 − 2−2 − 1011.01 =
100.10
3-May-16 CSE 225: Digital Logic Design 35
Comparison between 1’s
complement and 2’s complement
• Conversion to 1’s complement is easy, just flip each
bit(0→1, 1 →0)
• 1’s complement has positive zero(0000) and negative
zero(1111).
o As a result, n bit number can represent [−2 𝑛−1 − 1, 2 𝑛−1 − 1]
numbers.
o Example, for char(8-bit) n=8, number range[−27 − 1, 27 −
3-May-16 CSE 225: Digital Logic Design 36
Binary Numbers and Binary Coding
• Flexibility of representation
o Within constraints below, can assign any binary combination
(called a code word) to any data as long as data is uniquely
encoded.
• Information Types
o Numeric
• Must represent range of data needed
• Very desirable to represent data such that simple,
straightforward computation for common arithmetic
operations permitted
• Tight relation to binary numbers
o Non-numeric
• Greater flexibility since arithmetic operations not applied.
• Not tied to binary numbers
3-May-16 CSE 225: Digital Logic Design 37
• Given n binary digits (called bits), a binary code is a
mapping from a set of represented elements to a
subset of the 2n binary numbers.
• Example: A
binary code
for the seven
colors of the
rainbow
• Code 100 is
not used
Non-numeric Binary Codes
Binary Number
000
001
010
011
101
110
111
Color
Red
Orange
Yellow
Green
Blue
Indigo
Violet
3-May-16 CSE 225: Digital Logic Design 38
• Given M elements to be represented by a binary code, the
minimum number of bits, n, needed, satisfies the following
relationships:
2n > M > 2(n – 1)
n = log2 M where x , called the ceiling
function, is the integer greater than or equal to
x.
• Example: How many bits are required to represent decimal
digits with a binary code?
Number of Bits Required
3-May-16 CSE 225: Digital Logic Design 39
Number of Elements Represented
• Given n digits in radix r, there are rn distinct elements
that can be represented.
• But, you can represent m elements, m < rn
• Examples:
o You can represent 4 elements in radix r = 2 with n = 2 digits:
(00, 01, 10, 11).
o You can represent 4 elements in radix r = 2 with n = 4 digits:
(0001, 0010, 0100, 1000).
3-May-16 CSE 225: Digital Logic Design 40
Binary Codes for Decimal Digits
Decimal 8,4,2,1 Excess3 8,4,-2,-1 Gray
0 0000 0011 0000 0000
1 0001 0100 0111 0100
2 0010 0101 0110 0101
3 0011 0110 0101 0111
4 0100 0111 0100 0110
5 0101 1000 1011 0010
6 0110 1001 1010 0011
7 0111 1010 1001 0001
8 1000 1011 1000 1001
9 1001 1100 1111 1000
There are over 8,000 ways that you can chose 10
elements from the 16 binary numbers of 4 bits. A few
are useful:
3-May-16 CSE 225: Digital Logic Design 41
Binary Coded Decimal (BCD)
• The BCD code is the 8,4,2,1 code.
• This code is the simplest, most intuitive binary
code for decimal digits and uses the same
powers of 2 as a binary number, but only
encodes the first ten values from 0 to 9.
• Example: 1001 (9) = 1000 (8) + 0001 (1)
• How many “invalid” code words are there?
• What are the “invalid” code words?
3-May-16 CSE 225: Digital Logic Design 42
Chapter 1 43
• What interesting property is common to
these two codes?
Excess 3 Code and 8, 4, –2, –1 Code
Decimal Excess 3 8, 4, –2, –1
0 0011 0000
1 0100 0111
2 0101 0110
3 0110 0101
4 0111 0100
5 1000 1011
6 1001 1010
7 1010 1001
8 1011 1000
9 1100 1111
Chapter 1 44
• What special property does the Gray code
have in relation to adjacent decimal digits?
Gray Code
Decimal 8,4,2,1 Gray
0 0000 0000
1 0001 0100
2 0010 0101
3 0011 0111
4 0100 0110
5 0101 0010
6 0110 0011
7 0111 0001
8 1000 1001
9 1001 1000
Chapter 1 45
B0
111
110
000
001
010
011100
101
B1
B2
(a) Binary Code for Positions 0 through 7
G0
G1
G2
111
101
100 000
001
011
010110
(b) Gray Code for Positions 0 through 7
Gray Code (Continued)
• Does this special Gray code property have any
value?
• An Example: Optical Shaft Encoder
Warning: Conversion or Coding?
• Do NOT mix up conversion of a decimal
number to a binary number with coding a
decimal number with a BINARY CODE.
• 1310 = 11012 (This is conversion)
• 13  0001|0011 (This is coding)
3-May-16 CSE 225: Digital Logic Design 46
Binary Arithmetic
• Single Bit Addition with Carry
• Multiple Bit Addition
• Single Bit Subtraction with Borrow
• Multiple Bit Subtraction
• Multiplication
• BCD Addition
3-May-16 CSE 225: Digital Logic Design 47
Single Bit Binary Addition with Carry
Given two binary digits (X,Y), a carry in (Z) we get the
following sum (S) and carry (C):
Carry in (Z) of 0:
Carry in (Z) of 1: Z 1 1 1 1
X 0 0 1 1
+ Y + 0 + 1 + 0 + 1
C S 0 1 1 0 1 0 1 1
Z 0 0 0 0
X 0 0 1 1
+ Y + 0 + 1 + 0 + 1
C S 0 0 0 1 0 1 1 0
3-May-16 CSE 225: Digital Logic Design 48
• Extending this to two multiple bit examples:
Carries 0 0
Augend 01100 10110
Addend +10001 +10111
Sum
• Note: The 0 is the default Carry-In to the
least significant bit.
Multiple Bit Binary Addition
3-May-16 CSE 225: Digital Logic Design 49
BCD Arithmetic
3-May-16
CSE 225: Digital Logic Design
50
Decimal digit Binary value BCD code BCD Code – Binary value
0 0000 0000 0
1 0001 0001 0
2 0010 0010 0
3 0011 0011 0
4 0100 0100 0
5 0101 0101 0
6 0110 0110 0
7 0111 0111 0
8 1000 1000 0
9 1001 1001 0
10 1010 0001 0000 6
11 1011 0001 0001 6
12 1100 0001 0010 6
13 1101 0001 0011 6
14 1110 0001 0100 6
15 1111 0001 0101 6
16 0001 0000 0001 0110 6
17 0001 0001 0001 0111 6
18 0001 0010 0001 1000 6
ForDecimaldigit>9
BCD Arithmetic
Given a BCD code,use binary arithmetic to add the digits:
8 1000 Eight
+5 +0101 Plus 5
13 1101 is 13 (> 9)
Note that the result is MORE THAN 9, so must be
represented by two digits!
To correct the digit, subtract 10 by adding 6 modulo 16.
8 1000 Eight
+5 +0101 Plus 5
13 1101 is 13 (> 9)
+0110 so add 6
carry = 1 0011 leaving 3 + cy
0001 | 0011 Final answer (two digits)
If the digit sum is > 9, add one to the next significant digit
3-May-16 CSE 225: Digital Logic Design 51
BCD Addition Example
3-May-16 CSE 225: Digital Logic Design 52
BCD Addition Example
• Add 2905BCD to 1897BCD showing carries
and digit corrections.
1897 0001 1000 1001 0111
2905 + 0010 1001 0000 0101
3-May-16 CSE 225: Digital Logic Design 53
Chapter 1 54
Error-Detection Codes
• Redundancy (e.g. extra information), in the
form of extra bits, can be incorporated into
binary code words to detect and correct
errors.
• A simple form of redundancy is parity, an
extra bit appended onto the code word to
make the number of 1’s odd or even. Parity
can detect all single-bit errors and some
multiple-bit errors.
• A code word has even parity if the number of
1’s in the code word is even.
• A code word has odd parity if the number of
1’s in the code word is odd.
Chapter 1 55
4-Bit Parity Code Example
• Fill in the even and odd parity bits:
• The codeword "1111" has even parity and the
codeword "1110" has odd parity. Both can be
used to represent 3-bit data.
Even Parity Odd Parity
Message - Parity Message - Parity
000 - 000 -
001 - 001 -
010 - 010 -
011 - 011 -
100 - 100 -
101 - 101 -
110 - 110 -
111 - 111 -
The End
3-May-16 CSE 225: Digital Logic Design 56

More Related Content

PPTX
Binary Arithmetic
PPTX
PPTX
Data Representation
PDF
Signed Binary Numbers
PPTX
11 octal number system
PPT
digital logic design number system
PDF
Lecture 01 dld 2018
PPTX
Number System
Binary Arithmetic
Data Representation
Signed Binary Numbers
11 octal number system
digital logic design number system
Lecture 01 dld 2018
Number System

What's hot (20)

PDF
Division algorithm
PPSX
Basic of number system
PPTX
Number system....
PPTX
Microoperations
PPTX
Multiplication algorithm
PPT
Logic gates
PPTX
Number System (Binary,octal,Decimal,Hexadecimal)
PPTX
Adder & subtractor (Half adder, Full adder, Half subtractor, Full subtractor)
PPTX
Booth's Multiplication Algorithm.pptx
PPT
encoder and decoder in digital electronics
PPTX
sorting and its types
PPT
Complements
PPTX
Merge sort algorithm
PPTX
Decimal number system
PPT
Number system and codes
PPTX
1s and 2s complement
PPT
2s complement arithmetic
PPTX
Restoring and Non-Restoring division algo for CSE
PPTX
Unit 3 combinational circuits
PPT
Digital Logic Design
Division algorithm
Basic of number system
Number system....
Microoperations
Multiplication algorithm
Logic gates
Number System (Binary,octal,Decimal,Hexadecimal)
Adder & subtractor (Half adder, Full adder, Half subtractor, Full subtractor)
Booth's Multiplication Algorithm.pptx
encoder and decoder in digital electronics
sorting and its types
Complements
Merge sort algorithm
Decimal number system
Number system and codes
1s and 2s complement
2s complement arithmetic
Restoring and Non-Restoring division algo for CSE
Unit 3 combinational circuits
Digital Logic Design
Ad

Viewers also liked (15)

PPTX
Parallel adders
PPTX
DLD Summer Workshop Big Data
PPT
Bangladesh ic-design-program-rev4-1 bd
PPT
DLD Practical Lab Work
PPTX
DLD Presentation By Team Reboot,Rafin Rayan,EUB
PPT
Digital logic design part1
PDF
Digital Creative Design course - UX Module day 01 (EDIT interactive design an...
PDF
Digital System Design Basics
PPTX
PPT
Digital logic design DLD Logic gates
PPTX
Encoder and decoder
PPT
Digital Logic & Design (DLD) presentation
PPTX
Computer arithmetic
Parallel adders
DLD Summer Workshop Big Data
Bangladesh ic-design-program-rev4-1 bd
DLD Practical Lab Work
DLD Presentation By Team Reboot,Rafin Rayan,EUB
Digital logic design part1
Digital Creative Design course - UX Module day 01 (EDIT interactive design an...
Digital System Design Basics
Digital logic design DLD Logic gates
Encoder and decoder
Digital Logic & Design (DLD) presentation
Computer arithmetic
Ad

Similar to dld 01-introduction (20)

PPT
Chapter 1 Digital Systems and Binary Numbers.ppt
PPT
Module 4
PPTX
01dshgdfdhfhdgfhdgfhgdjgdjgvjdgvgjfgjvfffh.pptx
PPT
Digital Electronics & Fundamental of Microprocessor-I
PPTX
Logic Circuits Design - "Chapter 1: Digital Systems and Information"
PPTX
Eln PPT module on electrical and electronics
PPTX
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
PPT
Number_System and Boolean Algebra in Digital System Design
PPT
DLD_Lecture_notes2.ppt
PPT
IntroductiontoDigitalElectronics IntroductiontoDigitalElectronics
PPT
IntroductiontoDigitalElectronics IntroductiontoDigitalElectronics
PPTX
B sc cs i bo-de u-i number system
PPT
LCDF3_Chap_01 computer engineering 01.ppt
PPTX
LCDF3_Chap_01x.pptx
PPTX
Chapter 1 digital design.pptx
PPTX
1.Digital Electronics overview & Number Systems.pptx
PPT
Boolean Algebra Arithmetic SIG UNSIGN.ppt
DOCX
Lecture 1 Digital Systems and Number SystemsMatthew Shuma.docx
PDF
Chapter 1 digital systems and binary numbers
PPTX
ADE UNIT-III (Digital Fundamentals).pptx
Chapter 1 Digital Systems and Binary Numbers.ppt
Module 4
01dshgdfdhfhdgfhdgfhgdjgdjgvjdgvgjfgjvfffh.pptx
Digital Electronics & Fundamental of Microprocessor-I
Logic Circuits Design - "Chapter 1: Digital Systems and Information"
Eln PPT module on electrical and electronics
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
Number_System and Boolean Algebra in Digital System Design
DLD_Lecture_notes2.ppt
IntroductiontoDigitalElectronics IntroductiontoDigitalElectronics
IntroductiontoDigitalElectronics IntroductiontoDigitalElectronics
B sc cs i bo-de u-i number system
LCDF3_Chap_01 computer engineering 01.ppt
LCDF3_Chap_01x.pptx
Chapter 1 digital design.pptx
1.Digital Electronics overview & Number Systems.pptx
Boolean Algebra Arithmetic SIG UNSIGN.ppt
Lecture 1 Digital Systems and Number SystemsMatthew Shuma.docx
Chapter 1 digital systems and binary numbers
ADE UNIT-III (Digital Fundamentals).pptx

Recently uploaded (20)

PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
DOCX
573137875-Attendance-Management-System-original
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Digital Logic Computer Design lecture notes
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
PPT on Performance Review to get promotions
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPT
Mechanical Engineering MATERIALS Selection
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Geodesy 1.pptx...............................................
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
CH1 Production IntroductoryConcepts.pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
UNIT 4 Total Quality Management .pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
573137875-Attendance-Management-System-original
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Digital Logic Computer Design lecture notes
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPT on Performance Review to get promotions
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
R24 SURVEYING LAB MANUAL for civil enggi
Mechanical Engineering MATERIALS Selection
Embodied AI: Ushering in the Next Era of Intelligent Systems
Geodesy 1.pptx...............................................
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
CYBER-CRIMES AND SECURITY A guide to understanding
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
CH1 Production IntroductoryConcepts.pptx

dld 01-introduction

  • 2. Overview • Digital Systems and Computer Systems • Information Representation • Number Systems [binary, octal and hexadecimal] • Arithmetic Operations • Base Conversion • Decimal Codes [BCD (binary coded decimal), parity] • Gray Codes 3-May-16 CSE 225: Digital Logic Design 2
  • 3. Digital System • Takes a set of discrete information inputs and discrete internal information (system state) and generates a set of discrete information outputs. System State Discrete Information Processing System Discrete Inputs Discrete Outputs 3-May-16 CSE 225: Digital Logic Design 3
  • 4. Types of Digital Systems • No state present o Combinational Logic System o Output = Function(Input) • State present o State updated at discrete times => Synchronous Sequential System o State updated at any time =>Asynchronous Sequential System o State = Function (State, Input) o Output = Function (State) or Function (State, Input) 3-May-16 CSE 225: Digital Logic Design 4
  • 5. Digital System Example: A Digital Counter (e. g., odometer, a meter that shows mileage traversed): 1 30 0 5 6 4 Count Up Reset Inputs: Count Up, Reset Outputs: Visual Display State: "Value" of stored digits Synchronous or Asynchronous? 3-May-16 CSE 225: Digital Logic Design 5
  • 6. A Digital Computer Example Synchronous or Asynchronous? Inputs: Keyboard, mouse, modem, microphone Outputs: CRT, LCD, modem, speakers Memory Control unit Datapath Input/Output CPU 3-May-16 CSE 225: Digital Logic Design 6
  • 7. Chapter 1 7 Signal • An information variable represented by physical quantity. • For digital systems, the variable takes on discrete values. • Two level, or binary values are the most prevalent values in digital systems. • Binary values are represented abstractly by: o digits 0 and 1 o words (symbols) False (F) and True (T) o words (symbols) Low (L) and High (H) o and words On and Off. • Binary values are represented by values or ranges of values of physical quantities
  • 8. Chapter 1 8 Signal Examples Over Time Analog Asynchronous Synchronous Time Continuous in value & time Discrete in value & continuous in time Discrete in value & time Digital
  • 9. 5.0 4.0 3.0 2.0 1.0 0.0 Volts HIGH LOW HIGH LOW OUTPUT INPUT Signal Example – Physical Quantity: Voltage Threshold Region 3-May-16 CSE 225: Digital Logic Design 9
  • 10. • What are other physical quantities represent 0 and 1? o CPU Voltage o Disk o CD o Dynamic RAM Binary Values: Other Physical Quantities Magnetic Field Direction Surface Pits/Light Electrical Charge 3-May-16 CSE 225: Digital Logic Design 10
  • 11. Binary Representation of Numbers • 231.45 = • Here, 10 is called the radix or base of the number system • In 10-base systems, there are 10 symbols (‘0’, ‘1’, … , ‘9’) • In n-base system, there are n symbols (‘0’, ‘1’, … , ‘n-1’) • In binary (2-base) system, there are 2 symbols (‘0’, and ‘1’) 11
  • 12. Class Room Practice • Consider the binary number 101.011 • Calculate the decimal value of it. • The reverse process—converting a decimal to binary—is also straightforward. • Divide a decimal number is exact sum of positive and negative power of 2. • Successively divide by 2 and ½. 12
  • 13. Decimal to Binary • Take decimal 14.875 • Hence, 14 = 1110 • For fractional part, we have to divide by ½ or multiply by 2. • 14.875 = 1110.111 (binary) 13
  • 14. Conversion Between Bases To convert from one base to another: 1) Convert the Integer Part 2) Convert the Fraction Part 3) Join the two results with a radix point 3-May-16 CSE 225: Digital Logic Design 14
  • 15. Conversion Details • To Convert the Integral Part: 1. Repeatedly divide the number by the new radix and save the remainders. 2. The digits for the new radix are the remainders in reverse order of their computation. 3. If the new radix is > 10, then convert all remainders > 10 to digits A, B, … • To Convert the Fractional Part: 1. Repeatedly multiply the fraction by the new radix and save the integer digits that result. 2. The digits for the new radix are the integer digits in order of their computation. 3. If the new radix is > 10, then convert all integers > 10 to digits A, B, … 3-May-16 CSE 225: Digital Logic Design 15
  • 16. Example: Convert 46.687510 To Base 2 • Convert 46 to Base 2 • Convert 0.6875 to Base 2: • Join the results together with the radix point: 3-May-16 CSE 225: Digital Logic Design 16 (46)10=(101110)2 (0.6875)10=(0.1011)2 (46.6875)10=(101110.1011)2
  • 17. Checking the Conversion • To convert back, sum the digits times their respective powers of r. • From the prior conversion of 46.687510 1011102 = 32 + 8 + 4 + 2 = 46 0.10112 = 1/2 + 1/8 + 1/16 = 0.5000 + 0.1250 + 0.0625 = 0.6875 3-May-16 CSE 225: Digital Logic Design 17
  • 18. Class Room Practice • Convert decimal 17.375 to binary • 17.375 = 10001.011 (binary) CSE 257 Numerical Method 18
  • 19. Additional Issue - Fractional Part • Note that in this conversion, the fractional part became 0 as a result of the repeated multiplications. • In general, it may take many bits to get this to happen or it may never happen. • Example: Convert 0.6510 to N2 o 0.65 = 0.1010011001001 … o The fractional part begins repeating every 4 steps yielding repeating 1001 forever! • Solution: Specify number of bits to right of radix point and round or truncate to this number. 3-May-16 CSE 225: Digital Logic Design 19
  • 20. General Representation of Numbers • Positive radix, positional number systems • A number with radix r is represented by a string of digits: An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m + 1 A- m in which 0 Ai < r and . is the radix point. • The string of digits represents the power series: ( ) ( )(Number)r =  + j = - m j j i i = 0 i rArA (Integer Portion) + (Fraction Portion) i = n - 1 j = - 1 3-May-16 CSE 225: Digital Logic Design 20
  • 21. General Representation of Numbers: Example • Number = 12345.6789 = (1 × 104 + 2 × 103 + 3 × 102 + 4 × 101 + 5 × 100 ) + (6 × 10−1 + 7 × 10−2 + 8 × 10−3 + 9 × 10−4) Where, A4=1 A3=2 A2=3 A1=4 A0=5 . A-1=6 A-2=7 A-3=8 A-9=9 and Radix, r =10 • Number = 10110.0110 = (1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20) + (0 × 2−1 + 1 × 2−2 + 1 × 2−3 + 0 × 2−4) Where, A4=1 A3=0 A2=1 A1=1 A0=0 . A-1=0 A-2=1 A-3=1 A-9=0 and Radix, r =2 3-May-16 CSE 225: Digital Logic Design 21
  • 22. Number Systems – Examples General Decimal Binary Radix (Base) r 10 2 Digits 0 => r - 1 0 => 9 0 => 1 0 1 2 3 Powers of 4 Radix 5 -1 -2 -3 -4 -5 r0 r1 r2 r3 r4 r5 r -1 r -2 r -3 r -4 r -5 1 10 100 1000 10,000 100,000 0.1 0.01 0.001 0.0001 0.00001 1 2 4 8 16 32 0.5 0.25 0.125 0.0625 0.03125 3-May-16 CSE 225: Digital Logic Design 22
  • 23. Special Powers of 2 210 (1024) is Kilo, denoted "K" 220 (1,048,576) is Mega, denoted "M" 230 (1,073, 741,824)is Giga, denoted "G" 3-May-16 CSE 225: Digital Logic Design 23
  • 24. • Useful for Base Conversion Exponent Value Exponent Value 0 1 11 2,048 1 2 12 4,096 2 4 13 8,192 3 8 14 16,384 4 16 15 32,768 5 32 16 65,536 6 64 17 131,072 7 128 18 262,144 19 524,288 20 1,048,576 21 2,097,152 8 256 9 512 10 1024 Positive Powers of 2 3-May-16 CSE 225: Digital Logic Design 24
  • 25. Commonly Occurring Bases Name Radix Digits Binary 2 0,1 Octal 8 0,1,2,3,4,5,6,7 Decimal 10 0,1,2,3,4,5,6,7,8,9 Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F The six letters (in addition to the 10 integers) in hexadecimal represent: 3-May-16 CSE 225: Digital Logic Design 25
  • 26. Decimal (Base 10) Binary (Base 2) Octal (Base 8) Hexadecimal (Base 16) 00 00000 00 00 01 00001 01 01 02 00010 02 02 03 00011 03 03 04 00100 04 04 05 00101 05 05 06 00110 06 06 07 00111 07 07 08 01000 10 08 09 01001 11 09 10 01010 12 0A 11 01011 13 0B 12 01100 14 0C 13 01101 15 0D 14 01110 16 0E 15 01111 17 0F 16 10000 20 10 • Good idea to memorize! Numbers in Different Bases 3-May-16 CSE 225: Digital Logic Design 26
  • 27. Octal Number System • 8-base number system • 8 symbols (0, 1, 2, 3, 4, 5, 6, 7) • Base/radix is power of 2 • One-to-one relation between octal and binary • A binary number could be converted easily to octal • Group 3 bits and convert directly to octal CSE 257 Numerical Method 27
  • 28. Octal (Hexadecimal) to Binary and Back • Octal (Hexadecimal) to Binary: o Restate the octal (hexadecimal) as three (four) binary digits starting at the radix point and going both ways. • Binary to Octal (Hexadecimal): o Group the binary digits into three (four) bit groups starting at the radix point and going both ways, padding with zeros as needed in the fractional part. o Convert each group of three bits to an octal (hexadecimal) digit. 3-May-16 CSE 225: Digital Logic Design 28
  • 29. Binary to Octal to Decimal • Instead of converting binary to decimal • Faster process is binary to octal to decimal CSE 257 Numerical Method 29
  • 30. Hexadecimal • 16-base number system • 16 symbols (0—9, A, B, C, D, E) • Again radix is power of 2 • 4 bits to represent a hexadecimal number CSE 257 Numerical Method 30
  • 31. Hexadecimal Conversion CSE 257 Numerical Method 31
  • 32. Octal to Hexadecimal via Binary • Convert octal to binary. • Use groups of four bits and convert as above to hexadecimal digits. • Example: Octal to Binary to Hexadecimal 6 3 5 . 1 7 7 8 (110 011 101. 001 111 111)2 (1 9 D . 3 F 8)16 3-May-16 CSE 225: Digital Logic Design 32
  • 33. Complements • Representation of negative number(e.g. -1 or 101) or in Subtraction operation(e.g. 3-1 or 11-01). • If base(radix) r, then there are 2types of complements, o r’s complement o (r-1)’s complement • If radix=10, o 10’s complement o 9’s complement • If radix=2 o 2’s complement o 1’s complement 3-May-16 CSE 225: Digital Logic Design 33
  • 34. The r’s complement • Positive Number, N in base r with integer part of n digits, • Complement of N = 𝑟 𝑛 − 𝑁, 𝑖𝑓 𝑁 ≠ 0 0 , 𝑖𝑓 𝑁 = 0 • If radix=10, N=25.639 o 10’s complement of 25.639 10 = 102 − 25.639 = 74.361 • If radix=2, N=1011.01 o 2’s complement of 1011.01 2 = 24 − 1011.01 = 100.11 3-May-16 CSE 225: Digital Logic Design 34
  • 35. The (r-1)’s complement • Positive Number, N in base r with integer part of n digits and fraction part of m digits, • Complement of N = 𝑟 𝑛 − 𝑟−𝑚 − 𝑁, 𝑖𝑓 𝑁 ≠ 0 0, 𝑖𝑓 𝑁 = 0 • If radix=10, N=25.639 o 9’s complement of 25.639 10 = 102 − 10−3 − 25.639 = 74.360 • If radix=2, N=1011.01 o 1’s complement of 1011.01 2 = 24 − 2−2 − 1011.01 = 100.10 3-May-16 CSE 225: Digital Logic Design 35
  • 36. Comparison between 1’s complement and 2’s complement • Conversion to 1’s complement is easy, just flip each bit(0→1, 1 →0) • 1’s complement has positive zero(0000) and negative zero(1111). o As a result, n bit number can represent [−2 𝑛−1 − 1, 2 𝑛−1 − 1] numbers. o Example, for char(8-bit) n=8, number range[−27 − 1, 27 − 3-May-16 CSE 225: Digital Logic Design 36
  • 37. Binary Numbers and Binary Coding • Flexibility of representation o Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded. • Information Types o Numeric • Must represent range of data needed • Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted • Tight relation to binary numbers o Non-numeric • Greater flexibility since arithmetic operations not applied. • Not tied to binary numbers 3-May-16 CSE 225: Digital Logic Design 37
  • 38. • Given n binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the 2n binary numbers. • Example: A binary code for the seven colors of the rainbow • Code 100 is not used Non-numeric Binary Codes Binary Number 000 001 010 011 101 110 111 Color Red Orange Yellow Green Blue Indigo Violet 3-May-16 CSE 225: Digital Logic Design 38
  • 39. • Given M elements to be represented by a binary code, the minimum number of bits, n, needed, satisfies the following relationships: 2n > M > 2(n – 1) n = log2 M where x , called the ceiling function, is the integer greater than or equal to x. • Example: How many bits are required to represent decimal digits with a binary code? Number of Bits Required 3-May-16 CSE 225: Digital Logic Design 39
  • 40. Number of Elements Represented • Given n digits in radix r, there are rn distinct elements that can be represented. • But, you can represent m elements, m < rn • Examples: o You can represent 4 elements in radix r = 2 with n = 2 digits: (00, 01, 10, 11). o You can represent 4 elements in radix r = 2 with n = 4 digits: (0001, 0010, 0100, 1000). 3-May-16 CSE 225: Digital Logic Design 40
  • 41. Binary Codes for Decimal Digits Decimal 8,4,2,1 Excess3 8,4,-2,-1 Gray 0 0000 0011 0000 0000 1 0001 0100 0111 0100 2 0010 0101 0110 0101 3 0011 0110 0101 0111 4 0100 0111 0100 0110 5 0101 1000 1011 0010 6 0110 1001 1010 0011 7 0111 1010 1001 0001 8 1000 1011 1000 1001 9 1001 1100 1111 1000 There are over 8,000 ways that you can chose 10 elements from the 16 binary numbers of 4 bits. A few are useful: 3-May-16 CSE 225: Digital Logic Design 41
  • 42. Binary Coded Decimal (BCD) • The BCD code is the 8,4,2,1 code. • This code is the simplest, most intuitive binary code for decimal digits and uses the same powers of 2 as a binary number, but only encodes the first ten values from 0 to 9. • Example: 1001 (9) = 1000 (8) + 0001 (1) • How many “invalid” code words are there? • What are the “invalid” code words? 3-May-16 CSE 225: Digital Logic Design 42
  • 43. Chapter 1 43 • What interesting property is common to these two codes? Excess 3 Code and 8, 4, –2, –1 Code Decimal Excess 3 8, 4, –2, –1 0 0011 0000 1 0100 0111 2 0101 0110 3 0110 0101 4 0111 0100 5 1000 1011 6 1001 1010 7 1010 1001 8 1011 1000 9 1100 1111
  • 44. Chapter 1 44 • What special property does the Gray code have in relation to adjacent decimal digits? Gray Code Decimal 8,4,2,1 Gray 0 0000 0000 1 0001 0100 2 0010 0101 3 0011 0111 4 0100 0110 5 0101 0010 6 0110 0011 7 0111 0001 8 1000 1001 9 1001 1000
  • 45. Chapter 1 45 B0 111 110 000 001 010 011100 101 B1 B2 (a) Binary Code for Positions 0 through 7 G0 G1 G2 111 101 100 000 001 011 010110 (b) Gray Code for Positions 0 through 7 Gray Code (Continued) • Does this special Gray code property have any value? • An Example: Optical Shaft Encoder
  • 46. Warning: Conversion or Coding? • Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a BINARY CODE. • 1310 = 11012 (This is conversion) • 13  0001|0011 (This is coding) 3-May-16 CSE 225: Digital Logic Design 46
  • 47. Binary Arithmetic • Single Bit Addition with Carry • Multiple Bit Addition • Single Bit Subtraction with Borrow • Multiple Bit Subtraction • Multiplication • BCD Addition 3-May-16 CSE 225: Digital Logic Design 47
  • 48. Single Bit Binary Addition with Carry Given two binary digits (X,Y), a carry in (Z) we get the following sum (S) and carry (C): Carry in (Z) of 0: Carry in (Z) of 1: Z 1 1 1 1 X 0 0 1 1 + Y + 0 + 1 + 0 + 1 C S 0 1 1 0 1 0 1 1 Z 0 0 0 0 X 0 0 1 1 + Y + 0 + 1 + 0 + 1 C S 0 0 0 1 0 1 1 0 3-May-16 CSE 225: Digital Logic Design 48
  • 49. • Extending this to two multiple bit examples: Carries 0 0 Augend 01100 10110 Addend +10001 +10111 Sum • Note: The 0 is the default Carry-In to the least significant bit. Multiple Bit Binary Addition 3-May-16 CSE 225: Digital Logic Design 49
  • 50. BCD Arithmetic 3-May-16 CSE 225: Digital Logic Design 50 Decimal digit Binary value BCD code BCD Code – Binary value 0 0000 0000 0 1 0001 0001 0 2 0010 0010 0 3 0011 0011 0 4 0100 0100 0 5 0101 0101 0 6 0110 0110 0 7 0111 0111 0 8 1000 1000 0 9 1001 1001 0 10 1010 0001 0000 6 11 1011 0001 0001 6 12 1100 0001 0010 6 13 1101 0001 0011 6 14 1110 0001 0100 6 15 1111 0001 0101 6 16 0001 0000 0001 0110 6 17 0001 0001 0001 0111 6 18 0001 0010 0001 1000 6 ForDecimaldigit>9
  • 51. BCD Arithmetic Given a BCD code,use binary arithmetic to add the digits: 8 1000 Eight +5 +0101 Plus 5 13 1101 is 13 (> 9) Note that the result is MORE THAN 9, so must be represented by two digits! To correct the digit, subtract 10 by adding 6 modulo 16. 8 1000 Eight +5 +0101 Plus 5 13 1101 is 13 (> 9) +0110 so add 6 carry = 1 0011 leaving 3 + cy 0001 | 0011 Final answer (two digits) If the digit sum is > 9, add one to the next significant digit 3-May-16 CSE 225: Digital Logic Design 51
  • 52. BCD Addition Example 3-May-16 CSE 225: Digital Logic Design 52
  • 53. BCD Addition Example • Add 2905BCD to 1897BCD showing carries and digit corrections. 1897 0001 1000 1001 0111 2905 + 0010 1001 0000 0101 3-May-16 CSE 225: Digital Logic Design 53
  • 54. Chapter 1 54 Error-Detection Codes • Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors. • A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1’s odd or even. Parity can detect all single-bit errors and some multiple-bit errors. • A code word has even parity if the number of 1’s in the code word is even. • A code word has odd parity if the number of 1’s in the code word is odd.
  • 55. Chapter 1 55 4-Bit Parity Code Example • Fill in the even and odd parity bits: • The codeword "1111" has even parity and the codeword "1110" has odd parity. Both can be used to represent 3-bit data. Even Parity Odd Parity Message - Parity Message - Parity 000 - 000 - 001 - 001 - 010 - 010 - 011 - 011 - 100 - 100 - 101 - 101 - 110 - 110 - 111 - 111 -
  • 56. The End 3-May-16 CSE 225: Digital Logic Design 56