SlideShare a Scribd company logo
First, Firster, Firstest
Three lessons from
history on information
overload and technology

Strata Conference
September, 2011

Mark R. Madsen
http://ThirdNature.net
Sivowitch’s Law of Firsts


   “Whenever you prove who was first, the harder
   you look you will find someone else who was
   more first. And if you persist in your efforts you
   find that the person whom you thought was first
   was third.”
                                     - Eliot Sivowitch




                           Page 2
"Those who cannot remember 
                  the past are condemned to 
                  repeat it.” 
                                     George Santayana




If there’s one lesson we can take from history, It’s
that nobody learns any lessons from history.
The future of data is the relational database
You keep using that word.
I do not think it means
what you think it means.
Good conceptual model, bad implementation




The relational database is the franchise 
technology for storing and retrieving data, but…
   1. Single, static schema model
   2. No rich typing system
   3. Limited API in atomic SQL statement syntax
Big Data: The SQL vs noSQL argument
There’s a difference 
between having no past 
and actively rejecting it.
“There is nothing new under the sun 
but there are lots of old things we 
don't know.”
                      Ambrose Bierce
The fundamental data storage device for a thousand years
The Elizabethan Era
Automated printing. 
Information explosion: 
  ▪ 8M books in 1500
  ▪ 200M by 1600
  ▪ Commoditization
Data management tech:
  ▪ Perfect copies
  ▪ Indices
  ▪ Topical catalogs
  ▪ First real encyclopedia
  ▪ Font standardization
The Elizabethan Era: Storage and Retrieval
The Elizabethan Era: Storage and Retrieval
The Elizabethan Era: Storage and Retrieval
The Georgian Era: The Explosion of Natural Philosophy
Buffon


         Bottom up orientation
         Flexible structure
         Explanatory, descriptive

         Faceted classification
Linnaeus

           Top down orientation
           Static structure
           Descriptive rather than 
           explanatory

           Taxonomic classification
The Theory of American Degeneracy
  vs




                vs
The Theory of American Degeneracy
The Theory of American Degeneracy
vs




     vs
The Victorian Era
Charles Ammi Cutter
                      Cutter Expansive 
                      Classification System 
                      (~1882)
                      Bottom up orientation
                      More flexible structure
                      Explanatory, descriptive
Melvil Dewey

               Dewey Decimal System
               Top down orientation
               Static structure
               Descriptive rather than 
               explanatory
vs
Every technology is a tradeoff between something

History is always the same:
  ▪ Top down vs. bottom up
  ▪ Authority vs. anarchy
  ▪ Bureaucracy vs. autonomy
  ▪ Control vs. creativity
  ▪ Hierarchy vs. network
  ▪ Power vs. ease
  ▪ Dynamic vs. static

In every choice, something is lost when something is gained.
So why did Linnaeus and Dewey win?


          Good enough 
          wins the day




          It wasn’t solving 
          the problem you 
          thought it was.
What lesson might we apply from this?



                            Ok, it’s not   You write a   Did you
So how do     It’s not a    a database     distributed   just tell me
I query the   database,     How do I       mapreduce     to go to
database?     it’s a key-   query it?      function in   hell?          I believe I
              value                        erlang.                      did, Bob.
              store!




    Perhaps you should think about pragmatism a little bit.
Dealing with data in the industrial era




                              Paul Otlet at his desk
19th Century Data Loading
Writing to the Database, Note Multi‐processing
Large Scale Information Storage
Information Retrieval
The Computer & Internet Were Invented in 1934

                      Otlet’s future vision:
                        ▪ Technological 
                          developments will 
                          improve the ability to 
                          manage information
                        ▪ Current technologies 
                          can be integrated to 
                          provide individual 
                          discovery, access and 
                          collaboration
The Mundaneum Worked, For a While

                       Two primary flaws of 
                       the Mundaneum:
                         ▪ Static, top‐down 
                           classification system
                         ▪ Loading could not 
                           keep up with data 
                           production rates


                          Sounds familiar
Information Management Through Human History


         New technology development
                    creates
             New methods to cope
                    creates
     New information scale and availability
                   creates…
Big Data
You keep using that word.
I do not think it means
what you think it means.
Big data?




      Unstructured data isn’t 
      really unstructured.
      The problem is that this 
      data is unmodeled.
The future of data is the relational database




     SQL                      noSQL
The future of data is the relational database




     SQL                      noSQL
The false dichotomy can be removed by technology




Code defines what’s possible now - maybe it’s time to recode
Conclusion
CC Image Attributions
Thanks to the people who supplied the creative commons licensed images used in this presentation:
manuscript_page.jpg ‐ http://www.flickr.com/photos/calliope/306564541/
manuscript_illum.jpg ‐ http://www.flickr.com/photos/diorama_sky/2975796332
bookshelf by spectrum.jpg ‐ http://flickr.com/photos/santos/1704875109/
moose.jpg ‐ http://www.flickr.com/photos/stephenandjes/4286949510/
Vatican library ‐ http://www.flickr.com/photos/paullew/1550844955

Copyright or unknown
Little girl and fire – Dave Roth
Procrastinate – http://www.cracked.com
Fault tolerance ‐ http://browsertoolkit.com/fault‐tolerance.png
About the Presenter
                      Mark Madsen is president of Third
                      Nature, a technology research and
                      consulting firm focused on business
                      intelligence, analytics and
                      information management. Mark is an
                      award-winning author, architect and
                      former CTO whose work has been
                      featured in numerous industry
                      publications. During his career Mark
                      received awards from the American
                      Productivity & Quality Center, TDWI,
                      Computerworld and the Smithsonian
                      Institute. He is an international
                      speaker, contributing editor at
                      Intelligent Enterprise, and manages
                      the open source channel at the
                      Business Intelligence Network. For
                      more information or to contact Mark,
                      visit http://ThirdNature.net.
About Third Nature


Third Nature is a research and consulting firm focused on new and
emerging technology and practices in business intelligence, data
integration and information management. If your question is related to BI,
open source, web 2.0 or data integration then you‘re at the right place.
Our goal is to help companies take advantage of information-driven
management practices and applications. We offer education, consulting
and research services to support business and IT organizations as well as
technology vendors.
We fill the gap between what the industry analyst firms cover and what IT
needs. We specialize in product and technology analysis, so we look at
emerging technologies and markets, evaluating the products rather than
vendor market positions.

More Related Content

PDF
20111101 b hyland-w3-c-tpac-egov
PDF
20111120 warsaw learning curve by b hyland notes
PDF
Government Linked Data Projects in the Wild
PDF
Rapid Semantic Web Application Development
PDF
ESWC SS 2013 - Monday Keynote Stefan Decker: From Linked Data to Networked Kn...
PPTX
Critical issues in the collection, analysis and use of student (digital) data
PPT
Big data-public-private-forum--2013 publioc-sector_meeting_spain_big_data_tec...
20111101 b hyland-w3-c-tpac-egov
20111120 warsaw learning curve by b hyland notes
Government Linked Data Projects in the Wild
Rapid Semantic Web Application Development
ESWC SS 2013 - Monday Keynote Stefan Decker: From Linked Data to Networked Kn...
Critical issues in the collection, analysis and use of student (digital) data
Big data-public-private-forum--2013 publioc-sector_meeting_spain_big_data_tec...

Similar to First, Firster, Firstest: Three lessons from history on information overload (20)

PDF
Following Google: Don’t Follow the Followers, Follow the Leaders
PDF
Big Data and Bad Analogies
PDF
Don't follow the followers
PDF
Choosing which big data, nosql or database technology to use
PPTX
Emm Introduction 2013
PDF
Kappelman tribalnet - trends in IT infrastructure - 16nov2011 h
PDF
Gerenral insurance Accounts IT and Investment
PDF
Story of Bigdata and its Applications in Financial Institutions
PDF
THE CIA’S “GRAND CHALLENGES” WITH BIG DATA from Structure:Data 2013
PPTX
Newcastle Introduction 2012
PDF
Unlocking-Business-Value-Through-Industrial-Data-Management-whitepaper.pdf
PPT
Big Data = Big Decisions
PDF
Delivering next generation enterprise no sql database technology
PDF
The Information Advantage - Information Access in Tomorrow's Enterprise
PPT
Managing Emerging Technologies
PDF
EDF2013: Invited Talk Julie Marguerite: Big data: a new world of opportunitie...
PPTX
EDF2013: Invited Talk Daragh O'Brien: The Story of Maturity – How data in Bus...
PDF
Modernizing And Advancing Info Magagement
PPTX
NBS8053 Introduction 2012
PPTX
Information Architecture For Technical Communicators: What Does One Need to ...
Following Google: Don’t Follow the Followers, Follow the Leaders
Big Data and Bad Analogies
Don't follow the followers
Choosing which big data, nosql or database technology to use
Emm Introduction 2013
Kappelman tribalnet - trends in IT infrastructure - 16nov2011 h
Gerenral insurance Accounts IT and Investment
Story of Bigdata and its Applications in Financial Institutions
THE CIA’S “GRAND CHALLENGES” WITH BIG DATA from Structure:Data 2013
Newcastle Introduction 2012
Unlocking-Business-Value-Through-Industrial-Data-Management-whitepaper.pdf
Big Data = Big Decisions
Delivering next generation enterprise no sql database technology
The Information Advantage - Information Access in Tomorrow's Enterprise
Managing Emerging Technologies
EDF2013: Invited Talk Julie Marguerite: Big data: a new world of opportunitie...
EDF2013: Invited Talk Daragh O'Brien: The Story of Maturity – How data in Bus...
Modernizing And Advancing Info Magagement
NBS8053 Introduction 2012
Information Architecture For Technical Communicators: What Does One Need to ...
Ad

More from mark madsen (20)

PDF
Data Architecture: OMG It’s Made of People
PDF
Solve User Problems: Data Architecture for Humans
PDF
The Black Box: Interpretability, Reproducibility, and Data Management
PDF
Operationalizing Machine Learning in the Enterprise
PDF
Building a Data Platform Strata SF 2019
PDF
Architecting a Data Platform For Enterprise Use (Strata NY 2018)
PDF
Architecting a Platform for Enterprise Use - Strata London 2018
PDF
A Brief Tour through the Geology & Endemic Botany of the Klamath-Siskiyou Range
PDF
How to understand trends in the data & software market
PDF
Pay no attention to the man behind the curtain - the unseen work behind data ...
PDF
Assumptions about Data and Analysis: Briefing room webcast slides
PDF
Everything Has Changed Except Us: Modernizing the Data Warehouse
PDF
A Pragmatic Approach to Analyzing Customers
PDF
Disruptive Innovation: how do you use these theories to manage your IT?
PDF
Briefing room: An alternative for streaming data collection
PDF
Building the Enterprise Data Lake: A look at architecture
PDF
Briefing Room analyst comments - streaming analytics
PDF
Everything has changed except us
PDF
Bi isn't big data and big data isn't BI (updated)
PDF
On the edge: analytics for the modern enterprise (analyst comments)
Data Architecture: OMG It’s Made of People
Solve User Problems: Data Architecture for Humans
The Black Box: Interpretability, Reproducibility, and Data Management
Operationalizing Machine Learning in the Enterprise
Building a Data Platform Strata SF 2019
Architecting a Data Platform For Enterprise Use (Strata NY 2018)
Architecting a Platform for Enterprise Use - Strata London 2018
A Brief Tour through the Geology & Endemic Botany of the Klamath-Siskiyou Range
How to understand trends in the data & software market
Pay no attention to the man behind the curtain - the unseen work behind data ...
Assumptions about Data and Analysis: Briefing room webcast slides
Everything Has Changed Except Us: Modernizing the Data Warehouse
A Pragmatic Approach to Analyzing Customers
Disruptive Innovation: how do you use these theories to manage your IT?
Briefing room: An alternative for streaming data collection
Building the Enterprise Data Lake: A look at architecture
Briefing Room analyst comments - streaming analytics
Everything has changed except us
Bi isn't big data and big data isn't BI (updated)
On the edge: analytics for the modern enterprise (analyst comments)
Ad

Recently uploaded (20)

PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
sap open course for s4hana steps from ECC to s4
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
Machine Learning_overview_presentation.pptx
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPT
Teaching material agriculture food technology
PDF
Machine learning based COVID-19 study performance prediction
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
cuic standard and advanced reporting.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
A Presentation on Artificial Intelligence
PDF
Approach and Philosophy of On baking technology
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
Dropbox Q2 2025 Financial Results & Investor Presentation
sap open course for s4hana steps from ECC to s4
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Diabetes mellitus diagnosis method based random forest with bat algorithm
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Machine Learning_overview_presentation.pptx
Advanced methodologies resolving dimensionality complications for autism neur...
Teaching material agriculture food technology
Machine learning based COVID-19 study performance prediction
Building Integrated photovoltaic BIPV_UPV.pdf
“AI and Expert System Decision Support & Business Intelligence Systems”
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
cuic standard and advanced reporting.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
A Presentation on Artificial Intelligence
Approach and Philosophy of On baking technology
A comparative analysis of optical character recognition models for extracting...
Assigned Numbers - 2025 - Bluetooth® Document
20250228 LYD VKU AI Blended-Learning.pptx

First, Firster, Firstest: Three lessons from history on information overload