The document discusses the canonical quantization of covariant fields on curved spacetimes, specifically the de Sitter spacetime. It introduces covariant fields that transform under representations of the spin group SL(2,C) and have covariant derivatives ensuring gauge invariance. Isometries of the spacetime generate Killing vectors and induce representations of the external symmetry group, which is the universal covering group of isometries and combines isometries with gauge transformations. Generators of these representations provide conserved observables that allow canonical quantization analogous to special relativity. The paper focuses on applying this framework to the Dirac field on de Sitter spacetime.