SlideShare a Scribd company logo
Variable Objective Large Neighborhood Search:

A practical approach to solve over-constrained problems
Pierre Schaus	

UCL, ICTEAM, Belgium
Over-Constrained Problems
Mon

Tue

Wed

Usually render the
problem 	

over-constrained	


Demand

>2
=2

gcc1

>1
>2

gcc2

>3
>1

gcc3
Relaxation = 	

Violation Variables in Constraints (Petit & Régin)
Mon

Demand

>2
=2

Tue

>1
>2

Wed

>3
>1

o1) (...,o2) (...,o3)
(..., gcc
-gcc oft-gcc
oft
oft
s
s
s
Aggregation of violations

•
•

Many possibilities	

Most intuitive one: 	

o1+o2+o3+...
Minimize sum of violation variables	

o1+o2+o3+...

Desired Properties :
A: o1+o2+o3+... should be small
B: o1+o2+o3+... should be balanced

not easy to reached with CP
Major Weakness of CP =
Weak filtering of sum (bound-consistency)

large BnB search tree

small fraction of it is explored with DFS

bad solutions
Solution = Large Neighborhood Search
LNS = LS using CP for neighborhood exploration
Decision Variables

LNS (Shaw 98)

.. .. .. .. .. .. .. .. .. .. .. ..
Bound = 100 1 3 5 6 2 9 1 8 3 1 0 4

Find Initial Solution with CP
LNS (Shaw 98)
..
..
.. ..
..
Bound = 100 1 3 5 6 2 9 1 8 3 1 0 4

Relax* (randomly) this solution

*aka fragment selection
LNS (Shaw 98)
7
..
8
..
1 4
.. ..
3
..
Bound = 96 1 3 5 6 2 9 1 8 3 1 0 4

Optimize this partial solution with CP
LNS (Shaw 98)
..
..
..
.. ..
Bound = 96 1 3 7 6 2 8 1 8 1 4 0 3

relax randomly
LNS (Shaw 98)
.. 7 2
.. ..
8
9
..
1 4 1 3
.. 3 .. ..
..
Bound = 85 1 3 5 6 2 10 1 8 3 1 0 4

re-optimize
LNS (Shaw 98)
..

initial
relax
optimize
relax
optimize
...

..

..

..

..

..

..

..

..

..

..

..

1

3

5

6

2

9

1

8

3

1

0

4

..

..

..

..

..

7

8

1

4

3

..

..

..

..

..

3

2

10

3

1
From a CP Model to a LNS Model

CP
Model

+

Relaxation
Procedure

=

LNS Model

Which decision Variables should be
relaxed for next restart
Minimize sum of violation variables	

o1+o2+o3+...

Desired Properties :
A: o1+o2+o3+... should be small
B: o1+o2+o3+... should be balanced
o1+o2+o3+o4 = 7
4
1

2

2

2

1

1

1

o1 o2 o3 o4

o1 o2 o3 o4

balanced

unbalanced

How to avoid
this ?
Dynamically Change the Objective	

(at each LNS restart)
Focus on worse objective at each LNS restart
!

o1

o2

o3

o4
Focus on worse objective at each LNS restart
!

o1

o2

o3

o4
Focus on worse objective at each LNS restart

!

o1

o2

o3

o4
Focus on worse objective at each LNS restart

!

o1

o2

o3

o4
In practice …

•

Objective configuration changed at each
LNS restarts.	


•

Each objective can be configured
differently
Strong = must decrease	

Weak = cannot increase	

No = unrestricted

filtering
3 Filtering modes
Weak, Strong, No - Filtering
!
!

o1

o2

o3

o4

Weak Strong No Strong

Strong: must decrease	

Weak: cannot increase	

No: unrestricted
Good idea: o1+o2+o3+o4 in Strong
Ensures at least
same filtering
as original one

o1

o2

o3

o4 o1+o2+o3+o4

Weak Strong No Strong Strong
objective value

New solution found during
BnB DFS

restart i
o1 Strong	

o2 Weak	

o3 No

restart i+1
o1 Weak	

o2 No	

o3 Strong

time
From a LNS-CP Model
to a Variable-Objective LNS Model

CP
Model

objective
Relaxation
configuration
Procedure

++

=

VO-LNS
LNS Model
Model

set objectives into 	

Strong/Weak/No filtering
mode
Experimental Result

•
•

Artificial over-constrained problems	

Over-Constraint timetabling application
Artificial Over-Constrained Problem
Random Domain:	

5 values on [1..15]

oj
every values 1..15
should appear exactly
once	

on each row

oi
violation = sum
of excess &
shortage of each
value

every values 1..15 should
appear exactly once	

on each column
LNS Relaxations
R1

R2

10% of variables (randomly)

= 10% of variables (randomly)
+ most violated line/column

oi

most violated line*
*tabu mechanism for diversification
Objective Configurations
o1 , o2 , ... , o15 , o16 , ... , o30 , otot
C1

C2

o1 , o2 , ... , o30 : No 	

otot : Strong

o1 , o2 , ... , o30 : Weak 	


Standard minimization
of sum, does not try
to balance violations

otot : Strong, oi: Strong
The most violated
row/column in current
solutions

oi
Experiments LNS
400 Restarts, 50 Failure Limit	

!

•
•
•

Setting A: R1 & C1	


•

random relax, standard minimization	


Setting B: R2 & C1	


•

structured relaxation, standard minimization	


Setting C: R2 & C2	


•

structured relaxation, variable objective (VO-LNS)
LNS

VO-LNS Decrease
faster	

&	

better sum of violations
Balancing Property

Better total
violation

Better total
balancing

VO-LNS
Real Life - Timetabling	

Hospitality Management School

Groups

Weeks
Real Life - Timetabling	

Hospitality Management School

Groups

Weeks

Groups of 20 students must be scheduled over semester
Real Life - Timetabling	

Hospitality Management School
PM

Weeks

Groups

AM

Two activities/ Week to decide 	

Morning & Afternoon
Real Life - Timetabling	

Hospitality Management School
Weeks

Groups

> 2x A1	

= 1x A2	

…

For each group: cardinality requirement on activity types
Real Life - Timetabling	

Hospitality Management School
Weeks

Groups

A1 is scheduled only 4
consecutive times, …

Restriction on activity patterns
Real Life - Timetabling	

Hospitality Management School
Weeks

Groups

A1 scheduled between 2 and 3 times	

A2 scheduled between 1 and 2 times	

…

soft-gcc

Demand over activities specific for each weak
Real Life - Timetabling	

Hospitality Management School

Violations of cardinality
requirements
LNS Relaxations

Weeks

some random
slots

Groups

most violated
weeks

some groups
Results: 1000 LNS Restarts

same LNS relaxation
VO-LNS is faster

Why ?	


number of
exhausted search

!

Because most of the LNS searches
complete before the failure limit
Balance	

10 runs x 5 instances
Open-Source Implementation

OscaR

SCALA IN OPERATIONAL RESEARCH

https://bitbucket.org/oscarlib/oscar
Take away messages

•

Minimizing sum objective (in over-constrained
problems) with CP is hard	


•
•

LNS is powerful to diversify search space 	

Changing dynamically the objective can	


•
•

Fasten and improve LNS	

Better balance violations
variable objective
LNS
Future Work

•
•
•

Automatic objective configuration	

Population of solutions (different configurations)	

More problems (just in time scheduling)
Variable Objective Large Neighborhood Search:

A practical approach to solve over-constrained problems
Pierre Schaus	

UCL, ICTEAM, Belgium

More Related Content

PDF
Plan de gestion de uso de ti cs ie normal superior de pasto
PPT
Novela histórica alternativa
PDF
Movistar Tu Web: primeros pasos
PPT
Las TIC en el IES Huelin
PPTX
Presentación corporativa Indigo Grup
PDF
American Red Cross Uses Badging To Help Save Lives
PDF
Katalog agilent-n6731 b-dc-power-module-05v- 010a-50w-tridinamika
PDF
Informe ecomm 2012
Plan de gestion de uso de ti cs ie normal superior de pasto
Novela histórica alternativa
Movistar Tu Web: primeros pasos
Las TIC en el IES Huelin
Presentación corporativa Indigo Grup
American Red Cross Uses Badging To Help Save Lives
Katalog agilent-n6731 b-dc-power-module-05v- 010a-50w-tridinamika
Informe ecomm 2012

Viewers also liked (20)

PDF
PDF
Letter of Opposition: Foster Youth Services in K12 Categorical Programs inclu...
PDF
Pandora FMS: Monitorización de Blackberry Exchange
PDF
Sauce Alto | Diez ventajas de alojarse en un resort en Cieneguilla
PDF
Mystim electroestimulador tension lover
PDF
P3 Project Sample
PDF
Hyper-V Windows Server 2008R2
PPTX
Estudio marcas en facebook5
PPS
Chocolatada en el teleclub (y otros eventos). Por Charo Blanco
PPT
La magia de los CCK en joomla 3 (19 de feb)
PDF
Operativa intradía con el sistema VSS
PPT
Inma caravaca exposicion ppt
PPTX
Taller emocional
PDF
Careers in logistics by cscmp
PPTX
Lenguaje audiovisual: El cine digital y las nuevas tecnologías como soporte p...
PDF
Hipótesis de investigación (1)
PPT
Business incubation
PPS
PPT
Die letzte reise
PPT
Redes Sociales Colombia Ppt
Letter of Opposition: Foster Youth Services in K12 Categorical Programs inclu...
Pandora FMS: Monitorización de Blackberry Exchange
Sauce Alto | Diez ventajas de alojarse en un resort en Cieneguilla
Mystim electroestimulador tension lover
P3 Project Sample
Hyper-V Windows Server 2008R2
Estudio marcas en facebook5
Chocolatada en el teleclub (y otros eventos). Por Charo Blanco
La magia de los CCK en joomla 3 (19 de feb)
Operativa intradía con el sistema VSS
Inma caravaca exposicion ppt
Taller emocional
Careers in logistics by cscmp
Lenguaje audiovisual: El cine digital y las nuevas tecnologías como soporte p...
Hipótesis de investigación (1)
Business incubation
Die letzte reise
Redes Sociales Colombia Ppt
Ad

Similar to IACTAI13 Variable Objective Large Neighborhood Search: A practical approach to solve over-constrained problems (Pierre Schaus) (20)

PDF
Identifying Good Near-Optimal Formulations for Hard Mixed-Integer Programs
PPT
Satisfaction And Its Application To Ai Planning
PDF
lpSolve - R Library
PDF
Mathematical linear programming notes
PDF
CONSTRAINED Optimization PDF file for Reading
DOCX
Solving Optimization Problems using the Matlab Optimization.docx
PDF
A Factor Graph Approach To Constrained Optimization
PDF
Artificial Intelligence JNTUH Syllabusss
PDF
Chapter02b
PPTX
AI-Week-05-Uninformed Search (UCS, DLS, IDS, BS).pptx
PDF
3.b-CMPS 403-F20-Session 3-Solving CSP I.pdf
PDF
Model Presolve, Warmstart and Conflict Refining in CP Optimizer
PDF
Penalty function
PPTX
lecture9 constraint problem and path finding
PDF
Linear Models for Engineering applications
PPTX
Operations Research and Mathematical Modeling
PPTX
Strong stubborn sets
PPTX
Project 4-Final Presentation RBDO
PPT
05-constraint-satisfaction-problems-(us).ppt
PDF
Iaetsd protecting privacy preserving for cost effective adaptive actions
Identifying Good Near-Optimal Formulations for Hard Mixed-Integer Programs
Satisfaction And Its Application To Ai Planning
lpSolve - R Library
Mathematical linear programming notes
CONSTRAINED Optimization PDF file for Reading
Solving Optimization Problems using the Matlab Optimization.docx
A Factor Graph Approach To Constrained Optimization
Artificial Intelligence JNTUH Syllabusss
Chapter02b
AI-Week-05-Uninformed Search (UCS, DLS, IDS, BS).pptx
3.b-CMPS 403-F20-Session 3-Solving CSP I.pdf
Model Presolve, Warmstart and Conflict Refining in CP Optimizer
Penalty function
lecture9 constraint problem and path finding
Linear Models for Engineering applications
Operations Research and Mathematical Modeling
Strong stubborn sets
Project 4-Final Presentation RBDO
05-constraint-satisfaction-problems-(us).ppt
Iaetsd protecting privacy preserving for cost effective adaptive actions
Ad

Recently uploaded (20)

PDF
Computing-Curriculum for Schools in Ghana
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
01-Introduction-to-Information-Management.pdf
PDF
Insiders guide to clinical Medicine.pdf
PDF
Basic Mud Logging Guide for educational purpose
PDF
Classroom Observation Tools for Teachers
PPTX
Lesson notes of climatology university.
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Institutional Correction lecture only . . .
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Pre independence Education in Inndia.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
Computing-Curriculum for Schools in Ghana
Module 4: Burden of Disease Tutorial Slides S2 2025
01-Introduction-to-Information-Management.pdf
Insiders guide to clinical Medicine.pdf
Basic Mud Logging Guide for educational purpose
Classroom Observation Tools for Teachers
Lesson notes of climatology university.
O5-L3 Freight Transport Ops (International) V1.pdf
Institutional Correction lecture only . . .
human mycosis Human fungal infections are called human mycosis..pptx
GDM (1) (1).pptx small presentation for students
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
STATICS OF THE RIGID BODIES Hibbelers.pdf
Pharma ospi slides which help in ospi learning
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Pre independence Education in Inndia.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Abdominal Access Techniques with Prof. Dr. R K Mishra

IACTAI13 Variable Objective Large Neighborhood Search: A practical approach to solve over-constrained problems (Pierre Schaus)