SlideShare a Scribd company logo
IEEE Houston Section
C ti i Ed ti O D dContinuing Education On Demand
Seminar
Presentation Code: 620
April 3-4, 2007
Motor Starting
Equivalent Circuits, Starter Types, Load
Types, and Dynamics
Review of induction and synchronous motor design,
equivalent circuits for start and operation; starting,
operating and breaking operating characteristics, load
types. Review starting techniques, calculations, and
comparison.
Agenda
 Induction MotorInduction Motor
 Synchronous MotorSynchronous Motoryy
 Mechanical Train SystemMechanical Train System
 Starting, Operation and Breaking MethodsStarting, Operation and Breaking Methodsg, p gg, p g
 Special ConsiderationSpecial Consideration
 Calculations, Simulation, ApplicationsCalculations, Simulation, ApplicationsCalculations, Simulation, ApplicationsCalculations, Simulation, Applications
Agenda
Induction MotorInduction Motor
 Basics, characteristics, and modeling
Synchronous MotorSynchronous Motor
 Basics, characteristics, and modeling
M h i l T i S tM h i l T i S tMechanical Train SystemMechanical Train System
 Load characteristics
 Inertia
 Torque Consideration
 Train Acceleration Time
St ti O ti d B ki M th dSt ti O ti d B ki M th dStarting, Operation and Breaking MethodsStarting, Operation and Breaking Methods
 Induction and Synchronous Motor
 Synchronous Motor Onlyy y
Agenda
Special ConsiderationSpecial Consideration
 Harmonic Torques
H i Fl Harmonic Flux
 Rotor Slots Design
Calculations Simulation ApplicationsCalculations Simulation ApplicationsCalculations, Simulation, ApplicationsCalculations, Simulation, Applications
 Software
 Methodology
Induction Motor
Induction Motor
 Basics, type characteristics, load
characteristics, and modeling
• Induction motor - General data, principle of
operation and nameplate information describing
motormotor
• Motor types and characteristics, application
consideration
• Load types and characteristics, application
consideration
• Motor model• Motor model
• Equivalent motor parameters
• Other considerationOther consideration
Induction MotorInduction Motor
Induction MotorInduction Motor
 General-Non-linear Model
Induction MotorInduction Motor
 Clark’s Transform
Induction MotorInduction Motor
 Steady State Us=const
Induction MotorInduction Motor
Induction MotorInduction Motor
Induction MotorInduction Motor
Induction MotorInduction Motor
Induction Motor
General data
 Motor electro-mechanical characteristics are described
bby:
• Nominal Voltage
• Nominal frequency
• Nominal Current
• Number of phases
• Number of poles• Number of poles
• Design class
• Code letter
M f i i• Moment of inertia
• All others (rated power factor, efficiency, excitation current etc.)
Induction Motor
General data
Induction Motor
General data
Induction Motor
Type of Torques
Current Curve
Break-
Motor Torque Curve
Pull-up Torque
Down/Critical
Torque
Locked Rotor/
Breakaway
Torque
Full Load
Operating
Full Load
Operating
Current
Load Torque Curve
p g
Torque
Full Load
OperatingCriticalLoad Torque Curve
Speed/SlipSpeed/Slip
Induction Motor
Type of Torques
 Locked Rotor or Starting or Breakaway Torque
• The Locked Rotor Torque or Starting Torque is the torque the electrical motor develop when its starts at rest
or zero speed.
• A high Starting Torque is more important for application or machines hard to start - as positive displacement
pumps, cranes etc. A lower Starting Torque can be accepted in applications as centrifugal fans or pumps
where the start load is low or close to zero.
 Pull-up Torque
• The Pull-up Torque is the minimum torque developed by the electrical motor when it runs from zero to full-
load speed (before it reaches the break-down torque point)
• When the motor starts and begins to accelerate the torque in general decrease until it reach a low point at a
certain speed - the pull-up torque - before the torque increases until it reach the highest torque at a higher
speed - the break-down torque - point.
• The pull-up torque may be critical for applications that needs power to go through some temporary barriers
hi i h ki di iachieving the working conditions.
 Break-down Torque
• The Break-down Torque is the highest torque available before the torque decreases when the machine
continues to accelerate to the working conditions.
 Full-load Torque or Braking Torque
• The Full-load Torque is the torque required to produce the rated power of the electrical motor at full-load
speed.
Induction Motor
Code letters
Induction Motor
Code letters
• In general it is accepted that small motors requires higher
starting KVA than larger motors Standard 3 phase motors oftenstarting KVA than larger motors. Standard 3 phase motors often
have these locked rotor codes:
o less than 1 hp: Locked Rotor Code L, 9.0-9.99 KVA
o 1 1/2 to 2 hp: Locked Rotor Code L or M 9 0 11 19o 1 1/2 to 2 hp: Locked Rotor Code L or M, 9.0-11.19
o 3 hp : Locked Rotor Code K, 8.0-8.99
o 5 hp : Locked Rotor Code J, 7.1-7.99
o 7.5 to 10 hp : Locked Rotor Code H, 6.3-7.09
o more than 15 hp : Locked Rotor Code G, 5.6-6.29
Induction Motor
 Design Type
Different motors of the same
nominal horsepower can have
varying starting current torquevarying starting current, torque
curves, speeds, and other
variables. Selection of a particular
motor for an intended task must
take all engineering parameters
i t tinto account.
The four NEMA designs have
unique speed-torque-slip
relationships making them suitable
to different type of applications:to different type of applications:
• NEMA design A
• NEMA design B
• NEMA design C
• NEMA design D
Induction Motor
Design Type
• NEMA design A
o maximum 5% slip
o high to medium starting current
o normal starting torque (150-170% of rated)
o normal locked rotor torqueo normal locked rotor torque
o high breakdown torque
o suited for a broad variety of applications - as fans and pumps
• NEMA design B
o maximum 5% slip
o low starting current
o high locked rotor torqueo high locked rotor torque
o normal breakdown torque
o suited for a broad variety of applications, normal starting torque -
common in HVAC application with fans, blowers and pumps
Induction Motor
Design Type
• NEMA design C
o maximum 5% slip
o low starting current
o high locked rotor torque
o normal breakdown torqueo normal breakdown torque
o can’t sustain overload as design A or B
o suited for equipment with high inertia starts - as positive
displacement pumps
• NEMA design D
o maximum 5-13% slip
o low starting currentg
o very high locked rotor torque
o Usually special order
o suited for equipment with very high inertia starts - as cranes, hoists
etc.etc.
Induction Motor
Induction Motor
Ref: Donner at al. “Motor Primer”, Industry Application Transaction
Induction Motor
Ref: GE-3239A, “Comparison of IEC and NEMA/IEEE Motor Standards
Induction Motor
Torque
Induction Motor
Torque
Induction Motor
Inertia
SynchronousSynchronousMotor
Synchronous MotorSynchronous Motor
Synchronous MotorSynchronous Motor
 General-Non-linear Model
Synchronous MotorSynchronous Motor
 Park’s Transform
Synchronous MotorSynchronous Motor
 Steady State Us=const
Synchronous MotorSynchronous Motor
Synchronous MotorSynchronous Motor
Synchronous MotorSynchronous Motor
Synchronous MotorSynchronous Motor
Synchronous MotorSynchronous Motor
High-Starting Torque Medium-Starting Torque
SynchronousSynchronous Motor
General data
 Motor electro-mechanical characteristics are described
bby:
• Nominal Voltage
• Nominal frequency
• Nominal Current
• Number of phases
• Number of poles• Number of poles
• Design class
• Code letter
M f i i• Moment of inertia
• All others (rated power factor, efficiency, excitation current etc.)
SynchronousSynchronous Motor
General data
Mechanical Train SystemMechanical Train System
Load
 Load Types
TORQUE TORQUE
SPEED SPEED
TL s( ) TLRT Ta ns 1 s( ) 
k

TL n( ) TLRT Ta n( )
k

k 1 2 3
Load
 Load Types
TORQUE TORQUE
SPEED SPEED
TL n( ) Ao B n C n
2
 D n
3

Load
 Load Types
TORQUE
SPEED
SPEED
Load
 ASD Application of Standard Motors
Thermal
RatingRating
Speed
Load
 Load Types
Breakaway Accelerating
Peak
Running
Blowers centrifugal:
Load Torque as a Minimum
Percent Drive Torque
Application
Blowers, centrifugal:
Valve closed 30 50 40
Valve open 40 110 100
Blowers, positive displacement, rotary, bypass 40 40 100
Centrifuges 40 60 125
Compressors, axial-vane, loaded 40 100 100
Compressors, reciprocating, start unloaded 100 50 100
Conveyors belt (loaded) 150 130 100Conveyors, belt (loaded) 150 130 100
Conveyors, screw (loaded) 175 100 100
Conveyors, shaker-type (vibrating) 150 150 75
Fans, centrifugal, ambient:
Valve closed 25 60 50
Valve open 25 110 100
Fans, centrifugal, hot:
Valve closed 25 60 100Valve closed 25 60 100
Valve open 25 200 175
Fans, propeller, axial-flow 40 110 100
Mixers, chemical 175 75 100
Mixers, slurry 150 125 100
Pumps, adjustable-blade, vertical 150 200 200
Pumps, centrifugal, discharge open 40 150 150
Pumps oil field flywheel 40 150 150Pumps, oil-field, flywheel 40 150 150
Pumps, oil, lubricating 40 150 150
Pumps, oil, fuel 40 150 150
Pumps, propeller 40 100 100
Pumps, reciprocating, positive displacement 175 30 175
Pumps, screw-type, primed, discharge open 150 100 100
Pumps, slurry-handling, discharge open 150 100 100
P t bi t if l d ll 50 100 100Pumps, turbine, centrifugal, deep-well 50 100 100
Pumps, vacuum (paper mill service) 60 100 150
Pumps, vacuum (other applications) 40 60 100
Pumps, vane-type positive displacement 150 150 175
Inertia
 Inertia
Jz
w
Ji
ni
n1






2

p
mi
Vi
n1






2

1i


n1  1i


n1 
w - numer rotating elements
b li i lp - number linera motion elements
Inertia
 Inertia
Jz J1 J2 J3 
n1
n1






2
 J4 J5 
n2
n1






2
 J6 J7 
n3
n1






2
 m1
V1
n1






2

Induction Motor
Torque, Speed, Inertia
Tm TL JL Im  t
nm
d
d






 B nm
Inertia
 Torque, Speed, Inertia
T
TL
JL I N
2



 n
d


 n BL B N
2




N - gear ratio
J - inertia
Tm N
JL Im N
  t
nm
d




 nm BL Bm N
 
B - dumping
Mechanical Train Acceleration
Mechanical Train Acceleration
Graphical Method
Mechanical Train Acceleration
Mechanical Train Acceleration
Mechanical Train Acceleration
Mechanical Train Acceleration
Torque Unit = S1Torque Unit S1
Speed Unit = S2
Time Unit = S3
Mechanical Train Acceleration
S1 - scale of speed acceleration
S2 - scale of torque acceleration
S3 - scale of time required to accelerate train with acceleration torque from one speed toS3 - scale of time required to accelerate train with acceleration torque from one speed to
another
S4 - scale of dynamic energy needed for acceleration
S2 S4
S1 S3
S1 100
RPM
div1

S 20
N·m
S2 20
div2

S3
0.1sec
div3
S4
S2 S3
k S4 0.04S4 S1
k S4 0.04
Jtrain 0.431kg m
2

OA
 Jtrain
30 S4
 OA 1.128m
2
kg
Mechanical Train Acceleration
Accelerating EnergyAccelerating Energy
Unit = S4
Mechanical Train Acceleration
Mechanical Train Acceleration
Mechanical Train Acceleration
Starting Time ~ 1.5 sec
Mechanical Train Acceleration
Calculations Method
Mechanical Train Acceleration
Mechanical Train Acceleration
t
i
Ji

30
 ns 
1
sn
s
1
Te s( ) TL s( )




d
Mechanical Train Acceleration
t1 Js Jm  
30
 ns 
sn
s
1
Me s fn U
2
  Mo s( )




d
t1 1.37
1

Mechanical Train Acceleration
In Between Method
Mechanical Train Acceleration
Mechanical Train Acceleration
48.25
28
35.25
43
36
12
tacc Ji
RPMj
tacc
i
Ji
j
Tavg j

Mechanical Train Acceleration
tacc Jload

30

200
28
200
35.25

200
43

200
48.25

100
36

50
12






 tacc 1.289
Starting, Operation and Breaking MethodsStarting, Operation and Breaking Methods
Motor Starting
 Direct On Line Starter (or DOL or FVNR)
Motor Starting
 Direct On Line Starter (or DOL or FVNR)
Motor Starting
 Reduce Voltage Resistor/Reactor Starter
Motor Starting
 Reduce Voltage
Resistor/Reactor Starter
Motor Starting
 Reduce Voltage Autotransformer Starter (RVAT or
Korndörfer Starter)
Motor Starting
 Reduce Voltage Autotransformer Starter (RVAT or
Korndörfer Starter)
Motor Starting
 Reduce Voltage Autotransformer Starter (RVAT or
Korndörfer Starter)
Motor Starting
 Y / ∆ Starter
Motor Starting
 Y / ∆ Starter
Motor Starting
 Captive Transformer Starter
Motor Starting
 Wound-rotor Resistance Starter (Slip-Ring Starter)
Motor Starting
 Wound-rotor Resistance
Starter (Slip-Ring Starter)
Motor Starting
 Reduce Voltage Solid State Starter with V=var, f=const
(or RVSS)
Motor Starting
 Reduce Voltage Solid State Starter with V=var, f=const
(or RVSS)
Motor Starting
 Reduce Voltage Solid State Starter with V/f=const,
Thermal Limitation
Motor Starting
 Variable Frequency Drive Starting and Control
Motor Starting and Operating
 Variable Frequency Drive Starting and Control
Motor Starting and Operating
 Synchronous Transfer System
Synchronous Motor Starting
Synchronous Motor Starting
Synchronous Motor Starting
High-Starting Torque Medium-Starting Torque
Synchronous Motor Starting
Starting Torque Control via
Discharge ResistorDischarge Resistor
Synchronous Motor Starting
Breaking
 Induction Machine Modes Of Operation
MotorTransformerBreak Generator
Synchronous Speed
Breaking
 Regeneration with Active Load
Breaking
 Opposite Connection with Switching
Breaking
 Dynamic
Special ConsiderationSpecial Consideration
Special Consideration
 Harmonic Flux
Special Consideration
 Harmonic Torques
Special Consideration
 Typical Slot Design
Special Consideration
 Typical Slot Design
Special Consideration
 Losses and Usable Energy Separation
Stator
Rotor
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Software
 ETAP, SKM/PTW
• Sufficient for DOL starting and reduce voltage discrete
calculations; not applicable for RVSS starters analysis
 SPICE, MATLAB, EMTP-ATPSPICE, MATLAB, EMTP ATP
• Applicable for motor starting analysis with control loops
considerations, can predict waveforms and effect on power
systemsystem
 Custom Software
• Write own software utilizing Compilers or high level language
(i M tl b Vi Si )(i.e. Matlab or VisSim)
 Hand Calculations
• Utilize MathCad or other mathematical analysis package; musty p g ;
understand electrometrical theory
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Equivalent Schematic Parameters – Calculations
Motor Data
Pn 1200 Hp fn 60 Hz fs fn p 2
Pn 895 2kWPn 895.2kW
Un 4kV mkr 1.8
PF 0 87 n 1789 RPMPFn 0.87 nn 1789 RPM
n 0.9595
ir 5.0
mr 0.7
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Equivalent Schematic Parameters – Calculations
Nominal Parameters
In
Pn
n 3 Un PFn
 In 154.79A
P
Tn
Pn
 nn
30
 Tn 4778.38N m Tn 3524.36ft·lbf
2  fs 60 fs -1
s
s
p
 ns
s
p
 s 188.5s
1
 ns 1800RPM
sn
ns nn
 sn 0.0061n
nn
n
Zz
Un
3 ir In
 Zz 2.98
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Equivalent Schematic Parameters – Calculations
rr XaX 2
' SXSR a
I
I r
2
' 
SI
'R
rR'
XR1V
oI
FeI mI
S
Ra
S
R rr
2
'
OR
)1( S
S
R r
mXFeR
21 aEE 
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Iteration starting parameters:
Equivalent Schematic Parameters – Calculations
Rz 0.001  Xz 0.2 
Given { From motor equivalent diagram }
Zz Rz
2
Xz
2
z z z
mr Tn
3
s
Un
3






2

Rz
2
Rz
2
Xz
2


Rz
Xz






Find Rz Xz  Rz 0.7 Xz 2.9
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Equivalent Schematic Parameters – Calculations
Rs Rz
5
10
 Rs 0.35
5
Xs Xz
5
10
 Xs 1.45
R'r Rs X'r Xs
1 n
Pn Pn
n
n
 Pn 37.79kW
Pun
3
2
In
2
 Rz Pun 25.22kW
Pm 0.01Pn Pm 8.952kW
Pfen Pn Pun Pm Pfen 3.61kW
Rfe
Un
2
Pfen
 Rfe 4426.97
U
Ife
Un
3 Rfe
 Ife 0.52A
I0 20% In I0 30.96A
I I
2
I
2
 I 30 95AIm I0 Ife Im 30.95A
Xm
Un
3 Im
 Xm 74.61
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Equivalent Schematic Parameters – Calculations
Zs f( ) Rs
f
f
j Xs Change "f" only when analysis with VSD
fn
Z'r s f( )
R'r
s
f
fn
j X'r
Zm
Rfe Xm j
R X j
 Zm f( )
f
fn






0.7
Rfe
f
fn
 Xm j
m
Rfe Xm j
m( )
f
fn






0.7
Rfe
f
fn
Xm j
Z s f( ) Zs f( )
Z'r s f( ) Zm f( )
Z'r s f( ) Zm f( )

f
U f( ) Un
f
fn

n s f( )
60 f
p
1 s( )
Is s f( )
U f( )
3 Z s f( )
 I'r s f( ) Is s f( )
Zm f( )
Z'r s f( ) Zm f( )

T s f( )
3 p
I' s f( ) 2
 Re Z' s f( ) Te s f( )
2  f
Ir s f( )  Re Z r s f( ) 
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Equivalent Schematic Parameters – Calculations
Nominal Slip Calcs
s 0.0100
Given
Te s fn 
 n s fn 
30
 Pn Pm 
30
sn Find s( ) sn 0.0228
In Is sn fn  In 147.59A
T T f  T 4908 38NTn Te sn fn  Tn 4908.38N m
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Equivalent
Schematic
Parameters –
IEEE 112
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Equivalent Schematic Parameters – Sensitivity
Calculations
Basis for ETAP Motor Estimating Calcs
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Equivalent Schematic Parameters – Sensitivity
Calculations
EMTP ATP G S ftEMTP-ATP Group Software
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Equivalent Schematic Parameters – Sensitivity
Calculations
EMTP ATP G S ftEMTP-ATP Group Software
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
U1
Isc 3P 150.0 MVA
Isc SLG 36.0 MVA
B1
13800 V
S
P
TR1
Size 3250.00 kVA
Pri Delta
Sec Wye-Groundy
PriTap -2.50 %
%Z 5.7500 %
X/R 11.0
B2
4160 V
CB-001
CBL-0001
2- #4/0 MV
EPR
150.0 Meters
Ampacity 560.0 A
B3
4160 V
M1
2500.000 hp
Load Factor 1.00
X"d 0.17 pu
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
U1
Isc 3P 150.0 MVA
Isc SLG 36.0 MVA
G1
8750 kVA
X"d 0.2 pu
B1
13800 V
S
P
TR1
Size 3250.00 kVA
Pri Delta
Sec Wye-GroundSec Wye Ground
PriTap -2.50 %
%Z 5.7500 %
X/R 11.0
B2
4160 V
CB-001
CBL-0001
2- #4/0 MV
EPR
150.0 Meters
Ampacity 560.0 A
B3
4160 V
M1
2500.000 hp
Load Factor 1.00
X"d 0.17 pu
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
1.1
Ub 1Gen KCR
0.9
1
Ub_1Gen_KCR
Ub 2Gen KCR 0 9
1
Ub_1Gen_KCR
Ub_2Gen_KCR
Ub_1Gen_DECS
Ub_2Gen_DECS
0 5 10 15 20
0.8
0.9
Ub_2Gen_KCR
Ub_1Gen_DECS
Ub_2Gen_DECS
0.9
Time
2000 1 2
1500
2000
1800
RPM 0 9
1
1.1
1.2
Ub [pu]
1.0
0 9
500
1000
Mot RPM
Mot Amp
Amp
0.6
0.7
0.8
0.9 0.9
Ub
0 10 20 30 40
0
Mot Amp
Time
0 20 40 60
0.5
Time
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
1
1.2
1Ub 1Gen KCR
0.8
1
Ub_1Gen_KCR
Ub 2Gen KCR
0.9
1Ub_1Gen_KCR
Ub_2Gen_KCR
Ub_1Gen_DECS
Ub_2Gen_DECS
0 5 10 15 20
0.6
Ub_2Gen_KCR
Ub_1Gen_DECS
Ub_2Gen_DECS
Time
2000
1500
2000
1800
RPM 0 9
1
1.1
1.2
Ub [pu]
1.0
0 9
500
1000
Mot RPM
Mot Amp
RPM
Amp
0 6
0.7
0.8
0.9 0.9
Ub
0 10 20 30 40
0
Mot Amp
Time
0 20 40 60
0.5
0.6
Time
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
3500
5000
Pfpso
2000
3500fpso
Q fpso
Ptlp
Q tlp
0 20 40 60
1000
500
p
Time
1500
2000
Mot RPM
Mot Amp
1.1
1.2
Ub_fpso [pu]
Ub_tlp [pu]
500
1000
RPM
Amp
0.9
1
0.9
1
Ubfpso
Ubtlp
0 10 20 30 40
0
Time
0 20 40 60
0.8
Time
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
PARKs equations for this machnie:
Motor Simulation
ps  s  r j s s vs
pr  r  s j s m  r
T T
pm n
Te Tr
J

State variable assigment: x0 = s (stator), x1 = r (rotor), x2 = m (angular speed)
3
2
Veff  x0  x1 j  x0
 








f x t( )
 x1  x0 j  x2  x1
n
M
Lk L
 Im x0 x1

  k
x2
n






2










Lk Lr n 
J
n






Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Coeficients for Runge-Kutta (R-K) interation 4th degree:
Motor Simulation
g ( ) g
k1 x t( ) h f x t( )
k2 x t( ) h f x
k1 x t( )
2
 t
h
2








k3 x t( ) h f x
k2 x t( )
2
 t
h
2








k4 x t( ) h f x k3 x t( ) t h( )
( )
2 2

  k4 x t( ) h f x k3 x t( ) t h( )
Final equation for R-K calcualtions:
x i 1 
x i 1
k1 x i
i h  2 k2 x i
i h  2 k3 x i
i h  k4 x i
i h  x x
6
k1 x i h  2 k2 x i h  2 k3 x i h  k4 x i h  
is
i






1
L L
Lr
M
M
L







s








Equations for current in stator:
ir  Lk Lr M Ls  r 
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Conversion Park reference frame to phase domain:
Motor Simulation
 i( )  h i
cos  i( )  cos  i( )
2
3







cos  i( )
4
3











TP i( )
2
3
( ) 
sin  i( ) 
( )
3 
sin  i( )
2
3








( )
3 
sin  i( )
4
3



















1
2
1
2
1
2






if i( ) TP i( )
1
isdi
isq





 Pase currentsif i( ) TP i( ) isqi
0






 Pase currents
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
100
Angular Speed vs. time
125
Motor Simulation
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
50
0
 i
0.80 h i
100
600
Torque vs. time
700
400
T.ei
550
Average, dynamical and load torques
T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
400
400
0.80 h i
450
50
Tei
Tci
Tri
0 20 40 60 80 100 120
450
 i
Calculations, Simulation, ApplicationsCalculations, Simulation, Applications
Phase A, B, C Current
Motor Simulation
150
50
250
350
350
i.f i( )
0
i.f i( )
1
i.f i( )
2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
350
350
0.80 h i
50
250
Phase A, B, C Current
350
i.f i( )
0
i.f i( )
1
i i( )
0 0.05 0.1 0.15 0.2 0.25
350
150
350
i.f i( )
2
0.30 h i
Testing/ProtectionTesting/Protection
Testing/ProtectionTesting/Protection
Testing/ProtectionTesting/Protection
6000
7000
8000
70
80
90
100
Avg Phase Current (A)
Ground Current (A)
3000
4000
5000
30
40
50
60 Avg Line Volt (V)
kW Power (kW)
kvar Power (kvar)
T. C. Used (%)
Hottest Stator RTD (° C)
0
1000
2000
0 200 400 600 800 1000 1200
0
10
20
Motor Load (x FLA)
Testing/ProtectionTesting/Protection
6000
7000
8000
80
100
120
Avg Phase Current (A)
Avg Line Volt (V)
3000
4000
5000
40
60
80
Current U/b (%)
kW Power (kW)
kvar Power (kvar)
Hottest Stator RTD (° C)
T. C. Used (%)
0
1000
2000
0 200 400 600 800 1000 1200 1400
0
20
Ground Current (A)
Testing/ProtectionTesting/Protection
120
9
10
80
100
7
8
60
4
5
6
Hottest Stator RTD (° C)
T. C. Used (%)
Motor Load (x FLA)
20
40
2
3
0
0 1000 2000 3000 4000 5000 6000 7000
0
1
Testing/ProtectionTesting/Protection
LAST "BLOW" - Phase A Current (Amps)
2000
3000
4000
LAST "BLOW" Phase B Current (Amps)
2000
3000
4000
-2000
-1000
0
1000
Time
-47.91
22.91
93.73
164.56
235.38
306.2
377.02
447.84
518.66
589.49
660.31
731.13
801.95
872.77
943.59
1014.41
1085.24
1156.06
1226.88
1297.7
1368.52
1439.34
1510.17
1580.99
1651.81
1722.63
1793.45
1864.27
1935.09
2005.92
CURRENT(A
Phase A Current (Amps)
-2000
-1000
0
1000
Time
-47.91
22.91
93.73
164.56
235.38
306.2
377.02
447.84
518.66
589.49
660.31
731.13
801.95
872.77
943.59
1014.41
1085.24
1156.06
1226.88
1297.7
1368.52
1439.34
1510.17
1580.99
1651.81
1722.63
1793.45
1864.27
1935.09
2005.92
CURRENT(A
Phase B Current (Amps)
-4000
-3000
TIME(ms)
-4000
-3000
TIME(ms)
LAST "BLOW" Phase C Current (Amps) LAST "BLOW" AN(AB) Voltage (V)
1000
2000
3000
4000
ENT(A
2000
4000
6000
8000
GE(V)
-4000
-3000
-2000
-1000
0
Time
-47.91
22.91
93.73
164.56
235.38
306.2
377.02
447.84
518.66
589.49
660.31
731.13
801.95
872.77
943.59
1014.41
1085.24
1156.06
1226.88
1297.7
1368.52
1439.34
1510.17
1580.99
1651.81
1722.63
1793.45
1864.27
1935.09
2005.92
CURRE
Phase CCurrent (Amps)
-8000
-6000
-4000
-2000
0
Time
-49.99
18.75
87.49
156.22
224.96
293.7
362.44
431.18
499.92
568.66
637.39
706.13
774.87
843.61
912.35
981.09
1049.83
1118.56
1187.3
1256.04
1324.78
1393.52
1462.26
1530.99
1599.73
1668.47
1737.21
1805.95
1874.69
1943.43
2012.16
VOLTAG
AN(AB) Voltage (V)
TIME(ms) TIME(ms)
Testing/ProtectionTesting/Protection
2.5
3
3.5
0.5
1
1.5
2
LINE
2 5
3
3.5
-0.5
0
0 100 200 300 400 500 600
0 5
1
1.5
2
2.5
Series1
Series2
3.5
-0.5
0
0.5
0 100 200 300 400 500 600
1.5
2
2.5
3
3.5
Series1
-0.5
0
0.5
1
1.5
0 100 200 300 400 500 600
Series2
Questions?Questions?
ReferencesReferences
ReferencesReferences
ReferencesReferences
ReferencesReferences
• Fitzgerald & Kingsley, Electric Machinery, McGraw-Hill, 1961
• Liwschitz-Garik, Whipple, A-C Machines, Van Nostrand, 1961
• Say, M.G., Alternating Current Machines, John Wiley & Sons, 1976
Gra Electrical Machines and Dri e S stems John Wile & Sons 1989• Gray, Electrical Machines and Drive Systems, John Wiley & Sons, 1989
• Leonhard, Control of Electrical Drives, Spinger-Verlag, 1985
• Maxwell, James Clerk, A Treatise on Electricity and Magnetism, third edition, 1891
• IEEE Standard 519-1992 “IEEE Recommended Practices and Requirements
for Harmonic Control in Electrical Power Systems”, IEEE Press SH15453, New York, 1993
• Hammond, P. Power Factor Correction of Current Source Inverter Drives with Pump
Load 1980 IEEE/IAS Conference Record pp 520-529.
• Osman R A Novel Medium Voltage drive Topology with Superior Input and• Osman, R., A Novel Medium-Voltage drive Topology with Superior Input and
Output Power Quality, VI Seminario de Electronica de Potencia, 1996.
• Hammond, P., A New Approach to Enhance Power Quality for Medium Voltage Drives,
1995 IEEE/PCIC Conference Record pp231-235.
• Ferrier, R., McClear, P. Developments and Applications in High-Power Drives Proceedings,
Advanced Adjustable Speed Drive R&D Planning Forum, EPRI-CU-6279 NC, USA, Nov 87.
• Bin Wu, DeWinter, F. Voltage stress on induction motors in medium voltage (2300 to 6900V)
PWM GTO CSI drives PESC 95 Record 26th Annual IEEE Power Electronics SpecialistsPWM GTO CSI drives, PESC 95 Record. 26th Annual IEEE Power Electronics Specialists
Conference
(Cat. No. 95CH35818) Part vol.2 p.1128-32 vol.2; IEEE, New York, NY, USA, 1995.

More Related Content

PPTX
Generator protection
PPTX
Introduction to vibration monitoring
PDF
Motor protection principles
PPTX
Introduction to vibration
PDF
Upgrading gen protect and grounding
PDF
Vibration monitoring and its features for corelation
PDF
Transformer & OLTC
PPT
05_C_3_Differential Protection.ppt
Generator protection
Introduction to vibration monitoring
Motor protection principles
Introduction to vibration
Upgrading gen protect and grounding
Vibration monitoring and its features for corelation
Transformer & OLTC
05_C_3_Differential Protection.ppt

What's hot (20)

PPTX
Motor Control Centre
PPTX
AUXILIARY POWER SUPPLY SCHEME FOR THERMAL POWER PLANT
PDF
Condition Monitoring Basics
PPTX
Condition Based monitoring Training
PDF
Pneumatic systems
PPTX
Ppt of servomotor
PDF
Generator protection calculations settings
PPT
Transformer oil-specifications new
PPTX
Condition monitoring of rotating machines ppt
PPT
Valve Selection & Sizing
PPT
Breaker Operation & Maintenance
PPTX
The Excitation system by SAI
PPT
VIBRATION-ANALYSIS.ppt
PPTX
ABB - TRANSFORMERS-PROTECTION-COURSE (2001)
PDF
Generator Set Operation and Maintenance Training .pdf
PDF
Electrical-Machinery-Fundamentals.pdf
PPT
Hydraulic control system (ce ppt)
PPTX
Fluke Vibration Testing 101 Webinar
PPTX
Condition monitoring and its techniques
ODP
Motor protection
Motor Control Centre
AUXILIARY POWER SUPPLY SCHEME FOR THERMAL POWER PLANT
Condition Monitoring Basics
Condition Based monitoring Training
Pneumatic systems
Ppt of servomotor
Generator protection calculations settings
Transformer oil-specifications new
Condition monitoring of rotating machines ppt
Valve Selection & Sizing
Breaker Operation & Maintenance
The Excitation system by SAI
VIBRATION-ANALYSIS.ppt
ABB - TRANSFORMERS-PROTECTION-COURSE (2001)
Generator Set Operation and Maintenance Training .pdf
Electrical-Machinery-Fundamentals.pdf
Hydraulic control system (ce ppt)
Fluke Vibration Testing 101 Webinar
Condition monitoring and its techniques
Motor protection
Ad

Viewers also liked (20)

PDF
Improving substation reliability & availability
PPTX
2012 ieee pes lunch ethics 020112
PDF
Electrical Condition monitoring part 1
PDF
Electrical condition monitoring part 2
PDF
IEEE substation design
PPT
Induction Synchronous Motor
PDF
3 ph induction motor ppt
PDF
Design, Modelling& Simulation of Double Sided Linear Segmented Switched Reluc...
POT
Chapter ( 1 ) (4)
PDF
Descrição da sociedade capitalista p 2
PPTX
EMMA IEEE
PPT
IEEE Code Of Conduct/Ethics
PPTX
Dual Converter using Thyristors
PPT
FUTURES TRADING
PPT
Tracking firm presentation (vincent wedelich) mmm
PDF
Understanding power concepts rev 0
PDF
EMVT Reluctance Machines
PPT
PERCEPTIONS OF GENDER EQUALITY IN CORPORATE AMERICA
PPT
MANAGEMENT ACCOUNTING STUDY PPT
PDF
special electrical motor(switched reluctance motor)
Improving substation reliability & availability
2012 ieee pes lunch ethics 020112
Electrical Condition monitoring part 1
Electrical condition monitoring part 2
IEEE substation design
Induction Synchronous Motor
3 ph induction motor ppt
Design, Modelling& Simulation of Double Sided Linear Segmented Switched Reluc...
Chapter ( 1 ) (4)
Descrição da sociedade capitalista p 2
EMMA IEEE
IEEE Code Of Conduct/Ethics
Dual Converter using Thyristors
FUTURES TRADING
Tracking firm presentation (vincent wedelich) mmm
Understanding power concepts rev 0
EMVT Reluctance Machines
PERCEPTIONS OF GENDER EQUALITY IN CORPORATE AMERICA
MANAGEMENT ACCOUNTING STUDY PPT
special electrical motor(switched reluctance motor)
Ad

Similar to IEEE Motor Presentation (20)

PPT
Motor& Drive Basics working presentation
PPT
Fire Pump Motor Starting
DOCX
PPTX
Induction motor speed control using solid state drives.pptx
PPTX
Electric Motor and its types and working principle
DOC
INTERNAL GEAR PUMP
PPTX
Electric drives control
PPT
Drives training
PPT
4.5 assessment of motors n
PPTX
EDC_UNIT _I FINAL (1).pptx dhud and w ah yes
PPTX
Variable frequency drives rod pump control podcast
PDF
How to Start your Large Motors- typical Solutions or new motor design?
PPTX
Factors to be considered for motor selection
PDF
Motors & starting
PDF
Amit[1]
PDF
Tutorial motor-basics-lecture
PDF
Tutorial motor-basics-lecture
DOCX
It 5170 stepper motor
PPT
PPTX
singlephasei-160810083049.pptx
Motor& Drive Basics working presentation
Fire Pump Motor Starting
Induction motor speed control using solid state drives.pptx
Electric Motor and its types and working principle
INTERNAL GEAR PUMP
Electric drives control
Drives training
4.5 assessment of motors n
EDC_UNIT _I FINAL (1).pptx dhud and w ah yes
Variable frequency drives rod pump control podcast
How to Start your Large Motors- typical Solutions or new motor design?
Factors to be considered for motor selection
Motors & starting
Amit[1]
Tutorial motor-basics-lecture
Tutorial motor-basics-lecture
It 5170 stepper motor
singlephasei-160810083049.pptx

More from Vincent Wedelich, PE MBA (20)

PDF
Part 3 motor application considerations understanding power concepts rev 5 vi...
PDF
Electrical master plan for chemical engineers and managers
PPT
Executive compensation main ppt
PDF
Affordable automobile for low income families
PPT
Amerada hess final presentation
PPT
American barrick vww
PPT
Balanced scorecard presentation rev 0
PPT
THE PROFIT CHAIN
PPT
MANAGEMENT ACCOUNTING STUDY PPT
PPT
Frontier corporation
PPT
Good to great ppt (vww)
PPT
Financial Derivatives and Options
PPT
Iceland krona vincent wedelich
PPT
Tracking firm presentation (vincent wedelich) mmm 3M
PDF
Overcurrent coordination
PDF
Overcurrent protection
PPT
Lightning protection
PDF
Area classification
Part 3 motor application considerations understanding power concepts rev 5 vi...
Electrical master plan for chemical engineers and managers
Executive compensation main ppt
Affordable automobile for low income families
Amerada hess final presentation
American barrick vww
Balanced scorecard presentation rev 0
THE PROFIT CHAIN
MANAGEMENT ACCOUNTING STUDY PPT
Frontier corporation
Good to great ppt (vww)
Financial Derivatives and Options
Iceland krona vincent wedelich
Tracking firm presentation (vincent wedelich) mmm 3M
Overcurrent coordination
Overcurrent protection
Lightning protection
Area classification

Recently uploaded (20)

PDF
Categorization of Factors Affecting Classification Algorithms Selection
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
737-MAX_SRG.pdf student reference guides
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PPTX
Feature types and data preprocessing steps
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
introduction to high performance computing
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Categorization of Factors Affecting Classification Algorithms Selection
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
Management Information system : MIS-e-Business Systems.pptx
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Fundamentals of safety and accident prevention -final (1).pptx
Visual Aids for Exploratory Data Analysis.pdf
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
737-MAX_SRG.pdf student reference guides
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
Feature types and data preprocessing steps
R24 SURVEYING LAB MANUAL for civil enggi
Soil Improvement Techniques Note - Rabbi
Safety Seminar civil to be ensured for safe working.
introduction to high performance computing
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...

IEEE Motor Presentation

  • 1. IEEE Houston Section C ti i Ed ti O D dContinuing Education On Demand Seminar Presentation Code: 620 April 3-4, 2007 Motor Starting Equivalent Circuits, Starter Types, Load Types, and Dynamics
  • 2. Review of induction and synchronous motor design, equivalent circuits for start and operation; starting, operating and breaking operating characteristics, load types. Review starting techniques, calculations, and comparison.
  • 3. Agenda  Induction MotorInduction Motor  Synchronous MotorSynchronous Motoryy  Mechanical Train SystemMechanical Train System  Starting, Operation and Breaking MethodsStarting, Operation and Breaking Methodsg, p gg, p g  Special ConsiderationSpecial Consideration  Calculations, Simulation, ApplicationsCalculations, Simulation, ApplicationsCalculations, Simulation, ApplicationsCalculations, Simulation, Applications
  • 4. Agenda Induction MotorInduction Motor  Basics, characteristics, and modeling Synchronous MotorSynchronous Motor  Basics, characteristics, and modeling M h i l T i S tM h i l T i S tMechanical Train SystemMechanical Train System  Load characteristics  Inertia  Torque Consideration  Train Acceleration Time St ti O ti d B ki M th dSt ti O ti d B ki M th dStarting, Operation and Breaking MethodsStarting, Operation and Breaking Methods  Induction and Synchronous Motor  Synchronous Motor Onlyy y
  • 5. Agenda Special ConsiderationSpecial Consideration  Harmonic Torques H i Fl Harmonic Flux  Rotor Slots Design Calculations Simulation ApplicationsCalculations Simulation ApplicationsCalculations, Simulation, ApplicationsCalculations, Simulation, Applications  Software  Methodology
  • 7. Induction Motor  Basics, type characteristics, load characteristics, and modeling • Induction motor - General data, principle of operation and nameplate information describing motormotor • Motor types and characteristics, application consideration • Load types and characteristics, application consideration • Motor model• Motor model • Equivalent motor parameters • Other considerationOther consideration
  • 9. Induction MotorInduction Motor  General-Non-linear Model
  • 10. Induction MotorInduction Motor  Clark’s Transform
  • 11. Induction MotorInduction Motor  Steady State Us=const
  • 16. Induction Motor General data  Motor electro-mechanical characteristics are described bby: • Nominal Voltage • Nominal frequency • Nominal Current • Number of phases • Number of poles• Number of poles • Design class • Code letter M f i i• Moment of inertia • All others (rated power factor, efficiency, excitation current etc.)
  • 19. Induction Motor Type of Torques Current Curve Break- Motor Torque Curve Pull-up Torque Down/Critical Torque Locked Rotor/ Breakaway Torque Full Load Operating Full Load Operating Current Load Torque Curve p g Torque Full Load OperatingCriticalLoad Torque Curve Speed/SlipSpeed/Slip
  • 20. Induction Motor Type of Torques  Locked Rotor or Starting or Breakaway Torque • The Locked Rotor Torque or Starting Torque is the torque the electrical motor develop when its starts at rest or zero speed. • A high Starting Torque is more important for application or machines hard to start - as positive displacement pumps, cranes etc. A lower Starting Torque can be accepted in applications as centrifugal fans or pumps where the start load is low or close to zero.  Pull-up Torque • The Pull-up Torque is the minimum torque developed by the electrical motor when it runs from zero to full- load speed (before it reaches the break-down torque point) • When the motor starts and begins to accelerate the torque in general decrease until it reach a low point at a certain speed - the pull-up torque - before the torque increases until it reach the highest torque at a higher speed - the break-down torque - point. • The pull-up torque may be critical for applications that needs power to go through some temporary barriers hi i h ki di iachieving the working conditions.  Break-down Torque • The Break-down Torque is the highest torque available before the torque decreases when the machine continues to accelerate to the working conditions.  Full-load Torque or Braking Torque • The Full-load Torque is the torque required to produce the rated power of the electrical motor at full-load speed.
  • 22. Induction Motor Code letters • In general it is accepted that small motors requires higher starting KVA than larger motors Standard 3 phase motors oftenstarting KVA than larger motors. Standard 3 phase motors often have these locked rotor codes: o less than 1 hp: Locked Rotor Code L, 9.0-9.99 KVA o 1 1/2 to 2 hp: Locked Rotor Code L or M 9 0 11 19o 1 1/2 to 2 hp: Locked Rotor Code L or M, 9.0-11.19 o 3 hp : Locked Rotor Code K, 8.0-8.99 o 5 hp : Locked Rotor Code J, 7.1-7.99 o 7.5 to 10 hp : Locked Rotor Code H, 6.3-7.09 o more than 15 hp : Locked Rotor Code G, 5.6-6.29
  • 23. Induction Motor  Design Type Different motors of the same nominal horsepower can have varying starting current torquevarying starting current, torque curves, speeds, and other variables. Selection of a particular motor for an intended task must take all engineering parameters i t tinto account. The four NEMA designs have unique speed-torque-slip relationships making them suitable to different type of applications:to different type of applications: • NEMA design A • NEMA design B • NEMA design C • NEMA design D
  • 24. Induction Motor Design Type • NEMA design A o maximum 5% slip o high to medium starting current o normal starting torque (150-170% of rated) o normal locked rotor torqueo normal locked rotor torque o high breakdown torque o suited for a broad variety of applications - as fans and pumps • NEMA design B o maximum 5% slip o low starting current o high locked rotor torqueo high locked rotor torque o normal breakdown torque o suited for a broad variety of applications, normal starting torque - common in HVAC application with fans, blowers and pumps
  • 25. Induction Motor Design Type • NEMA design C o maximum 5% slip o low starting current o high locked rotor torque o normal breakdown torqueo normal breakdown torque o can’t sustain overload as design A or B o suited for equipment with high inertia starts - as positive displacement pumps • NEMA design D o maximum 5-13% slip o low starting currentg o very high locked rotor torque o Usually special order o suited for equipment with very high inertia starts - as cranes, hoists etc.etc.
  • 27. Induction Motor Ref: Donner at al. “Motor Primer”, Industry Application Transaction
  • 28. Induction Motor Ref: GE-3239A, “Comparison of IEC and NEMA/IEEE Motor Standards
  • 34. Synchronous MotorSynchronous Motor  General-Non-linear Model
  • 36. Synchronous MotorSynchronous Motor  Steady State Us=const
  • 41. Synchronous MotorSynchronous Motor High-Starting Torque Medium-Starting Torque
  • 42. SynchronousSynchronous Motor General data  Motor electro-mechanical characteristics are described bby: • Nominal Voltage • Nominal frequency • Nominal Current • Number of phases • Number of poles• Number of poles • Design class • Code letter M f i i• Moment of inertia • All others (rated power factor, efficiency, excitation current etc.)
  • 45. Load  Load Types TORQUE TORQUE SPEED SPEED TL s( ) TLRT Ta ns 1 s( )  k  TL n( ) TLRT Ta n( ) k  k 1 2 3
  • 46. Load  Load Types TORQUE TORQUE SPEED SPEED TL n( ) Ao B n C n 2  D n 3 
  • 48. Load  ASD Application of Standard Motors Thermal RatingRating Speed
  • 49. Load  Load Types Breakaway Accelerating Peak Running Blowers centrifugal: Load Torque as a Minimum Percent Drive Torque Application Blowers, centrifugal: Valve closed 30 50 40 Valve open 40 110 100 Blowers, positive displacement, rotary, bypass 40 40 100 Centrifuges 40 60 125 Compressors, axial-vane, loaded 40 100 100 Compressors, reciprocating, start unloaded 100 50 100 Conveyors belt (loaded) 150 130 100Conveyors, belt (loaded) 150 130 100 Conveyors, screw (loaded) 175 100 100 Conveyors, shaker-type (vibrating) 150 150 75 Fans, centrifugal, ambient: Valve closed 25 60 50 Valve open 25 110 100 Fans, centrifugal, hot: Valve closed 25 60 100Valve closed 25 60 100 Valve open 25 200 175 Fans, propeller, axial-flow 40 110 100 Mixers, chemical 175 75 100 Mixers, slurry 150 125 100 Pumps, adjustable-blade, vertical 150 200 200 Pumps, centrifugal, discharge open 40 150 150 Pumps oil field flywheel 40 150 150Pumps, oil-field, flywheel 40 150 150 Pumps, oil, lubricating 40 150 150 Pumps, oil, fuel 40 150 150 Pumps, propeller 40 100 100 Pumps, reciprocating, positive displacement 175 30 175 Pumps, screw-type, primed, discharge open 150 100 100 Pumps, slurry-handling, discharge open 150 100 100 P t bi t if l d ll 50 100 100Pumps, turbine, centrifugal, deep-well 50 100 100 Pumps, vacuum (paper mill service) 60 100 150 Pumps, vacuum (other applications) 40 60 100 Pumps, vane-type positive displacement 150 150 175
  • 50. Inertia  Inertia Jz w Ji ni n1       2  p mi Vi n1       2  1i   n1  1i   n1  w - numer rotating elements b li i lp - number linera motion elements
  • 51. Inertia  Inertia Jz J1 J2 J3  n1 n1       2  J4 J5  n2 n1       2  J6 J7  n3 n1       2  m1 V1 n1       2 
  • 52. Induction Motor Torque, Speed, Inertia Tm TL JL Im  t nm d d        B nm
  • 53. Inertia  Torque, Speed, Inertia T TL JL I N 2     n d    n BL B N 2     N - gear ratio J - inertia Tm N JL Im N   t nm d      nm BL Bm N   B - dumping
  • 59. Mechanical Train Acceleration Torque Unit = S1Torque Unit S1 Speed Unit = S2 Time Unit = S3
  • 60. Mechanical Train Acceleration S1 - scale of speed acceleration S2 - scale of torque acceleration S3 - scale of time required to accelerate train with acceleration torque from one speed toS3 - scale of time required to accelerate train with acceleration torque from one speed to another S4 - scale of dynamic energy needed for acceleration S2 S4 S1 S3 S1 100 RPM div1  S 20 N·m S2 20 div2  S3 0.1sec div3 S4 S2 S3 k S4 0.04S4 S1 k S4 0.04 Jtrain 0.431kg m 2  OA  Jtrain 30 S4  OA 1.128m 2 kg
  • 61. Mechanical Train Acceleration Accelerating EnergyAccelerating Energy Unit = S4
  • 67. Mechanical Train Acceleration t i Ji  30  ns  1 sn s 1 Te s( ) TL s( )     d
  • 68. Mechanical Train Acceleration t1 Js Jm   30  ns  sn s 1 Me s fn U 2   Mo s( )     d t1 1.37 1 
  • 71. Mechanical Train Acceleration 48.25 28 35.25 43 36 12 tacc Ji RPMj tacc i Ji j Tavg j 
  • 72. Mechanical Train Acceleration tacc Jload  30  200 28 200 35.25  200 43  200 48.25  100 36  50 12        tacc 1.289
  • 73. Starting, Operation and Breaking MethodsStarting, Operation and Breaking Methods
  • 74. Motor Starting  Direct On Line Starter (or DOL or FVNR)
  • 75. Motor Starting  Direct On Line Starter (or DOL or FVNR)
  • 76. Motor Starting  Reduce Voltage Resistor/Reactor Starter
  • 77. Motor Starting  Reduce Voltage Resistor/Reactor Starter
  • 78. Motor Starting  Reduce Voltage Autotransformer Starter (RVAT or Korndörfer Starter)
  • 79. Motor Starting  Reduce Voltage Autotransformer Starter (RVAT or Korndörfer Starter)
  • 80. Motor Starting  Reduce Voltage Autotransformer Starter (RVAT or Korndörfer Starter)
  • 81. Motor Starting  Y / ∆ Starter
  • 82. Motor Starting  Y / ∆ Starter
  • 83. Motor Starting  Captive Transformer Starter
  • 84. Motor Starting  Wound-rotor Resistance Starter (Slip-Ring Starter)
  • 85. Motor Starting  Wound-rotor Resistance Starter (Slip-Ring Starter)
  • 86. Motor Starting  Reduce Voltage Solid State Starter with V=var, f=const (or RVSS)
  • 87. Motor Starting  Reduce Voltage Solid State Starter with V=var, f=const (or RVSS)
  • 88. Motor Starting  Reduce Voltage Solid State Starter with V/f=const, Thermal Limitation
  • 89. Motor Starting  Variable Frequency Drive Starting and Control
  • 90. Motor Starting and Operating  Variable Frequency Drive Starting and Control
  • 91. Motor Starting and Operating  Synchronous Transfer System
  • 94. Synchronous Motor Starting High-Starting Torque Medium-Starting Torque
  • 95. Synchronous Motor Starting Starting Torque Control via Discharge ResistorDischarge Resistor
  • 97. Breaking  Induction Machine Modes Of Operation MotorTransformerBreak Generator Synchronous Speed
  • 106. Special Consideration  Losses and Usable Energy Separation Stator Rotor
  • 108. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Software  ETAP, SKM/PTW • Sufficient for DOL starting and reduce voltage discrete calculations; not applicable for RVSS starters analysis  SPICE, MATLAB, EMTP-ATPSPICE, MATLAB, EMTP ATP • Applicable for motor starting analysis with control loops considerations, can predict waveforms and effect on power systemsystem  Custom Software • Write own software utilizing Compilers or high level language (i M tl b Vi Si )(i.e. Matlab or VisSim)  Hand Calculations • Utilize MathCad or other mathematical analysis package; musty p g ; understand electrometrical theory
  • 109. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Equivalent Schematic Parameters – Calculations Motor Data Pn 1200 Hp fn 60 Hz fs fn p 2 Pn 895 2kWPn 895.2kW Un 4kV mkr 1.8 PF 0 87 n 1789 RPMPFn 0.87 nn 1789 RPM n 0.9595 ir 5.0 mr 0.7
  • 110. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Equivalent Schematic Parameters – Calculations Nominal Parameters In Pn n 3 Un PFn  In 154.79A P Tn Pn  nn 30  Tn 4778.38N m Tn 3524.36ft·lbf 2  fs 60 fs -1 s s p  ns s p  s 188.5s 1  ns 1800RPM sn ns nn  sn 0.0061n nn n Zz Un 3 ir In  Zz 2.98
  • 111. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Equivalent Schematic Parameters – Calculations rr XaX 2 ' SXSR a I I r 2 '  SI 'R rR' XR1V oI FeI mI S Ra S R rr 2 ' OR )1( S S R r mXFeR 21 aEE 
  • 112. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Iteration starting parameters: Equivalent Schematic Parameters – Calculations Rz 0.001  Xz 0.2  Given { From motor equivalent diagram } Zz Rz 2 Xz 2 z z z mr Tn 3 s Un 3       2  Rz 2 Rz 2 Xz 2   Rz Xz       Find Rz Xz  Rz 0.7 Xz 2.9
  • 113. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Equivalent Schematic Parameters – Calculations Rs Rz 5 10  Rs 0.35 5 Xs Xz 5 10  Xs 1.45 R'r Rs X'r Xs 1 n Pn Pn n n  Pn 37.79kW Pun 3 2 In 2  Rz Pun 25.22kW Pm 0.01Pn Pm 8.952kW Pfen Pn Pun Pm Pfen 3.61kW Rfe Un 2 Pfen  Rfe 4426.97 U Ife Un 3 Rfe  Ife 0.52A I0 20% In I0 30.96A I I 2 I 2  I 30 95AIm I0 Ife Im 30.95A Xm Un 3 Im  Xm 74.61
  • 114. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Equivalent Schematic Parameters – Calculations Zs f( ) Rs f f j Xs Change "f" only when analysis with VSD fn Z'r s f( ) R'r s f fn j X'r Zm Rfe Xm j R X j  Zm f( ) f fn       0.7 Rfe f fn  Xm j m Rfe Xm j m( ) f fn       0.7 Rfe f fn Xm j Z s f( ) Zs f( ) Z'r s f( ) Zm f( ) Z'r s f( ) Zm f( )  f U f( ) Un f fn  n s f( ) 60 f p 1 s( ) Is s f( ) U f( ) 3 Z s f( )  I'r s f( ) Is s f( ) Zm f( ) Z'r s f( ) Zm f( )  T s f( ) 3 p I' s f( ) 2  Re Z' s f( ) Te s f( ) 2  f Ir s f( )  Re Z r s f( ) 
  • 115. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Equivalent Schematic Parameters – Calculations Nominal Slip Calcs s 0.0100 Given Te s fn   n s fn  30  Pn Pm  30 sn Find s( ) sn 0.0228 In Is sn fn  In 147.59A T T f  T 4908 38NTn Te sn fn  Tn 4908.38N m
  • 116. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Equivalent Schematic Parameters – IEEE 112
  • 117. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Equivalent Schematic Parameters – Sensitivity Calculations Basis for ETAP Motor Estimating Calcs
  • 118. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Equivalent Schematic Parameters – Sensitivity Calculations EMTP ATP G S ftEMTP-ATP Group Software
  • 119. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Equivalent Schematic Parameters – Sensitivity Calculations EMTP ATP G S ftEMTP-ATP Group Software
  • 120. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications U1 Isc 3P 150.0 MVA Isc SLG 36.0 MVA B1 13800 V S P TR1 Size 3250.00 kVA Pri Delta Sec Wye-Groundy PriTap -2.50 % %Z 5.7500 % X/R 11.0 B2 4160 V CB-001 CBL-0001 2- #4/0 MV EPR 150.0 Meters Ampacity 560.0 A B3 4160 V M1 2500.000 hp Load Factor 1.00 X"d 0.17 pu
  • 129. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications U1 Isc 3P 150.0 MVA Isc SLG 36.0 MVA G1 8750 kVA X"d 0.2 pu B1 13800 V S P TR1 Size 3250.00 kVA Pri Delta Sec Wye-GroundSec Wye Ground PriTap -2.50 % %Z 5.7500 % X/R 11.0 B2 4160 V CB-001 CBL-0001 2- #4/0 MV EPR 150.0 Meters Ampacity 560.0 A B3 4160 V M1 2500.000 hp Load Factor 1.00 X"d 0.17 pu
  • 133. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications 1.1 Ub 1Gen KCR 0.9 1 Ub_1Gen_KCR Ub 2Gen KCR 0 9 1 Ub_1Gen_KCR Ub_2Gen_KCR Ub_1Gen_DECS Ub_2Gen_DECS 0 5 10 15 20 0.8 0.9 Ub_2Gen_KCR Ub_1Gen_DECS Ub_2Gen_DECS 0.9 Time 2000 1 2 1500 2000 1800 RPM 0 9 1 1.1 1.2 Ub [pu] 1.0 0 9 500 1000 Mot RPM Mot Amp Amp 0.6 0.7 0.8 0.9 0.9 Ub 0 10 20 30 40 0 Mot Amp Time 0 20 40 60 0.5 Time
  • 134. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications 1 1.2 1Ub 1Gen KCR 0.8 1 Ub_1Gen_KCR Ub 2Gen KCR 0.9 1Ub_1Gen_KCR Ub_2Gen_KCR Ub_1Gen_DECS Ub_2Gen_DECS 0 5 10 15 20 0.6 Ub_2Gen_KCR Ub_1Gen_DECS Ub_2Gen_DECS Time 2000 1500 2000 1800 RPM 0 9 1 1.1 1.2 Ub [pu] 1.0 0 9 500 1000 Mot RPM Mot Amp RPM Amp 0 6 0.7 0.8 0.9 0.9 Ub 0 10 20 30 40 0 Mot Amp Time 0 20 40 60 0.5 0.6 Time
  • 135. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications 3500 5000 Pfpso 2000 3500fpso Q fpso Ptlp Q tlp 0 20 40 60 1000 500 p Time 1500 2000 Mot RPM Mot Amp 1.1 1.2 Ub_fpso [pu] Ub_tlp [pu] 500 1000 RPM Amp 0.9 1 0.9 1 Ubfpso Ubtlp 0 10 20 30 40 0 Time 0 20 40 60 0.8 Time
  • 136. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications PARKs equations for this machnie: Motor Simulation ps  s  r j s s vs pr  r  s j s m  r T T pm n Te Tr J  State variable assigment: x0 = s (stator), x1 = r (rotor), x2 = m (angular speed) 3 2 Veff  x0  x1 j  x0           f x t( )  x1  x0 j  x2  x1 n M Lk L  Im x0 x1    k x2 n       2           Lk Lr n  J n      
  • 137. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Coeficients for Runge-Kutta (R-K) interation 4th degree: Motor Simulation g ( ) g k1 x t( ) h f x t( ) k2 x t( ) h f x k1 x t( ) 2  t h 2         k3 x t( ) h f x k2 x t( ) 2  t h 2         k4 x t( ) h f x k3 x t( ) t h( ) ( ) 2 2    k4 x t( ) h f x k3 x t( ) t h( ) Final equation for R-K calcualtions: x i 1  x i 1 k1 x i i h  2 k2 x i i h  2 k3 x i i h  k4 x i i h  x x 6 k1 x i h  2 k2 x i h  2 k3 x i h  k4 x i h   is i       1 L L Lr M M L        s         Equations for current in stator: ir  Lk Lr M Ls  r 
  • 138. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Conversion Park reference frame to phase domain: Motor Simulation  i( )  h i cos  i( )  cos  i( ) 2 3        cos  i( ) 4 3            TP i( ) 2 3 ( )  sin  i( )  ( ) 3  sin  i( ) 2 3         ( ) 3  sin  i( ) 4 3                    1 2 1 2 1 2       if i( ) TP i( ) 1 isdi isq       Pase currentsif i( ) TP i( ) isqi 0        Pase currents
  • 139. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications 100 Angular Speed vs. time 125 Motor Simulation 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 50 0  i 0.80 h i 100 600 Torque vs. time 700 400 T.ei 550 Average, dynamical and load torques T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 400 400 0.80 h i 450 50 Tei Tci Tri 0 20 40 60 80 100 120 450  i
  • 140. Calculations, Simulation, ApplicationsCalculations, Simulation, Applications Phase A, B, C Current Motor Simulation 150 50 250 350 350 i.f i( ) 0 i.f i( ) 1 i.f i( ) 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 350 350 0.80 h i 50 250 Phase A, B, C Current 350 i.f i( ) 0 i.f i( ) 1 i i( ) 0 0.05 0.1 0.15 0.2 0.25 350 150 350 i.f i( ) 2 0.30 h i
  • 143. Testing/ProtectionTesting/Protection 6000 7000 8000 70 80 90 100 Avg Phase Current (A) Ground Current (A) 3000 4000 5000 30 40 50 60 Avg Line Volt (V) kW Power (kW) kvar Power (kvar) T. C. Used (%) Hottest Stator RTD (° C) 0 1000 2000 0 200 400 600 800 1000 1200 0 10 20 Motor Load (x FLA)
  • 144. Testing/ProtectionTesting/Protection 6000 7000 8000 80 100 120 Avg Phase Current (A) Avg Line Volt (V) 3000 4000 5000 40 60 80 Current U/b (%) kW Power (kW) kvar Power (kvar) Hottest Stator RTD (° C) T. C. Used (%) 0 1000 2000 0 200 400 600 800 1000 1200 1400 0 20 Ground Current (A)
  • 145. Testing/ProtectionTesting/Protection 120 9 10 80 100 7 8 60 4 5 6 Hottest Stator RTD (° C) T. C. Used (%) Motor Load (x FLA) 20 40 2 3 0 0 1000 2000 3000 4000 5000 6000 7000 0 1
  • 146. Testing/ProtectionTesting/Protection LAST "BLOW" - Phase A Current (Amps) 2000 3000 4000 LAST "BLOW" Phase B Current (Amps) 2000 3000 4000 -2000 -1000 0 1000 Time -47.91 22.91 93.73 164.56 235.38 306.2 377.02 447.84 518.66 589.49 660.31 731.13 801.95 872.77 943.59 1014.41 1085.24 1156.06 1226.88 1297.7 1368.52 1439.34 1510.17 1580.99 1651.81 1722.63 1793.45 1864.27 1935.09 2005.92 CURRENT(A Phase A Current (Amps) -2000 -1000 0 1000 Time -47.91 22.91 93.73 164.56 235.38 306.2 377.02 447.84 518.66 589.49 660.31 731.13 801.95 872.77 943.59 1014.41 1085.24 1156.06 1226.88 1297.7 1368.52 1439.34 1510.17 1580.99 1651.81 1722.63 1793.45 1864.27 1935.09 2005.92 CURRENT(A Phase B Current (Amps) -4000 -3000 TIME(ms) -4000 -3000 TIME(ms) LAST "BLOW" Phase C Current (Amps) LAST "BLOW" AN(AB) Voltage (V) 1000 2000 3000 4000 ENT(A 2000 4000 6000 8000 GE(V) -4000 -3000 -2000 -1000 0 Time -47.91 22.91 93.73 164.56 235.38 306.2 377.02 447.84 518.66 589.49 660.31 731.13 801.95 872.77 943.59 1014.41 1085.24 1156.06 1226.88 1297.7 1368.52 1439.34 1510.17 1580.99 1651.81 1722.63 1793.45 1864.27 1935.09 2005.92 CURRE Phase CCurrent (Amps) -8000 -6000 -4000 -2000 0 Time -49.99 18.75 87.49 156.22 224.96 293.7 362.44 431.18 499.92 568.66 637.39 706.13 774.87 843.61 912.35 981.09 1049.83 1118.56 1187.3 1256.04 1324.78 1393.52 1462.26 1530.99 1599.73 1668.47 1737.21 1805.95 1874.69 1943.43 2012.16 VOLTAG AN(AB) Voltage (V) TIME(ms) TIME(ms)
  • 147. Testing/ProtectionTesting/Protection 2.5 3 3.5 0.5 1 1.5 2 LINE 2 5 3 3.5 -0.5 0 0 100 200 300 400 500 600 0 5 1 1.5 2 2.5 Series1 Series2 3.5 -0.5 0 0.5 0 100 200 300 400 500 600 1.5 2 2.5 3 3.5 Series1 -0.5 0 0.5 1 1.5 0 100 200 300 400 500 600 Series2
  • 152. ReferencesReferences • Fitzgerald & Kingsley, Electric Machinery, McGraw-Hill, 1961 • Liwschitz-Garik, Whipple, A-C Machines, Van Nostrand, 1961 • Say, M.G., Alternating Current Machines, John Wiley & Sons, 1976 Gra Electrical Machines and Dri e S stems John Wile & Sons 1989• Gray, Electrical Machines and Drive Systems, John Wiley & Sons, 1989 • Leonhard, Control of Electrical Drives, Spinger-Verlag, 1985 • Maxwell, James Clerk, A Treatise on Electricity and Magnetism, third edition, 1891 • IEEE Standard 519-1992 “IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems”, IEEE Press SH15453, New York, 1993 • Hammond, P. Power Factor Correction of Current Source Inverter Drives with Pump Load 1980 IEEE/IAS Conference Record pp 520-529. • Osman R A Novel Medium Voltage drive Topology with Superior Input and• Osman, R., A Novel Medium-Voltage drive Topology with Superior Input and Output Power Quality, VI Seminario de Electronica de Potencia, 1996. • Hammond, P., A New Approach to Enhance Power Quality for Medium Voltage Drives, 1995 IEEE/PCIC Conference Record pp231-235. • Ferrier, R., McClear, P. Developments and Applications in High-Power Drives Proceedings, Advanced Adjustable Speed Drive R&D Planning Forum, EPRI-CU-6279 NC, USA, Nov 87. • Bin Wu, DeWinter, F. Voltage stress on induction motors in medium voltage (2300 to 6900V) PWM GTO CSI drives PESC 95 Record 26th Annual IEEE Power Electronics SpecialistsPWM GTO CSI drives, PESC 95 Record. 26th Annual IEEE Power Electronics Specialists Conference (Cat. No. 95CH35818) Part vol.2 p.1128-32 vol.2; IEEE, New York, NY, USA, 1995.