TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 6, December 2020, pp. 3228~3233
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i6.13797  3228
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Improving optical properties of remote phosphor LED using
green Y2O3:Ho3+
and red Mg4(F)(Ge, Sn)O6:Mn2+
layers
My Hanh Nguyen Thi1
, Nguyen Thi Phuong Loan2
, Nguyen Doan Quoc Anh3
1
Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Vietnam
2
Faculty of Fundamental 2, Posts and Telecommunications Institute of Technology, Vietnam
3
Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University, Vietnam
Article Info ABSTRACT
Article history:
Received Aug 4, 2019
Revised Apr 6, 2020
Accepted Jul 9, 2002
The lighting device that employs diodes to create white light (WLEDs) with
quantum dots (QDs) and phosphor layers is a promising lighting method that
is increasingly used in many fields on account of the remarkable color
expressing ability. The QDs film is usually placed apart from the phosphor
layer according to the packaging configuration to prevent light loss due to
backscattering as well as preserve the consistency of the ligands on the QDs
surface. The article also conducted experiments to compare the lighting
properties and thermal output of the two packaging orders of QDs and
phosphor. The heat discharing ranges were simulated with thermography
technology, moreover, other parameters such as light energy emission and PL
spectra are acquired to evaluate the efficiency of the packaging order. The
results from the practical experiment show that while under 10% wt., the
luminous output (LO) of green QDs-on-phosphor structure reaches 1130 lm,
higher than the red QDs-on-phosphor structure with 878 lm, and the color
rendering value in the configuration with red QDs on phosphor is Ra = 74 are
higher than Ra = 68 index of the green QDs-on-phosphor structure. As a result,
the QDs-on-phosphor is determined as the better packaging configuration to
choose to achieve an overall improvement in lighting efficiency, color
rendering index
Keywords:
Color rendering index
Lumen output
Mg4(F)(Ge,Sn)O6:Mn2+
WLEDs
Y2O3:Ho3+
This is an open access article under the CC BY-SA license.
Corresponding Author:
Nguyen Doan Quoc Anh,
Power System Optimization Research Group,
Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University,
Ho Chi Minh City, Vietnam.
Email: nguyendoanquocanh@tdtu.edu.vn
1. INTRODUCTION
White light-emitting diodes (WLEDs) with their phenomenon lighting properties such as high lighting
capacity, power saving and excellent endurance are being increasingly utilized in modern lighting applications
and flat monitor display [1-3]. Fabricating white light by merging discharged light from the blue chip and
the phosphor material Y3Al5O12:Ce3+
(YAG:Ce) is the most commonly used method. The idea of this method
is based on the color-integrating principle, which is combining red and yellow to create white light. While
this LEDs model has high lighting efficacy (LE), the red deficiency within the radiation spectrum, which is
a much-needed chromatic light to improve the color expression ability, prevents it from obtaining high quality
status [4]. Many solutions were suggested in previous researches to address this issue including adding red
TELKOMNIKA Telecommun Comput El Control 
Improving optical properties of remote phospor LED using green Y2O3:Ho3+
... (My Hanh Nguyen Thi)
3229
phosphor materials to enhance the color rendering ability of pc-LEDs [5-8]. The only problem with this method
is the inability of keeping the luminous efficacy index at an acceptable level due to part of their extensive red
emitting spectrum exceeds the human perception [9]. The solid-state lighting field in recent time is focusing
on the semiconductor quantum dots (QDs), an innovative material that can bring about immense changes to
the lighting performance of LEDs, with exceptional optical parameters, namely, the adjustable bandwidth,
small emitting range and high quantum productivity [10-13]. The positive effects of QDs on the color rendering
index (CRI), color gamut as well as the lighting efficacy of pc-LEDs have been verified both in theory and
through practices [14-16]. The most frequently used packaging configurations for pc-LEDs with QDs are applying
a compound of QDs and the phosphorous silicone resin or coating the QDs and the phosphor component separately.
The QDs and the phosphor are blended together and put on the LED chip in the first configuration,
the combined configuration [17, 18], while in the latter configuration the QDs and phosphor layer are applied
individually onto the chip, as separated configuration [19, 20]. The issue with the combined configuration is
the QDs in this structure is part of the reflector and, therefore, too close to the LED chip and results in high
optical density. The remote structure, on the other hand, with a gap between the QDs sheet and the chip
experiences low optical power density. However, the remote structure can stabilize the chemical discrepancy
among QDs molecules at the surface and phosphor silicone expoxy by alternating the polymeric condition that
the QDs sheet is in [21-23]. With this characteristic, the remote packaging configuration appears to be
the optimal solution and was normally applied to create WLEDs with QDs and phosphor.
2. PREPARATION AND SIMULATION
Figure 1 (a) illustrates the scenario where the green QDs particles are placed upon the phosphor layer.
Meanwhile, Figure 1 (b) the red QDs lay upon the phosphor layer. The package configuration is a deciding
factor to the emitted light and heat radiation, thus deciding the lighting performance of WLEDs. While
the relation between the package configuration and the QDs-WLEDs optical performance was thoroughly
expressed in previous studies, there was no practical experiment on the transition of lighting power between
QDs and phosphor. The findings from said research are an important contribution to the QDs-WLEDs
construction guideline, however, the amount of light energy loss during transition in both structures as well as
the effect of QDs on the optical performance are the important aspects that have not been discussed.
(a) (b)
Figure 1. Simulation diagram of two remote WLEDs types with different packaging sequences:
(a) green QDs-on-phosphor type, (b) red QDs-on-phosphor type
Therefore, the goal of this article is to gather the information needed for a quantitative research that
relates to the aspects mentioned above. The primary method is to analyze the decline of lighting power between
QDs and the phosphor layer in both structures, and then compare their operating efficiency to determine which
one is the optimal configuration. To serve this experiment, a red emitting QDs CdSe/ZnS and a WLEDs based
on yellow emitting phosphor and a band of QDs were created. The emission of lighting energy and PL range
indexes needed for the comparison process are computed using an integrating sphere system while
the temperature fields on the devices during operation are imitated by putting the optical indexes in thermal
simulation and then use an infrared thermal imager to analyze the result. The outcomes from the experiments
show that with better lighting efficiency and color rendering index in addition to lower device generated heat,
the QDs-on-phosphor is the ideal packaging order to choose for better performance.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3228 - 3233
3230
3. RESULTS AND DISCUSSION
The results in Figure 2 expressed the different changes occur in terms of concentration between green
phosphor Y2O3:Ho3+
, red phosphor Mg4(F)(Ge, Sn)O6:Mn2+
and yellow phosphor YAG:Ce3+
. These changes
in concentration affect the ability to absorb or scatter of the phosphor layers in WLEDs, which determine
the color quality and the amount of light emitted. Therefore, the concentration setting of the two phosphor
layers Y2O3:Ho3+
and Mg4(F)(Ge, Sn)O6:Mn2+
are extremely important to the optical performance of WLEDs.
Moreover, the decreases in the concentration of yellow phosphor YAG:Ce3+
corresponding to the increases in
concentrations of the Y2O3:Ho3+
and Mg4(F)(Ge, Sn)O6:Mn2+
is to maintain the average correlated color
temperatures. More specifically, YAG:Ce3+
concentration decline to preserve the ACCTs when
the concentrations of Y2O3:Ho3+
and Mg4(F)(Ge, Sn)O6: Mn2+
are rising in the range from 2 to 20% wt.
The influences of red phosphor Mg4(F)(Ge, Sn)O6:Mn2+
and green phosphor Y2O3:Ho3+
are expressed in Figure
3. According to Figure 3, the intensity in the range from 420-480 nm and 500 to 640 nm increase with
Y2O3:Ho3+
concentration which confirmed that the luminous flux in these ranges is also increase. Moreover,
the scattered blue light also increases, which means the scattering property is improved leading to better
correlated color. The advantages that occur when applying the Y2O3:Ho3+
are notable results that can be utilized
to validate the benefit of this green phosphor on the optical properties of WLEDs. In the case of
Mg4(F)(Ge,Sn)O6:Mn2+
, the presence of this phosphor cause the intensity from 648 to 738 nm to rise, however,
this effect is meaningless without the increase in the two remaining spectrum ranges, which are
420-480 nm and 500-640 nm. Similar to the green phosphor, if the intensity in the remaining spectrums of red
phosphor rise that would result in better blue light scattering effect. The emission spectrum that ties to
the emitted temperature is crucial in improving the optical performance, particularly, when the emission
spectrum increase, the color quality and luminous flux become better. These are important findings when
utilizing the red phosphor Mg4(F(Ge, Sn)O6:Mn2+
. The research results show that Mg4(F)(Ge, Sn)O6:Mn2+
guarantee improvement in color quality despite the color temperature, this is a valuable characteristic,
especially when maintaining high color quality at high temperature is considered hard to obtain. The final
decision relies on the manufacturers to choose the suitable option to reach their goal. For WLEDs that focus
on the high chromatic performance, it is advisable to give up a bit of emitted light to achieve highest color
quality possible.
Figure 2. The alteration in phosphor concentration
of remote WLEDs to maintain the average CCT
Figure 3. Emission spectra intensity in dual-layer
phosphor structures
The CRI expresses the chromatic outcome of the irradiated object. This index denotes the ability to
express the color of an object and is based on the balance of blue, yellow, and green. If the proportions of
the constituent colors are uneven, the color balance will loss and results in reduced color quality. According to
results of CRI presented in Figure 4, the green remote phosphor layer Y2O3:Ho3+
is detrimental to the CRI.
Although the color rendering index decreases slightly whenever there is a green phosphor layer in the structure,
this is not a serious defect due to CRI is only part of color quality scale (CQS). The CQS, as can be seen in
Figure 5 remain static when the concentration of Y2O3:Ho3+
is below 8%. In comparison to CRI, the CQS is
a priority because it covers more optical properties and is harder to obtain. As a result, it is acceptable to have
the concentration of Y2O3:Ho3+
under 8% if the luminous flux is also appropriate.
The following section is the calculating formula for the unequal SPD of single color LED with
Gaussian function [24, 25]:
TELKOMNIKA Telecommun Comput El Control 
Improving optical properties of remote phospor LED using green Y2O3:Ho3+
... (My Hanh Nguyen Thi)
3231
𝑃𝜆 = 𝑃𝑜𝑝𝑡
1
𝜎√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆−𝜆 𝑝𝑒𝑎𝑘)2
𝜎2 ] (1)
In this formula, 𝑃𝜆 is the spectral power distribution (SPD) (mW/nm) while λ indicates the wavelength (nm)
and 𝜆 𝑝𝑒𝑎𝑘 describes the peak wavelength (nm). 𝑃𝑜𝑝𝑡 are used to describe the optical power (W) of the WLED.
When 𝜎 relies on the peak wavelength 𝜆 𝑝𝑒𝑎𝑘, it is possible to define the full-width at half-maximum (FWHM)
Δ𝜆 (nm) as following with 𝜆1, 𝜆2 being the wavelengths at half of the peak intensity,ℎ represents Planck’s
constant (J.s) and c is the speed of light (m.s−1
).
𝜎 =
𝜆 𝑝𝑒𝑎𝑘
2
𝛥𝐸
2ℎ𝑐√2 𝑙𝑛 2
=
𝜆 𝑝𝑒𝑎𝑘
2
(
ℎ𝑐
𝜆1
−
ℎ𝑐
𝜆2
)
2ℎ𝑐√2 𝑙𝑛 2
=
𝜆 𝑝𝑒𝑎𝑘
2
(
ℎ𝑐𝛥𝜆
𝜆1 𝜆2
)
2ℎ𝑐√2 𝑙𝑛 2
(2)
Figure 4. The color rendering index corresponding
to the concentration of Y2O3:Ho3+
and
Mg4(F)(Ge, Sn)O6:Mn2+
phosphors
Figure 5. The color quality scale corresponding to
the concentration of Y2O3:Ho3+
and
Mg4(F)(Ge, Sn)O6:Mn2+
phosphors
In theory, WLED with YAG phosphor and blue light emitting chip has the combination between blue
and yellow spectra as SPD. In practical experiment, yellow phosphor actually active in both yellow and green
emission ranges. With that being said, it is possible to use the green spectrum to depict the discrepancy between
the SPD in practice and blue-yellow mixed spectrum in cases with blue and yellow are the chosen spectra.
As a result, the green spectrum is added to the model for practical circumstances and the analytical tri-spectrum
(B-G-Y) is expressed as in (3) then later on modified to (4):
𝑃𝜆 = 𝑃𝑜𝑝𝑡_𝑏
1
𝜎 𝑏√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆 − 𝜆 𝑝𝑒𝑎𝑘_𝑏)2
𝜎 𝑏
2 ]
𝑃𝑜𝑝𝑡 𝑔
1
𝜎 𝑔√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆−𝜆 𝑝𝑒𝑎𝑘 𝑔)2
𝜎 𝑔
2 ] (3)
𝑃𝑜𝑝𝑡_𝑦
1
𝜎 𝑦√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆 − 𝜆 𝑝𝑒𝑎𝑘_𝑦)2
𝜎 𝑦
2 ]
𝑃𝜆 = 𝜂 𝑏 𝑃𝑜𝑝𝑡 𝑡𝑜𝑡𝑎𝑙
1
𝜎 𝑏√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆 − 𝜆 𝑝𝑒𝑎𝑘 𝑏
)2
𝜎 𝑏
2 ]
𝜂 𝑔 𝑃𝑜𝑝𝑡 𝑡𝑜𝑡𝑎𝑙
1
𝜎𝑔√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆 − 𝜆 𝑝𝑒𝑎𝑘 𝑔
)2
𝜎𝑔
2 ]
𝜂 𝑦 𝑃𝑜𝑝𝑡_𝑡𝑜𝑡𝑎𝑙
1
𝜎 𝑦√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆−𝜆 𝑝𝑒𝑎𝑘_𝑦)2
𝜎 𝑦
2 ] (4)
where 𝑃𝑜𝑝𝑡_𝑏, 𝑃𝑜𝑝𝑡_𝑔, 𝑃𝑜𝑝𝑡_𝑦and 𝑃𝑜𝑝𝑡_𝑡𝑜𝑡𝑎𝑙 stand for the optical power (W) in each separate spectrum of blue,
green, yellow and white. 𝜆 𝑝𝑒𝑎𝑘_𝑏, 𝜆 𝑝𝑒𝑎𝑘_𝑔 and 𝜆 𝑝𝑒𝑎𝑘_𝑦in order are the peak wavelengths (nm) of the spectra
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3228 - 3233
3232
emitting the chromatic lights. The non-dimensional ratios of chromatic lights spectra to the range of white
light, are expressed respectively as 𝜂 𝑏, 𝜂 𝑔 and 𝜂 𝑦. 𝜎𝑏, 𝜎𝑔 and 𝜎 𝑦 in turn are the coefficient of FWHM (nm) for
the wavelength ranges of chromatic lights. This mathematical models for SPC in WLEDs with phosphor layer
can be perceived as a tricolor spectrum and an extended Gaussian model. Next, we study the luminous flux of
QDs WLED with the QDs concentration as in Figure 6.
The content of Figure 6 demonstrates that when the concentration range of Y2O3:Ho3+
is from 2% wt
to 20% wt the luminous will sharply increase. However, the luminous flux in remote phosphor structure with
dual layers is a result of both phosphor layers including the red phosphor Mg4(F)(Ge, Sn)O6:Mn2+
.
The extinction coefficient increase with Mg4(F)(Ge, Sn)O6:Mn2+
concentration while opposing to light
transmission energy as the application of Beer’s Law suggests. Therefore, when choosing the concentration for
the phosphor layers it may occur the lumen output decreases when the concentration of Mg4(F)(Ge, Sn)O6:Mn2+
increases, and drastically decline especially when the concentration reaches 20%. Despite the drawback in
luminous flux, using red phosphor Mg4(F)(Ge,Sn)O6:Mn2+
is still beneficial because of the enhancements it
brings to the CRI and CQS, not to mention the luminous flux in these dual-layer phosphor structures is better
than the single-layer ones that do not have a red phosphor layer. These references help the manufacturers
choose the exact concentration of the phosphor to serve their purpose in mass production.
Figure 6. The luminous flux corresponding to the concentration of Y2O3:Ho3+
and Mg4(F)(Ge, Sn)O6:Mn2+
phosphors
4. CONCLUSION
The results of this research paper confirmed the benefits of green phosphor Y2O3:Ho3+
and red
phosphor Mg4(F)(Ge, Sn)O6:Mn2+
on the optical properites of remote structure with two phosphor layers.
Through the study of scattering characteristic with scattering theory and the Beer’s law, it is confirmed that
the red phosphor Mg4(F)(Ge, Sn)O6: Mn2+
is capable of boosting the chromatic quality. On the other hand,
the green phosphor Y2O3:Ho3+
is the excellent substance to improve the luminous flux, the effect is not only
applicable to low color temperature WLEDs but also with the ones at high color temperature. With
the aforementioned results, this research has succeeded in a very difficult task that is enhancing the color quality
in remote phosphor structure. On another note, the concentration of both phosphor layers Y2O3:Ho3+
or
Mg4(F)(Ge, Sn)O6:Mn2+
must be kept at an appropriate level as the excessive amount of phosphor can damage
the color quality as well as the luminous flux. Managing the concentration of phosphor is crucial in producing
WLEDs, however, this article has presented all the much-needed information about this topic to
the manufacturers so they can apply it to create WLEDs with the desired quality.
REFERENCES
[1] S. Sadeghi, et al., “Quantum dot white LEDs with high luminous efficiency,” Optica, vol. 5, no. 7, pp. 793-802, 2018.
[2] X. Kong, et al., “Assessing the temporal uniformity of CIELAB hue angle,” Journal of the Optical Society of Amerika
A, vol. 37, no. 4, pp. 521-528, March 2020.
[3] X. Li, et al., “Single-shot multispectral imaging through a thin scatterer,” Optica, vol. 6, pp. 864-871, 2019.
[4] S. Pan, et al., “Image restoration and color fusion of digital microscopes,” Applied Optics, vol. 58, no. 9,
pp. 2183-2189, March 2019.
[5] B. K. Tsai, et al., “Exposure study on UV-induced degradation of PTFE and ceramic optical diffusers,” Applied
Optics, vol. 58, no. 5, pp. 1215-1222, February 2019.
TELKOMNIKA Telecommun Comput El Control 
Improving optical properties of remote phospor LED using green Y2O3:Ho3+
... (My Hanh Nguyen Thi)
3233
[6] X. Wang, et al., “Modifying phase, shape and optical thermometry of NaGdF4:2%Er3+
phosphors through
Ca2+
doping,” Opt. Express, vol. 26, no. 17, pp. 21950-21959, August 2018.
[7] X. Fu, et al., “Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing,” Optics Express,
vol. 27, no. 17, pp. 24300-24310, August 2019.
[8] A. Ullah, et al., “Household light source for potent photo-dynamic antimicrobial effect and wound healing in
an infective animal model,” Biomed. Opt. Express, vol. 9, no. 3, pp. 1006-1019, March 2018.
[9] D. Durmus, et al., “Blur perception and visual clarity in light projection systems,” Opt. Express, vol. 27, no. 4,
pp. A216-A223, February 2019.
[10] A. Lihachev, et al., “Differentiation of seborrheic keratosis from basal cell carcinoma, nevi and melanoma by RGB
autofluorescence imaging,” Biomedical Optical Express, vol. 9, no. 4, pp. 1852-1858, April 2018.
[11] J. Zhou, et al., “Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror,” Applied Optics,
vol. 58, no. 5, pp. A283-A290, 2019.
[12] J. S. Li, et al., “High efficiency solid–liquid hybrid-state quantum dot light-emitting diodes,” Photonics Research,
vol. 6, no. 12, pp. 1107-1115, December 2018.
[13] S. Lee, et al., “Printed cylindrical lens pair for application to the seam concealment in tiled displays,” Optics Express,
vol. 26, no. 2, pp. 824-834, January 2018.
[14] H. Yuce, et al., “Phosphor-based white LED by various glassy particles: control over luminous efficiency,” Optics
Letters, vol. 44, no. 3, pp. 479-482, February 2019.
[15] Q. Zhang, et al., “Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode-
pumped green-emitting phosphor,” Optiics Letters, vol. 43, no. 15, pp. 3566-3569, August 2018.
[16] V. Fuertes, et al., “Enhanced luminescence in rare-earth-free fast-sintering glass-ceramic,” Optica, vol. 6, no. 5,
pp. 668-679, May 2019.
[17] X. Huang, et al., “High-brightness and high-color purity red-emitting Ca3Lu, AlO.3, BO3.4: Eu3+phosphors with
internal quantum efficiency close to unity for near-ultraviolet-based white-light-emitting diodes,” Optics Letters,
vol. 43, no. 6, pp. 1307-1310, 2018.
[18] W. Gao, et al., “Color temperature tunable phosphor-coated white LEDs with excellent photometric and colorimetric
performances,” Applied Optics, vol. 57, no. 31, pp. 9322-9327, November 2018.
[19] H. L. Ke, et al., “Lumen degradation analysis of LED lamps based on the subsystem isolation method,” Applied
Optics, vol. 57, no. 4, pp. 849-854, February 2018.
[20] S. Beldi, et al., “High Q-factor near infrared and visible Al2O3-based parallel-plate capacitor kinetic inductance
detectors,” Opt. Express, vol. 27, no. 9, pp. 13319-13328, April 2019.
[21] H. Liu, et al., “Design of a six-gas NDIR gas sensor using an integrated optical gas chamber,” Optics Express,
vol. 28, no. 8, pp. 11451-11462, March 2020.
[22] D. Lu, et al., “Synthesis and photoluminescence characteristics of the LiGd3, MoO4.5: Eu3+red phosphor with high
color purity and brightness,” Optical Materials Express, vol. 8, no. 2, pp. 259-269, February 2018.
[23] L. Wu, et al., “Hybrid warm-white organic light-emitting device based on tandem structure,” Optics Express,
vol. 26, no. 26, pp. A996-A1006, December 2018.
[24] S. Elmalem, et al., “Learned phase coded aperture for the benefit of depth of field extension,” Optics Express,
vol. 26, no. 12, pp. 15316-15331, June 2018.
[25] J. H. Kim, et al., “Synthesis of Mn-doped CuGaS2 quantum dots and their application as single downconverters for
high-color rendering solid-state lighting devices,” Optical Materials Express, vol. 8, no. 2, pp. 221-230, February 2018.

More Related Content

PDF
The application of (Y,Gd)BO3:Tb3+ and CaGa2S4:Mn2+ phosphors to remote white ...
PDF
Enhance the chromatic uniformity and luminous efficiency of WLEDs with triple...
PDF
The application of double-layer remote phosphor structures in increasing WLED...
PDF
The effectiveness of MgCeAl 11 O 19 :Tb phosphor in enhancing the luminous e...
PDF
Dual-layer remote phosphor structure: a novel technique to enhance the color ...
PDF
The options in remote phosphor structure for better white LEDs color quality
PDF
The influences of calcium fluoride and silica particles on improving color ho...
PDF
The application of green YF3:Er3+,Yb3+ and red MgSr3Si2O8:Eu2+,Mn2+ layers to...
The application of (Y,Gd)BO3:Tb3+ and CaGa2S4:Mn2+ phosphors to remote white ...
Enhance the chromatic uniformity and luminous efficiency of WLEDs with triple...
The application of double-layer remote phosphor structures in increasing WLED...
The effectiveness of MgCeAl 11 O 19 :Tb phosphor in enhancing the luminous e...
Dual-layer remote phosphor structure: a novel technique to enhance the color ...
The options in remote phosphor structure for better white LEDs color quality
The influences of calcium fluoride and silica particles on improving color ho...
The application of green YF3:Er3+,Yb3+ and red MgSr3Si2O8:Eu2+,Mn2+ layers to...

What's hot (20)

PDF
Improving color quality and luminous flux of white LED utilizing triple-layer...
PDF
Influence of Dual-layer and Triple-layer Remote Phosphor Package on Optical P...
PDF
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
PDF
Ba[Mg2Al2N4]Eu2+ phosphor for enhancing the optical quality of the 6600K CPW-...
PDF
Y 2 O 3 :Ho 3+ and ZnO:Bi 3+ : a selection for enhancing color quality and ...
PDF
Benefits of triple-layer remote phosphor structure in improving color quality...
PDF
(Y,Gd)BO3:Eu red phosphor for dual-layer phosphor structure to enhance the op...
PDF
Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitab...
PDF
The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote ...
PDF
Utilizing CaCO 3 , CaF 2 , SiO 2 , and TiO 2 particles to enhance color hom...
PDF
Comparison of calcium carbonate and titania particles on improving color homo...
PDF
Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selectio...
PDF
The effects of ZnO particles on the color homogeneity of phosphor-converted h...
PDF
Excellent color quality of phosphor converted white light emitting diodes wit...
PDF
SrBaSiO 4 :Eu 2+ phosphor: a novel application for improvingthe luminous flu...
PDF
Improvement of double-layer phosphor structure WLEDS in color homogeneity and...
PDF
Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvem...
PDF
Excellent luminous flux of WLEDs with flat dual-layer remote phosphor geometry
PDF
Synthesis and properties of
PDF
Long Term Stability of Solid State Dye Sensitized Solar Cell
Improving color quality and luminous flux of white LED utilizing triple-layer...
Influence of Dual-layer and Triple-layer Remote Phosphor Package on Optical P...
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
Ba[Mg2Al2N4]Eu2+ phosphor for enhancing the optical quality of the 6600K CPW-...
Y 2 O 3 :Ho 3+ and ZnO:Bi 3+ : a selection for enhancing color quality and ...
Benefits of triple-layer remote phosphor structure in improving color quality...
(Y,Gd)BO3:Eu red phosphor for dual-layer phosphor structure to enhance the op...
Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitab...
The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote ...
Utilizing CaCO 3 , CaF 2 , SiO 2 , and TiO 2 particles to enhance color hom...
Comparison of calcium carbonate and titania particles on improving color homo...
Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selectio...
The effects of ZnO particles on the color homogeneity of phosphor-converted h...
Excellent color quality of phosphor converted white light emitting diodes wit...
SrBaSiO 4 :Eu 2+ phosphor: a novel application for improvingthe luminous flu...
Improvement of double-layer phosphor structure WLEDS in color homogeneity and...
Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvem...
Excellent luminous flux of WLEDs with flat dual-layer remote phosphor geometry
Synthesis and properties of
Long Term Stability of Solid State Dye Sensitized Solar Cell
Ad

Similar to Improving optical properties of remote phosphor LED using green Y2O3:Ho3+ and red Mg4(F)(Ge, Sn)O6:Mn2+ layers (18)

PDF
Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er...
PDF
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
PDF
Effects of NaB2O4:Mn2+ and Ba2Li2Si2O7:Sn3+,Mn2+ phosphors and remote structu...
PDF
Quantum dot phosphors CaS:Ce3+ and CaS:Pb2+, Mn2+ for improvements of white ...
PDF
Chroma consistency and luminous efficacy for a WLED using remote phosphor con...
PDF
The improvement of the color rendering index using convex-dual-layer remote p...
PDF
The better distant phosphor configurations for enhancing WLED color intensity...
PDF
Improving the optical efficiency of white light-emitting diodes based on phos...
PDF
Using phosphor ZnB2O4:Mn2+ for enhancing the illuminating beam and hue standa...
PDF
Application of triple-layer remote phosphor configuration results in the colo...
PDF
Improving color rendering index of WLEDs with convex-dual-layer remote phosph...
PDF
Research on advancing chromatic reproduction and luminosity of a WLED using t...
PDF
Using SiO 2 nano-particles for better color uniformity and lumen output in 8...
PDF
The usage of dual-layer remote phosphor configurations in enhancing color qua...
PDF
Employing SiO2 nano-particles in conformal and in-cup structures of 8500 K wh...
PDF
Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer...
PDF
Using triple-layer remote phosphor structures LaVO4:Eu3+ and ZnS:Cu,Sn to imp...
PDF
Study of Ba2Li2Si2O7:Eu2+ phosphor for enhancing the luminous flux of white LEDs
Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er...
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
Effects of NaB2O4:Mn2+ and Ba2Li2Si2O7:Sn3+,Mn2+ phosphors and remote structu...
Quantum dot phosphors CaS:Ce3+ and CaS:Pb2+, Mn2+ for improvements of white ...
Chroma consistency and luminous efficacy for a WLED using remote phosphor con...
The improvement of the color rendering index using convex-dual-layer remote p...
The better distant phosphor configurations for enhancing WLED color intensity...
Improving the optical efficiency of white light-emitting diodes based on phos...
Using phosphor ZnB2O4:Mn2+ for enhancing the illuminating beam and hue standa...
Application of triple-layer remote phosphor configuration results in the colo...
Improving color rendering index of WLEDs with convex-dual-layer remote phosph...
Research on advancing chromatic reproduction and luminosity of a WLED using t...
Using SiO 2 nano-particles for better color uniformity and lumen output in 8...
The usage of dual-layer remote phosphor configurations in enhancing color qua...
Employing SiO2 nano-particles in conformal and in-cup structures of 8500 K wh...
Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer...
Using triple-layer remote phosphor structures LaVO4:Eu3+ and ZnS:Cu,Sn to imp...
Study of Ba2Li2Si2O7:Eu2+ phosphor for enhancing the luminous flux of white LEDs
Ad

More from TELKOMNIKA JOURNAL (20)

PDF
Earthquake magnitude prediction based on radon cloud data near Grindulu fault...
PDF
Implementation of ICMP flood detection and mitigation system based on softwar...
PDF
Indonesian continuous speech recognition optimization with convolution bidir...
PDF
Recognition and understanding of construction safety signs by final year engi...
PDF
The use of dolomite to overcome grounding resistance in acidic swamp land
PDF
Clustering of swamp land types against soil resistivity and grounding resistance
PDF
Hybrid methodology for parameter algebraic identification in spatial/time dom...
PDF
Integration of image processing with 6-degrees-of-freedom robotic arm for adv...
PDF
Deep learning approaches for accurate wood species recognition
PDF
Neuromarketing case study: recognition of sweet and sour taste in beverage pr...
PDF
Reversible data hiding with selective bits difference expansion and modulus f...
PDF
Website-based: smart goat farm monitoring cages
PDF
Novel internet of things-spectroscopy methods for targeted water pollutants i...
PDF
XGBoost optimization using hybrid Bayesian optimization and nested cross vali...
PDF
Convolutional neural network-based real-time drowsy driver detection for acci...
PDF
Addressing overfitting in comparative study for deep learningbased classifica...
PDF
Integrating artificial intelligence into accounting systems: a qualitative st...
PDF
Leveraging technology to improve tuberculosis patient adherence: a comprehens...
PDF
Adulterated beef detection with redundant gas sensor using optimized convolut...
PDF
A 6G THz MIMO antenna with high gain and wide bandwidth for high-speed wirele...
Earthquake magnitude prediction based on radon cloud data near Grindulu fault...
Implementation of ICMP flood detection and mitigation system based on softwar...
Indonesian continuous speech recognition optimization with convolution bidir...
Recognition and understanding of construction safety signs by final year engi...
The use of dolomite to overcome grounding resistance in acidic swamp land
Clustering of swamp land types against soil resistivity and grounding resistance
Hybrid methodology for parameter algebraic identification in spatial/time dom...
Integration of image processing with 6-degrees-of-freedom robotic arm for adv...
Deep learning approaches for accurate wood species recognition
Neuromarketing case study: recognition of sweet and sour taste in beverage pr...
Reversible data hiding with selective bits difference expansion and modulus f...
Website-based: smart goat farm monitoring cages
Novel internet of things-spectroscopy methods for targeted water pollutants i...
XGBoost optimization using hybrid Bayesian optimization and nested cross vali...
Convolutional neural network-based real-time drowsy driver detection for acci...
Addressing overfitting in comparative study for deep learningbased classifica...
Integrating artificial intelligence into accounting systems: a qualitative st...
Leveraging technology to improve tuberculosis patient adherence: a comprehens...
Adulterated beef detection with redundant gas sensor using optimized convolut...
A 6G THz MIMO antenna with high gain and wide bandwidth for high-speed wirele...

Recently uploaded (20)

PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PPTX
ai_satellite_crop_management_20250815030350.pptx
PDF
Introduction to Power System StabilityPS
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PPTX
Principal presentation for NAAC (1).pptx
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PPTX
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PPTX
CONTRACTS IN CONSTRUCTION PROJECTS: TYPES
PPTX
Feature types and data preprocessing steps
PDF
Cryptography and Network Security-Module-I.pdf
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
CyberSecurity Mobile and Wireless Devices
"Array and Linked List in Data Structures with Types, Operations, Implementat...
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
ai_satellite_crop_management_20250815030350.pptx
Introduction to Power System StabilityPS
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Management Information system : MIS-e-Business Systems.pptx
MLpara ingenieira CIVIL, meca Y AMBIENTAL
Principal presentation for NAAC (1).pptx
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
CONTRACTS IN CONSTRUCTION PROJECTS: TYPES
Feature types and data preprocessing steps
Cryptography and Network Security-Module-I.pdf
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
Soil Improvement Techniques Note - Rabbi
CyberSecurity Mobile and Wireless Devices

Improving optical properties of remote phosphor LED using green Y2O3:Ho3+ and red Mg4(F)(Ge, Sn)O6:Mn2+ layers

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 6, December 2020, pp. 3228~3233 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i6.13797  3228 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Improving optical properties of remote phosphor LED using green Y2O3:Ho3+ and red Mg4(F)(Ge, Sn)O6:Mn2+ layers My Hanh Nguyen Thi1 , Nguyen Thi Phuong Loan2 , Nguyen Doan Quoc Anh3 1 Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Vietnam 2 Faculty of Fundamental 2, Posts and Telecommunications Institute of Technology, Vietnam 3 Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Vietnam Article Info ABSTRACT Article history: Received Aug 4, 2019 Revised Apr 6, 2020 Accepted Jul 9, 2002 The lighting device that employs diodes to create white light (WLEDs) with quantum dots (QDs) and phosphor layers is a promising lighting method that is increasingly used in many fields on account of the remarkable color expressing ability. The QDs film is usually placed apart from the phosphor layer according to the packaging configuration to prevent light loss due to backscattering as well as preserve the consistency of the ligands on the QDs surface. The article also conducted experiments to compare the lighting properties and thermal output of the two packaging orders of QDs and phosphor. The heat discharing ranges were simulated with thermography technology, moreover, other parameters such as light energy emission and PL spectra are acquired to evaluate the efficiency of the packaging order. The results from the practical experiment show that while under 10% wt., the luminous output (LO) of green QDs-on-phosphor structure reaches 1130 lm, higher than the red QDs-on-phosphor structure with 878 lm, and the color rendering value in the configuration with red QDs on phosphor is Ra = 74 are higher than Ra = 68 index of the green QDs-on-phosphor structure. As a result, the QDs-on-phosphor is determined as the better packaging configuration to choose to achieve an overall improvement in lighting efficiency, color rendering index Keywords: Color rendering index Lumen output Mg4(F)(Ge,Sn)O6:Mn2+ WLEDs Y2O3:Ho3+ This is an open access article under the CC BY-SA license. Corresponding Author: Nguyen Doan Quoc Anh, Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam. Email: nguyendoanquocanh@tdtu.edu.vn 1. INTRODUCTION White light-emitting diodes (WLEDs) with their phenomenon lighting properties such as high lighting capacity, power saving and excellent endurance are being increasingly utilized in modern lighting applications and flat monitor display [1-3]. Fabricating white light by merging discharged light from the blue chip and the phosphor material Y3Al5O12:Ce3+ (YAG:Ce) is the most commonly used method. The idea of this method is based on the color-integrating principle, which is combining red and yellow to create white light. While this LEDs model has high lighting efficacy (LE), the red deficiency within the radiation spectrum, which is a much-needed chromatic light to improve the color expression ability, prevents it from obtaining high quality status [4]. Many solutions were suggested in previous researches to address this issue including adding red
  • 2. TELKOMNIKA Telecommun Comput El Control  Improving optical properties of remote phospor LED using green Y2O3:Ho3+ ... (My Hanh Nguyen Thi) 3229 phosphor materials to enhance the color rendering ability of pc-LEDs [5-8]. The only problem with this method is the inability of keeping the luminous efficacy index at an acceptable level due to part of their extensive red emitting spectrum exceeds the human perception [9]. The solid-state lighting field in recent time is focusing on the semiconductor quantum dots (QDs), an innovative material that can bring about immense changes to the lighting performance of LEDs, with exceptional optical parameters, namely, the adjustable bandwidth, small emitting range and high quantum productivity [10-13]. The positive effects of QDs on the color rendering index (CRI), color gamut as well as the lighting efficacy of pc-LEDs have been verified both in theory and through practices [14-16]. The most frequently used packaging configurations for pc-LEDs with QDs are applying a compound of QDs and the phosphorous silicone resin or coating the QDs and the phosphor component separately. The QDs and the phosphor are blended together and put on the LED chip in the first configuration, the combined configuration [17, 18], while in the latter configuration the QDs and phosphor layer are applied individually onto the chip, as separated configuration [19, 20]. The issue with the combined configuration is the QDs in this structure is part of the reflector and, therefore, too close to the LED chip and results in high optical density. The remote structure, on the other hand, with a gap between the QDs sheet and the chip experiences low optical power density. However, the remote structure can stabilize the chemical discrepancy among QDs molecules at the surface and phosphor silicone expoxy by alternating the polymeric condition that the QDs sheet is in [21-23]. With this characteristic, the remote packaging configuration appears to be the optimal solution and was normally applied to create WLEDs with QDs and phosphor. 2. PREPARATION AND SIMULATION Figure 1 (a) illustrates the scenario where the green QDs particles are placed upon the phosphor layer. Meanwhile, Figure 1 (b) the red QDs lay upon the phosphor layer. The package configuration is a deciding factor to the emitted light and heat radiation, thus deciding the lighting performance of WLEDs. While the relation between the package configuration and the QDs-WLEDs optical performance was thoroughly expressed in previous studies, there was no practical experiment on the transition of lighting power between QDs and phosphor. The findings from said research are an important contribution to the QDs-WLEDs construction guideline, however, the amount of light energy loss during transition in both structures as well as the effect of QDs on the optical performance are the important aspects that have not been discussed. (a) (b) Figure 1. Simulation diagram of two remote WLEDs types with different packaging sequences: (a) green QDs-on-phosphor type, (b) red QDs-on-phosphor type Therefore, the goal of this article is to gather the information needed for a quantitative research that relates to the aspects mentioned above. The primary method is to analyze the decline of lighting power between QDs and the phosphor layer in both structures, and then compare their operating efficiency to determine which one is the optimal configuration. To serve this experiment, a red emitting QDs CdSe/ZnS and a WLEDs based on yellow emitting phosphor and a band of QDs were created. The emission of lighting energy and PL range indexes needed for the comparison process are computed using an integrating sphere system while the temperature fields on the devices during operation are imitated by putting the optical indexes in thermal simulation and then use an infrared thermal imager to analyze the result. The outcomes from the experiments show that with better lighting efficiency and color rendering index in addition to lower device generated heat, the QDs-on-phosphor is the ideal packaging order to choose for better performance.
  • 3.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3228 - 3233 3230 3. RESULTS AND DISCUSSION The results in Figure 2 expressed the different changes occur in terms of concentration between green phosphor Y2O3:Ho3+ , red phosphor Mg4(F)(Ge, Sn)O6:Mn2+ and yellow phosphor YAG:Ce3+ . These changes in concentration affect the ability to absorb or scatter of the phosphor layers in WLEDs, which determine the color quality and the amount of light emitted. Therefore, the concentration setting of the two phosphor layers Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6:Mn2+ are extremely important to the optical performance of WLEDs. Moreover, the decreases in the concentration of yellow phosphor YAG:Ce3+ corresponding to the increases in concentrations of the Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6:Mn2+ is to maintain the average correlated color temperatures. More specifically, YAG:Ce3+ concentration decline to preserve the ACCTs when the concentrations of Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6: Mn2+ are rising in the range from 2 to 20% wt. The influences of red phosphor Mg4(F)(Ge, Sn)O6:Mn2+ and green phosphor Y2O3:Ho3+ are expressed in Figure 3. According to Figure 3, the intensity in the range from 420-480 nm and 500 to 640 nm increase with Y2O3:Ho3+ concentration which confirmed that the luminous flux in these ranges is also increase. Moreover, the scattered blue light also increases, which means the scattering property is improved leading to better correlated color. The advantages that occur when applying the Y2O3:Ho3+ are notable results that can be utilized to validate the benefit of this green phosphor on the optical properties of WLEDs. In the case of Mg4(F)(Ge,Sn)O6:Mn2+ , the presence of this phosphor cause the intensity from 648 to 738 nm to rise, however, this effect is meaningless without the increase in the two remaining spectrum ranges, which are 420-480 nm and 500-640 nm. Similar to the green phosphor, if the intensity in the remaining spectrums of red phosphor rise that would result in better blue light scattering effect. The emission spectrum that ties to the emitted temperature is crucial in improving the optical performance, particularly, when the emission spectrum increase, the color quality and luminous flux become better. These are important findings when utilizing the red phosphor Mg4(F(Ge, Sn)O6:Mn2+ . The research results show that Mg4(F)(Ge, Sn)O6:Mn2+ guarantee improvement in color quality despite the color temperature, this is a valuable characteristic, especially when maintaining high color quality at high temperature is considered hard to obtain. The final decision relies on the manufacturers to choose the suitable option to reach their goal. For WLEDs that focus on the high chromatic performance, it is advisable to give up a bit of emitted light to achieve highest color quality possible. Figure 2. The alteration in phosphor concentration of remote WLEDs to maintain the average CCT Figure 3. Emission spectra intensity in dual-layer phosphor structures The CRI expresses the chromatic outcome of the irradiated object. This index denotes the ability to express the color of an object and is based on the balance of blue, yellow, and green. If the proportions of the constituent colors are uneven, the color balance will loss and results in reduced color quality. According to results of CRI presented in Figure 4, the green remote phosphor layer Y2O3:Ho3+ is detrimental to the CRI. Although the color rendering index decreases slightly whenever there is a green phosphor layer in the structure, this is not a serious defect due to CRI is only part of color quality scale (CQS). The CQS, as can be seen in Figure 5 remain static when the concentration of Y2O3:Ho3+ is below 8%. In comparison to CRI, the CQS is a priority because it covers more optical properties and is harder to obtain. As a result, it is acceptable to have the concentration of Y2O3:Ho3+ under 8% if the luminous flux is also appropriate. The following section is the calculating formula for the unequal SPD of single color LED with Gaussian function [24, 25]:
  • 4. TELKOMNIKA Telecommun Comput El Control  Improving optical properties of remote phospor LED using green Y2O3:Ho3+ ... (My Hanh Nguyen Thi) 3231 𝑃𝜆 = 𝑃𝑜𝑝𝑡 1 𝜎√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆−𝜆 𝑝𝑒𝑎𝑘)2 𝜎2 ] (1) In this formula, 𝑃𝜆 is the spectral power distribution (SPD) (mW/nm) while λ indicates the wavelength (nm) and 𝜆 𝑝𝑒𝑎𝑘 describes the peak wavelength (nm). 𝑃𝑜𝑝𝑡 are used to describe the optical power (W) of the WLED. When 𝜎 relies on the peak wavelength 𝜆 𝑝𝑒𝑎𝑘, it is possible to define the full-width at half-maximum (FWHM) Δ𝜆 (nm) as following with 𝜆1, 𝜆2 being the wavelengths at half of the peak intensity,ℎ represents Planck’s constant (J.s) and c is the speed of light (m.s−1 ). 𝜎 = 𝜆 𝑝𝑒𝑎𝑘 2 𝛥𝐸 2ℎ𝑐√2 𝑙𝑛 2 = 𝜆 𝑝𝑒𝑎𝑘 2 ( ℎ𝑐 𝜆1 − ℎ𝑐 𝜆2 ) 2ℎ𝑐√2 𝑙𝑛 2 = 𝜆 𝑝𝑒𝑎𝑘 2 ( ℎ𝑐𝛥𝜆 𝜆1 𝜆2 ) 2ℎ𝑐√2 𝑙𝑛 2 (2) Figure 4. The color rendering index corresponding to the concentration of Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6:Mn2+ phosphors Figure 5. The color quality scale corresponding to the concentration of Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6:Mn2+ phosphors In theory, WLED with YAG phosphor and blue light emitting chip has the combination between blue and yellow spectra as SPD. In practical experiment, yellow phosphor actually active in both yellow and green emission ranges. With that being said, it is possible to use the green spectrum to depict the discrepancy between the SPD in practice and blue-yellow mixed spectrum in cases with blue and yellow are the chosen spectra. As a result, the green spectrum is added to the model for practical circumstances and the analytical tri-spectrum (B-G-Y) is expressed as in (3) then later on modified to (4): 𝑃𝜆 = 𝑃𝑜𝑝𝑡_𝑏 1 𝜎 𝑏√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆 − 𝜆 𝑝𝑒𝑎𝑘_𝑏)2 𝜎 𝑏 2 ] 𝑃𝑜𝑝𝑡 𝑔 1 𝜎 𝑔√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆−𝜆 𝑝𝑒𝑎𝑘 𝑔)2 𝜎 𝑔 2 ] (3) 𝑃𝑜𝑝𝑡_𝑦 1 𝜎 𝑦√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆 − 𝜆 𝑝𝑒𝑎𝑘_𝑦)2 𝜎 𝑦 2 ] 𝑃𝜆 = 𝜂 𝑏 𝑃𝑜𝑝𝑡 𝑡𝑜𝑡𝑎𝑙 1 𝜎 𝑏√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆 − 𝜆 𝑝𝑒𝑎𝑘 𝑏 )2 𝜎 𝑏 2 ] 𝜂 𝑔 𝑃𝑜𝑝𝑡 𝑡𝑜𝑡𝑎𝑙 1 𝜎𝑔√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆 − 𝜆 𝑝𝑒𝑎𝑘 𝑔 )2 𝜎𝑔 2 ] 𝜂 𝑦 𝑃𝑜𝑝𝑡_𝑡𝑜𝑡𝑎𝑙 1 𝜎 𝑦√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆−𝜆 𝑝𝑒𝑎𝑘_𝑦)2 𝜎 𝑦 2 ] (4) where 𝑃𝑜𝑝𝑡_𝑏, 𝑃𝑜𝑝𝑡_𝑔, 𝑃𝑜𝑝𝑡_𝑦and 𝑃𝑜𝑝𝑡_𝑡𝑜𝑡𝑎𝑙 stand for the optical power (W) in each separate spectrum of blue, green, yellow and white. 𝜆 𝑝𝑒𝑎𝑘_𝑏, 𝜆 𝑝𝑒𝑎𝑘_𝑔 and 𝜆 𝑝𝑒𝑎𝑘_𝑦in order are the peak wavelengths (nm) of the spectra
  • 5.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3228 - 3233 3232 emitting the chromatic lights. The non-dimensional ratios of chromatic lights spectra to the range of white light, are expressed respectively as 𝜂 𝑏, 𝜂 𝑔 and 𝜂 𝑦. 𝜎𝑏, 𝜎𝑔 and 𝜎 𝑦 in turn are the coefficient of FWHM (nm) for the wavelength ranges of chromatic lights. This mathematical models for SPC in WLEDs with phosphor layer can be perceived as a tricolor spectrum and an extended Gaussian model. Next, we study the luminous flux of QDs WLED with the QDs concentration as in Figure 6. The content of Figure 6 demonstrates that when the concentration range of Y2O3:Ho3+ is from 2% wt to 20% wt the luminous will sharply increase. However, the luminous flux in remote phosphor structure with dual layers is a result of both phosphor layers including the red phosphor Mg4(F)(Ge, Sn)O6:Mn2+ . The extinction coefficient increase with Mg4(F)(Ge, Sn)O6:Mn2+ concentration while opposing to light transmission energy as the application of Beer’s Law suggests. Therefore, when choosing the concentration for the phosphor layers it may occur the lumen output decreases when the concentration of Mg4(F)(Ge, Sn)O6:Mn2+ increases, and drastically decline especially when the concentration reaches 20%. Despite the drawback in luminous flux, using red phosphor Mg4(F)(Ge,Sn)O6:Mn2+ is still beneficial because of the enhancements it brings to the CRI and CQS, not to mention the luminous flux in these dual-layer phosphor structures is better than the single-layer ones that do not have a red phosphor layer. These references help the manufacturers choose the exact concentration of the phosphor to serve their purpose in mass production. Figure 6. The luminous flux corresponding to the concentration of Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6:Mn2+ phosphors 4. CONCLUSION The results of this research paper confirmed the benefits of green phosphor Y2O3:Ho3+ and red phosphor Mg4(F)(Ge, Sn)O6:Mn2+ on the optical properites of remote structure with two phosphor layers. Through the study of scattering characteristic with scattering theory and the Beer’s law, it is confirmed that the red phosphor Mg4(F)(Ge, Sn)O6: Mn2+ is capable of boosting the chromatic quality. On the other hand, the green phosphor Y2O3:Ho3+ is the excellent substance to improve the luminous flux, the effect is not only applicable to low color temperature WLEDs but also with the ones at high color temperature. With the aforementioned results, this research has succeeded in a very difficult task that is enhancing the color quality in remote phosphor structure. On another note, the concentration of both phosphor layers Y2O3:Ho3+ or Mg4(F)(Ge, Sn)O6:Mn2+ must be kept at an appropriate level as the excessive amount of phosphor can damage the color quality as well as the luminous flux. Managing the concentration of phosphor is crucial in producing WLEDs, however, this article has presented all the much-needed information about this topic to the manufacturers so they can apply it to create WLEDs with the desired quality. REFERENCES [1] S. Sadeghi, et al., “Quantum dot white LEDs with high luminous efficiency,” Optica, vol. 5, no. 7, pp. 793-802, 2018. [2] X. Kong, et al., “Assessing the temporal uniformity of CIELAB hue angle,” Journal of the Optical Society of Amerika A, vol. 37, no. 4, pp. 521-528, March 2020. [3] X. Li, et al., “Single-shot multispectral imaging through a thin scatterer,” Optica, vol. 6, pp. 864-871, 2019. [4] S. Pan, et al., “Image restoration and color fusion of digital microscopes,” Applied Optics, vol. 58, no. 9, pp. 2183-2189, March 2019. [5] B. K. Tsai, et al., “Exposure study on UV-induced degradation of PTFE and ceramic optical diffusers,” Applied Optics, vol. 58, no. 5, pp. 1215-1222, February 2019.
  • 6. TELKOMNIKA Telecommun Comput El Control  Improving optical properties of remote phospor LED using green Y2O3:Ho3+ ... (My Hanh Nguyen Thi) 3233 [6] X. Wang, et al., “Modifying phase, shape and optical thermometry of NaGdF4:2%Er3+ phosphors through Ca2+ doping,” Opt. Express, vol. 26, no. 17, pp. 21950-21959, August 2018. [7] X. Fu, et al., “Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing,” Optics Express, vol. 27, no. 17, pp. 24300-24310, August 2019. [8] A. Ullah, et al., “Household light source for potent photo-dynamic antimicrobial effect and wound healing in an infective animal model,” Biomed. Opt. Express, vol. 9, no. 3, pp. 1006-1019, March 2018. [9] D. Durmus, et al., “Blur perception and visual clarity in light projection systems,” Opt. Express, vol. 27, no. 4, pp. A216-A223, February 2019. [10] A. Lihachev, et al., “Differentiation of seborrheic keratosis from basal cell carcinoma, nevi and melanoma by RGB autofluorescence imaging,” Biomedical Optical Express, vol. 9, no. 4, pp. 1852-1858, April 2018. [11] J. Zhou, et al., “Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror,” Applied Optics, vol. 58, no. 5, pp. A283-A290, 2019. [12] J. S. Li, et al., “High efficiency solid–liquid hybrid-state quantum dot light-emitting diodes,” Photonics Research, vol. 6, no. 12, pp. 1107-1115, December 2018. [13] S. Lee, et al., “Printed cylindrical lens pair for application to the seam concealment in tiled displays,” Optics Express, vol. 26, no. 2, pp. 824-834, January 2018. [14] H. Yuce, et al., “Phosphor-based white LED by various glassy particles: control over luminous efficiency,” Optics Letters, vol. 44, no. 3, pp. 479-482, February 2019. [15] Q. Zhang, et al., “Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode- pumped green-emitting phosphor,” Optiics Letters, vol. 43, no. 15, pp. 3566-3569, August 2018. [16] V. Fuertes, et al., “Enhanced luminescence in rare-earth-free fast-sintering glass-ceramic,” Optica, vol. 6, no. 5, pp. 668-679, May 2019. [17] X. Huang, et al., “High-brightness and high-color purity red-emitting Ca3Lu, AlO.3, BO3.4: Eu3+phosphors with internal quantum efficiency close to unity for near-ultraviolet-based white-light-emitting diodes,” Optics Letters, vol. 43, no. 6, pp. 1307-1310, 2018. [18] W. Gao, et al., “Color temperature tunable phosphor-coated white LEDs with excellent photometric and colorimetric performances,” Applied Optics, vol. 57, no. 31, pp. 9322-9327, November 2018. [19] H. L. Ke, et al., “Lumen degradation analysis of LED lamps based on the subsystem isolation method,” Applied Optics, vol. 57, no. 4, pp. 849-854, February 2018. [20] S. Beldi, et al., “High Q-factor near infrared and visible Al2O3-based parallel-plate capacitor kinetic inductance detectors,” Opt. Express, vol. 27, no. 9, pp. 13319-13328, April 2019. [21] H. Liu, et al., “Design of a six-gas NDIR gas sensor using an integrated optical gas chamber,” Optics Express, vol. 28, no. 8, pp. 11451-11462, March 2020. [22] D. Lu, et al., “Synthesis and photoluminescence characteristics of the LiGd3, MoO4.5: Eu3+red phosphor with high color purity and brightness,” Optical Materials Express, vol. 8, no. 2, pp. 259-269, February 2018. [23] L. Wu, et al., “Hybrid warm-white organic light-emitting device based on tandem structure,” Optics Express, vol. 26, no. 26, pp. A996-A1006, December 2018. [24] S. Elmalem, et al., “Learned phase coded aperture for the benefit of depth of field extension,” Optics Express, vol. 26, no. 12, pp. 15316-15331, June 2018. [25] J. H. Kim, et al., “Synthesis of Mn-doped CuGaS2 quantum dots and their application as single downconverters for high-color rendering solid-state lighting devices,” Optical Materials Express, vol. 8, no. 2, pp. 221-230, February 2018.