SlideShare a Scribd company logo
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 339
Study on Soft Storey Effect of Plan Regular and Irregular RC Framed
Structures under Different Seismic Zones using Response Spectrum
Method of Analysis
Aradhya B M S1, Dr. B Shivakumara Swamy2
1 Student M.Tech, Department of civil Engineering, Dr AIT, Bengaluru, Karnataka, India
2Professor, Department of Civil Engineering, Dr AIT, Bengaluru, Karnataka, India
---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract -In urban India and modern world multi storey
constructions openfirst storeyisatypical commonfeature Due
totheadvantageofopenspacefor the purpose of parking and
for commercial use. And also plan irregularity structures has
become common nowadays in urban areas for different
reasons like non availability of required site dimensions,
aesthetic view etc., Under high seismic regions the buildings
built with open storey as well as irregular plan buildings are
undesirable. This project aims for the study of performanceofa
Reinforced concrete frame building (G+13) with soft storey
and with bare frame and also with masonry wall infill. Linear
dynamic analysis (response spectrum analysis) is done using
the software SAP2000 as per IS 1893-2002 ( part 1 ) and the
results obtained from the structure like storey displacement,
Storey drift, Base shear and time period were compared with
the plan regular and irregular structures (re-entrant corner
type of irregularity) under medium soil forseismic zones II &
V.
Key Words: Soft storey, Response spectrum analysis,
SAP2000, Plan irregularity, Masonry wall infill.
1. INTRODUCTION
Due to past earthquake disasters we seen that many
structures collapsed which were not designed as earthquake
resistant structures and hadhugedestructionandalsolossof
life, so now this issue has become biggest challenge for civil
and structural Engineers to make sure structures are safe
during earthquake. In modern world plan irregularity
structures has becomecommon nowadays inurbanareasfor
different reasons like non availability of required site
dimensions, aesthetic view etc., irregularities as per IS code
1893-2002are stiffness,diaphragm, out ofoffsets, no-parallel
offsets, re-entrant corner, and torsion irregularity. Most
buildings are outlined by irregular in each plan and vertical
configuration.
Masonry infill generally includes of bricks or concrete
blocks built between beams and columns of a reinforced
concrete frame. The presence of masonry infill walls has an
important impact on the seismic zone response of a
reinforced concrete frame building, increasing structural
strength a stiffness. The structural influence of infill wall
results into stiffer structure thus decreasing the storey
drifts. This improved overall performance makes the
structural design greater practical to consider infill wallsas
a structural element in the earthquake resistant design of
structures.
1.1 Objectives
The objectives of this study are listed below.
 To analyze the effect of soft storey in RC framed
structure.
 To study the behavior of the RC framed structure
with soft storey and without soft storey.
 To compare behaviour of RC framed plan regular
and irregular structures under all seismic zones
using response spectrum method.
 To find the important parameters like Base shear,
displacement, storey drifts and time period.
1.2 Methodology
Following method is adopted for the analysis,
1. Extensive literature review is carriedout
2. Using the software SAP2000 analysis of the
buildings with plan regular and irregularity is
done, and also considered with and without soft
storey as well as masonry infill.
3. VariousparameterslikeDisplacement,Storeydrift,
and Base shear and time period were obtained.
Based on the results obtained conclusions are derived.
2. MODEL DETAILS
The study is carried out for the behaviour of G+13 storied
R.C frame buildings with and without soft storeys as well as
with and without masonry wall infill for plan regular andre-
entrant type of irregularity. Floor height providing is 3.5m
and plinth height as 1.8m and properties are defined for
frame structures.12modelsareshapedinSAP2000software
for dynamic analysis.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 340
Table -1: Description of models
MODEL
NUMBE
R
EART
HQUA
KE
ZONE
PLAN TYPE STOREY
DESCRIPTION
Model 1 ZONE
II
Plan Regular Masonry wall in
filled frame
Model 2 ZONE
II
Plan Regular Bare Frame(without
masonry wall infill)
Model 3 ZONE
II
Plan Regular Soft Storey At
Ground Floor frame
Model 4 ZONE
II
Plan Irregular Masonry wall in
filled frame
Model 5 ZONE
II
Plan Irregular Bare Frame(without
masonry wall infill)
Model 6 ZONE
II
Plan Irregular Soft Storey At
Ground Floor frame
Model 7 ZONE
V
Plan Regular Masonry wall in
filled frame
Model 8 ZONE
V
Plan Regular Bare Frame(without
masonry wall infill)
Model 9 ZONE
V
Plan Regular Soft Storey At
Ground Floor frame
Model 10 ZONE
V
Plan Irregular Masonry wall in
filled frame
Model 11 ZONE
V
Plan Irregular Bare Frame(without
masonry wall infill)
Model 12 ZONE
V
Plan Irregular Soft Storey At
Ground Floor frame
2.1 Model dimensions
Building dimension X=30m, Y=30m,
Height of the building Z=53m (Including head room)
Number of stories = G+13
Each Storey height = 3.5m, 2m (Head Room)
Column spacing along X direction = 5 m
Column spacing along Y direction = 10 m
2.2 Material properties
Concrete Grades = M25, M30, M35 (As per IS standards)
Steel Grade = Fe500
2.3 Member properties
Slab thickness = 200mm
Wall thickness (outer) = 230mm (Masonry)
Parapet and partition walls = 115mm (Masonry)
Beam size = 230X350mm (M25), 250X850mm (M25)
Column size
= 350X350mm (M30), 500X1000mm (M30), [up to 26.5m]
= 300X300mm (M30), 350X700mm (M30), [26.5m to 53m]
Height of parapet wall =1.0m
2.4 General loading
Wall (230mm) load on beam = 12kN/m
Wall (115mm) load on beam = 6kN/m
Floor finish = 1kN/m2
Water tank load (circular 1.1m dia) = 12 kN/m2
Lift load considered on slab = 12 kN/m2
Live load (IS 875-1987 part 2) = 4kN/m2 (floor)
Live load (IS 875-1987 part 2) = 1.5kN/m2 (roof)
For seismic Zone II
 Importance factor = 1.0
 Response reduction factor =5
 Site type = Medium (II)
 Zone Factor =0.10
For seismic Zone V
 Importance factor =1.0
 Response reduction factor= 5
 Site type = Medium (II)
 Zone Factor =0.36
2.5 Planning and modelling
Before modelling, architectural plan of all the models are
prepared using AutoCADD software.
Fig -1: Regular plan ground floor
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 341
Fig -2: Regular plan 1 to 13 floors
Fig -3: Irregular plan for ground floor
[Re-entrant corner type irregular building having
projections 50% along X direction and 33.33% along Y
direction]
Fig -4: Irregular plan for 1 to 13 floors
[Re-entrant corner type irregular building having
projections 50% along X direction and 33.33% along Y
direction]
Fig -5: Plan regular frame Fig -6: Plan regular
with masonry wall in fill bare frame
Fig -7: Plan regular frame Fig -8: Plan irregular frame
with Soft storey at GF masonry wall in fill
Fig -9: Plan irregular Fig -10: Plan irregular frame
Bare frame with soft storey at GF
3. ANALYSIS
Response spectrum analysis is done for the buildings by
considering they are located in seismic zone II & V using
SAP2000 software.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 342
4 RESULTS AND DISCUSSIONS
The various parameters like Displacement, Storey drift,
Base shear and Time period are obtained by carrying
response spectrum analysis for the different models
considered in this study.
4.1 Displacement:
Fig -11: Displacement along X direction at zone II
Fig-11 Shows the plots of displacement of structure
along the height in X direction for model 1 to model 6,
obtained by dynamic analysis for zone II. Model 2 has higher
displacement compare to other models. The highest
displacement of the building found to be 17.32mm in Model
2 (Regular plan with bare frame)
Fig -12: Displacement along X direction at zone V
Fig-12 Shows the plots of displacement of building
along height in X direction for model 7 to model 12,obtained
by dynamic analysis for zone V. Model 8 has highest
displacement compare to other models. The maximum
displacement of the building found to be 61.77mm in Model
8 (Regular plan with bare frame)
Fig -13: Displacement along Y direction at zone II
Fig-13 Shows the plots of displacement of building
along height in Y direction for model 1 to model 6, obtained
by dynamic analysis for zone II. Model 5 has highest
displacement compare to other models. The maximum
displacement of the building found to be 17.32mm in Model
5 (Irregular plan with bare frame)
Fig -14: Displacement along Y direction at zone V
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 343
Fig-14 Shows the plotsofdisplacementof buildingalong
height in Y direction for model 7 to model 12, obtained by
dynamic analysis for zone V. Model 11 has greater
displacement compare to other models. The highest
displacement of the building found to be 79.90mm in Model
11 (Irregular plan with bare frame)
4.2 Storey Drift:
Fig -15: Storey drift along X direction at zone II
Fig-15 Shows the plot of storey numberv/sstoreydrift
for model 1 to model 6, and observed that the storey drift is
highest in the storeys where the soft storey is located. The
highest value of storey drift in the X direction 0.0056m is
occurred in the model3 (Regular plan frame with soft storey
at GF) located in seismic zone II.
Fig -16: Storey drift along X direction at zone V
Fig-16 shows the plot of storey numberv/sstoreydrift
graph for model 7 to model 12, it is observed that storey
drift is highest in the storeys where the soft storey is
situated. The highest value of storey drift in the X direction
0.0203m is occurred in the model9 (Regularplanframewith
soft storey at GF) located in seismic zone V.
Fig -17: Storey drift along Y direction at zone II
Fig-17 Shows the plot of storey number v/s storeydrift
graph for model 1 to model 6, it is observed that the storey
drift is maximum in the storeys where the there is no
masonry wall infill is present. The maximum value of storey
drift in the Y direction 0.0059m is occurred in the model 5
(Irregular plan with Bare frame) located in seismic zone II.
Fig -18: Storey drift along Y direction at zone V
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 344
Fig-18 shows the plot of storey numberv/sstoreydrift
graph for model 1 to model 6, it is observed that the storey
drift is maximum in the storeys where the there is no
masonry wall infill is present. The maximum value of storey
drift in the Y direction 0.0275m is occurred in the model 11
(Irregular plan with Bare frame) located in seismic zone V
4.3 Base shear:
Fig -19: Maximum base shear along X direction at zone II
Fig-19 Shows the plot between maximum base shear
v/s various models considered in the analysis. It is observed
that the highest base shear value 4267.05 kN is occurred in
the model 1 (Regular plan frame in filled withmasonrywall)
along the X direction located in seismic zone II. It is also
observed that, masonry in fill influences the base shear of
the building and model 1 which is in filledwithmasonrywall
has higher base shear compared to other models.
Fig -20: Maximum base shear along X direction at zone V
Fig-20 Shows the plot between maximum base shear
v/s various models considered in the analysis. In this
observed that the highest base shear value 15094.74 kN is
occurred in the model 7 (Regular plan frame in filled with
masonry wall) along the X direction located in seismic zone
V. And also observed that, models with bare frame has very
less base shear compare to other models
Fig -21: Maximum base shear along Y direction at zone II
Fig-21 Showstheplotbetweenmaximumbaseshear
v/s various models considered in the analysis. It is observed
that the maximum base shear value 4266.95 kN is occurred
in the model 1 (Regular plan frame in filled with masonry
wall) along the Y direction located in seismic zone II. It is
also observed that, masonry in fill influences the base shear
of the building and model 1 which is in filled with masonry
wall has higher base shear compared to other models.
Fig -22: Maximum base shear along Y direction at zone V
Fig-22 Shows the plot between highest base shear v/s
various models considered in the analysis. In this observed
that the maximum base shear value 15093.72kN isoccurred
in the model 7 (Regular plan frame in filled with masonry
wall) along the Y direction located in seismic zone V. And
also observed that, models with bare frame has very less
base shear compare to other models.
4.4 Time period:
Fig -23: Maximum Time period at zone II
Fig-23 Shows the plot between time period v/s
various models considered in the analysis. In this observed
that the maximum time period value 3.52 seconds is
occurred in the model 2 (Regular plan with Bare frame)
located in seismic zone II. And also observed that models
with bare frame has very high time period compare to other
models.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 345
Fig -24: Maximum Time period at zone V
Fig-24 Shows the plot betweentimeperiodv/svarious
models considered in the analysis. In this observed that the
highest time period value 3.53 seconds is occurred in the
model 8 (Regular plan with Bare frame) located in seismic
zone V. It is also observed that models with masonry wall
infill has very less time period compare to other models
5. CONCLUSIONS
From this study following conclusions are drawn:
 Models having bare frame shows the maximum value of
displacement in Both X and Y direction and under both
Earthquake zones II and V compare to all other models
because of less lateral stiffness of the storey.
 The displacement value is considerably reduced in the
models with masonry wall infill in both X and Y
direction under seismic forcesatbothEarthquakezones
II and V. from this we can conclude that we should
prefer masonry wall infill instead of bare frame
structures under higher seismic zones.
 Models with soft storey shows higher value of storey
drift than models without soft storey, therefore we
should avoid soft storey in the buildings under higher
seismic zones or we should increase the lateral stiffness
of the storey by providing shear wall, bracings etc.
 The existence of masonry infill impacts the overall
behaviour of structures when exposed to earthquake
forces. Lateral displacements and storey drifts are
noticeably reduced when the involvement of the infill
brick wall is taken into account
 Models with bare frame shows very less base shear
compare to models with masonry wall infill therefore
we conclude masonry wall influences the base shear of
the building.
 Models with bare frame shows high time period
compare to other models, which indicates bare frame
buildings are more flexible under seismic forces.
 Models with masonry wall infill has very less time
period compare to other models which shows masonry
infill makes building more stiffer and less flexible under
seismic forces.
 Re-entrant type of plan irregularity buildings having
projections less than 50 % are acceptable under both
seismic zones II and V with masonry infill and not
acceptable with bare frame .
 When Column dimensions to be changed along the
height of the building in bare frame buildings
(considering economy point as well as requirements),
sudden change of column dimensions with large
difference should not be done which mayleadtosudden
storey drift.
 Steel framed structure can be used to Study on soft
storey effect of plan regular and irregular structures
under different Seismiczonesusingresponsespectrum
method of analysis can be done.
 Buildings can be analyzed in different soil types and
seismic zones III and IV also.
 Other forms of irregularities as per IS 1893 (part1):
2002 such as Torsion irregularity, diaphragm
discontinuity,out-of-planeoffsets,non-parallel systems
can be taken for further study
REFERENCES
[1] Singh Shailendra andVasaikarHemantBabulal,“Seismic
Response of Soft Storey on High Rise Building Frame”,
www.ijetcr.org Volume 3; Issue 4; July-August-2015;
ISSN: 2348 – 2117.
[2] K. Vamshi Satyanarayana and Vinod Kumar, “Seismic
Response of RC Frame Building with Soft Storey at
Different Floor Levels”, www.ijettjournal.org – Volume-
42 Number-4 - December 2016.
[3] S.Arunkumar and Dr. G. Nadini Devi, “seismic demand
study of soft storey building and it’s strengthening for
seismic resistance”, www.ijettcs.org, ISSN 2278-6856,
Volume 5, Issue 2, March - April 2016.
[4] Pavithra R and Vasaikar Hemant Babulal, “Study of
Behavior of the Soft Stories at Different Locations in the
Multi-Story Building”, www.ijert.org, ISSN: 2278-0181,
Vol. 7 Issue 06, June-2018.
[5] Deekshitha Y.L and Kiran Kuldeep K.N,“study linearand
non-linear dynamic analysis of multi storied R.C frame
buildings with plan and vertical irregularities using
ETABS”, www.irjet.net, p-ISSN: 2395-0072, Volume: 05
Issue: 07 | July 2018.
[6] Ganesh Kumbhar and Anirudhha Banhatti, “Seismic
Retrofitting of Building with Soft Storey and Floating
Column”. www.irjet.net, ISSN: 2395-0072, Volume: 03
Issue: 07 | July-2016.
6. FUTURE SCOPE
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 346
[7] Vihar S Desai, Hitesh K Dhameliya, Yati R Tank,
“investigate performance of a building with soft storey
at different level along with ground level”,
www.ijert.org, ISSN: 2278-0181, Vol. 6 Issue 04, April-
2017.
[8] Pritam C. Pawade, Dr P.P Saklecha and Milind R Nikhar,
“Comparison and analysis of regular and irregular
configuration of multistorey building in various seismic
zones and various type of soil”, IARJSET, ISSN (Print)
2394-1588, Vol. 5, Issue 6, June 2018.
[9] V Rajendra Kumar and Ranga Rao V,“comparativestudy
on regular & irregular structures using equivalentstatic
and response spectrum methods”,
www.iaeme.com/IJCIET. ISSN Online: 0976-6316,
Volume 8, Issue 1, January 2017.
[11] IS: 1893 (Part 1):2002 Criteria for earthquake resistant
design of structures.
[12] IS: 456-2000 plain and reinforced concrete code of
practice.IS: 875-1987 (part 1 to part 5) Code of Practice
for Design Loads.
And more.
[10] Albert Philip and Dr. S. Elavenil , “Seismic analysis of
high rise buildings with plan irregularity”,
www.iaeme.com/IJCIET, Online: 0976-6316, Volume 8,
Issue 4, April 2017.

More Related Content

PDF
IRJET- A Parametric Study on the Siesmic Performance of Flat Slab Multi-S...
PDF
Seismic Drift Control in soft storied RCC buildings
PDF
IRJET- Minimization of Effect of Soft Storey During Earthquake by Providing S...
PDF
IRJET- https://www.irjet.net/archives/V6/i7/IRJET-V6I7339.pdf
PDF
IRJET- Earthquake Resistant Design of Multistorey Building
PDF
Study of Seismic Performance of RC Building with Flat Plate Influenced by Con...
PDF
IRJET- Performance of High Rise Building under Seismic and Wind Excitation fo...
PDF
IRJET- Impact of Shear Wall to Reduce Torsional Effect for Unsymmetrical R.C....
IRJET- A Parametric Study on the Siesmic Performance of Flat Slab Multi-S...
Seismic Drift Control in soft storied RCC buildings
IRJET- Minimization of Effect of Soft Storey During Earthquake by Providing S...
IRJET- https://www.irjet.net/archives/V6/i7/IRJET-V6I7339.pdf
IRJET- Earthquake Resistant Design of Multistorey Building
Study of Seismic Performance of RC Building with Flat Plate Influenced by Con...
IRJET- Performance of High Rise Building under Seismic and Wind Excitation fo...
IRJET- Impact of Shear Wall to Reduce Torsional Effect for Unsymmetrical R.C....

What's hot (20)

PDF
Effect of Positioning and Configuration of Shear Walls on Seismic Performance...
PDF
IRJET- A Study on RCC Frames under Sloping Ground with Different Shear Wall C...
PDF
IRJET- Seismic Response of Flat Slab Buildings with Shear Wall
PDF
Effect of Brick Infill Wall and Shear Wall in the Design of RC Framed Regular...
PDF
IRJET- Seismic Analysis of Multi-Storied Building with Floating Column
PDF
IRJET- Comparative Study on Seismic Analysis of Multistorey Buildings wit...
PDF
Effect of Infill and Mass Irregularity on RC Building under Seismic Loading
PDF
Study of Vertical Irregularity of Tall RC Structure Under Lateral Load
PDF
IRJET- Effect of Shear Wall Location on Reinforced Concrete Building having F...
PDF
Wind Analysis of Tall Building with Floor Diaphragm
PDF
Analysis of 3d RC Frame on Sloping Ground
PDF
IRJET- Comparative Study of Vertically Irregular Buildings Subjected to S...
PDF
Seismic Performance of Flat Slab Structures Under Static and Dynamic Loads
PDF
IRJET- Study and Comparison of Seismic Assessment Parameters in Different...
PDF
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
PDF
Seismic Analysis of Multistorey RC Building with Mass Irregularity using ETABS
PDF
IRJET- Effect of Different Column Size on Joint Displacement of Building
PDF
IRJET- Response of Buildings with and Without Setbacks Subjected to Earthquak...
PDF
IRJET- Comparative Study on CFST and Steel Diagrid Structural System for High...
PDF
IJSRED-V2I3P28
Effect of Positioning and Configuration of Shear Walls on Seismic Performance...
IRJET- A Study on RCC Frames under Sloping Ground with Different Shear Wall C...
IRJET- Seismic Response of Flat Slab Buildings with Shear Wall
Effect of Brick Infill Wall and Shear Wall in the Design of RC Framed Regular...
IRJET- Seismic Analysis of Multi-Storied Building with Floating Column
IRJET- Comparative Study on Seismic Analysis of Multistorey Buildings wit...
Effect of Infill and Mass Irregularity on RC Building under Seismic Loading
Study of Vertical Irregularity of Tall RC Structure Under Lateral Load
IRJET- Effect of Shear Wall Location on Reinforced Concrete Building having F...
Wind Analysis of Tall Building with Floor Diaphragm
Analysis of 3d RC Frame on Sloping Ground
IRJET- Comparative Study of Vertically Irregular Buildings Subjected to S...
Seismic Performance of Flat Slab Structures Under Static and Dynamic Loads
IRJET- Study and Comparison of Seismic Assessment Parameters in Different...
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
Seismic Analysis of Multistorey RC Building with Mass Irregularity using ETABS
IRJET- Effect of Different Column Size on Joint Displacement of Building
IRJET- Response of Buildings with and Without Setbacks Subjected to Earthquak...
IRJET- Comparative Study on CFST and Steel Diagrid Structural System for High...
IJSRED-V2I3P28
Ad

Similar to IRJET- Study on Soft Storey Effect of Plan Regular and Irregular RC Framed Structures under Different Seismic Zones using Response Spectrum Method of Analysis (20)

PDF
DYNAMIC ANALYSIS OF SHEAR BUILDING AT DIFFERENT LOCATIONS IN DIFFERENT SEISMI...
PDF
Seismic Analysis of RCC Building without and With Shear Walls
PDF
COMPARATIVE STUDY ON SEISMIC ANALYSIS OF CONVENTIONAL SLAB AND FLAT SLAB STRU...
PDF
Performance of RC Frame Structure with Floating Column and Soft Storey in Dif...
PDF
Analysis of High Rise Multistoried Building With and without Shear Wall By Re...
PDF
IRJET- Study on the Performance of Structural Systems with Vertical and Plan ...
PDF
IRJET- Design of Earthquake Resistant Structure of Multi-Story RCC Building
PDF
IRJET- Comparative Analysis of Multi-Storied Building with and without Shear ...
PDF
IRJET- Analysis of G+25 RCC Structure with Shear Wall under the Effect of...
PDF
IRJET- Analysis of G+20 RCC Bare Framed Structures with Different Types o...
PDF
IRJET-Performance Improvement of Split Air Conditioner using Evaporative Cool...
PDF
SEISMIC ANALYSIS OF G+7 RESIDENTIAL BUILDING WITH AND WITHOUT SHEAR WALL
PDF
SEISMIC PERFORMANCE OF HIGH RISE BUILDINGS WITH FLOATING COLUMNS AND SHEAR WALL
PDF
IRJET- Effective Location of Shear Wall on Performance of Building Frame ...
PDF
EARTHQUAKE RESISTANT DESIGN OF OPEN GROUND STOREY BUILDING
PDF
IRJET- Seismic Analysis of Vertically Irregular RC Framed Structure using X- ...
PDF
EFFECT OF SHAPE ON SEISMIC RESPONSE OF A STRUCTURE
PDF
Seismic Performance of L-Shape, U-Shape RC Buildings having Shear Wall and Br...
PDF
IRJET- Earthquake Resistance Design of Open Ground Story Building
PDF
BEHAVIOUR OF G+10 BUILDING WITH SHEAR-WALLS AT DIFFERENT POSITIONS
DYNAMIC ANALYSIS OF SHEAR BUILDING AT DIFFERENT LOCATIONS IN DIFFERENT SEISMI...
Seismic Analysis of RCC Building without and With Shear Walls
COMPARATIVE STUDY ON SEISMIC ANALYSIS OF CONVENTIONAL SLAB AND FLAT SLAB STRU...
Performance of RC Frame Structure with Floating Column and Soft Storey in Dif...
Analysis of High Rise Multistoried Building With and without Shear Wall By Re...
IRJET- Study on the Performance of Structural Systems with Vertical and Plan ...
IRJET- Design of Earthquake Resistant Structure of Multi-Story RCC Building
IRJET- Comparative Analysis of Multi-Storied Building with and without Shear ...
IRJET- Analysis of G+25 RCC Structure with Shear Wall under the Effect of...
IRJET- Analysis of G+20 RCC Bare Framed Structures with Different Types o...
IRJET-Performance Improvement of Split Air Conditioner using Evaporative Cool...
SEISMIC ANALYSIS OF G+7 RESIDENTIAL BUILDING WITH AND WITHOUT SHEAR WALL
SEISMIC PERFORMANCE OF HIGH RISE BUILDINGS WITH FLOATING COLUMNS AND SHEAR WALL
IRJET- Effective Location of Shear Wall on Performance of Building Frame ...
EARTHQUAKE RESISTANT DESIGN OF OPEN GROUND STOREY BUILDING
IRJET- Seismic Analysis of Vertically Irregular RC Framed Structure using X- ...
EFFECT OF SHAPE ON SEISMIC RESPONSE OF A STRUCTURE
Seismic Performance of L-Shape, U-Shape RC Buildings having Shear Wall and Br...
IRJET- Earthquake Resistance Design of Open Ground Story Building
BEHAVIOUR OF G+10 BUILDING WITH SHEAR-WALLS AT DIFFERENT POSITIONS
Ad

More from IRJET Journal (20)

PDF
Enhanced heart disease prediction using SKNDGR ensemble Machine Learning Model
PDF
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
PDF
Kiona – A Smart Society Automation Project
PDF
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
PDF
Invest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
PDF
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
PDF
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
PDF
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
PDF
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
PDF
BRAIN TUMOUR DETECTION AND CLASSIFICATION
PDF
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
PDF
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
PDF
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
PDF
Breast Cancer Detection using Computer Vision
PDF
Auto-Charging E-Vehicle with its battery Management.
PDF
Analysis of high energy charge particle in the Heliosphere
PDF
A Novel System for Recommending Agricultural Crops Using Machine Learning App...
PDF
Auto-Charging E-Vehicle with its battery Management.
PDF
Analysis of high energy charge particle in the Heliosphere
PDF
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
Enhanced heart disease prediction using SKNDGR ensemble Machine Learning Model
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
Kiona – A Smart Society Automation Project
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
Invest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
BRAIN TUMOUR DETECTION AND CLASSIFICATION
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
Breast Cancer Detection using Computer Vision
Auto-Charging E-Vehicle with its battery Management.
Analysis of high energy charge particle in the Heliosphere
A Novel System for Recommending Agricultural Crops Using Machine Learning App...
Auto-Charging E-Vehicle with its battery Management.
Analysis of high energy charge particle in the Heliosphere
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...

Recently uploaded (20)

DOCX
573137875-Attendance-Management-System-original
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
Sustainable Sites - Green Building Construction
PPT
Project quality management in manufacturing
PPTX
Geodesy 1.pptx...............................................
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
Lecture Notes Electrical Wiring System Components
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
OOP with Java - Java Introduction (Basics)
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
573137875-Attendance-Management-System-original
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
CYBER-CRIMES AND SECURITY A guide to understanding
UNIT 4 Total Quality Management .pptx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Embodied AI: Ushering in the Next Era of Intelligent Systems
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Sustainable Sites - Green Building Construction
Project quality management in manufacturing
Geodesy 1.pptx...............................................
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
Operating System & Kernel Study Guide-1 - converted.pdf
Lecture Notes Electrical Wiring System Components
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
OOP with Java - Java Introduction (Basics)
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS

IRJET- Study on Soft Storey Effect of Plan Regular and Irregular RC Framed Structures under Different Seismic Zones using Response Spectrum Method of Analysis

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 339 Study on Soft Storey Effect of Plan Regular and Irregular RC Framed Structures under Different Seismic Zones using Response Spectrum Method of Analysis Aradhya B M S1, Dr. B Shivakumara Swamy2 1 Student M.Tech, Department of civil Engineering, Dr AIT, Bengaluru, Karnataka, India 2Professor, Department of Civil Engineering, Dr AIT, Bengaluru, Karnataka, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract -In urban India and modern world multi storey constructions openfirst storeyisatypical commonfeature Due totheadvantageofopenspacefor the purpose of parking and for commercial use. And also plan irregularity structures has become common nowadays in urban areas for different reasons like non availability of required site dimensions, aesthetic view etc., Under high seismic regions the buildings built with open storey as well as irregular plan buildings are undesirable. This project aims for the study of performanceofa Reinforced concrete frame building (G+13) with soft storey and with bare frame and also with masonry wall infill. Linear dynamic analysis (response spectrum analysis) is done using the software SAP2000 as per IS 1893-2002 ( part 1 ) and the results obtained from the structure like storey displacement, Storey drift, Base shear and time period were compared with the plan regular and irregular structures (re-entrant corner type of irregularity) under medium soil forseismic zones II & V. Key Words: Soft storey, Response spectrum analysis, SAP2000, Plan irregularity, Masonry wall infill. 1. INTRODUCTION Due to past earthquake disasters we seen that many structures collapsed which were not designed as earthquake resistant structures and hadhugedestructionandalsolossof life, so now this issue has become biggest challenge for civil and structural Engineers to make sure structures are safe during earthquake. In modern world plan irregularity structures has becomecommon nowadays inurbanareasfor different reasons like non availability of required site dimensions, aesthetic view etc., irregularities as per IS code 1893-2002are stiffness,diaphragm, out ofoffsets, no-parallel offsets, re-entrant corner, and torsion irregularity. Most buildings are outlined by irregular in each plan and vertical configuration. Masonry infill generally includes of bricks or concrete blocks built between beams and columns of a reinforced concrete frame. The presence of masonry infill walls has an important impact on the seismic zone response of a reinforced concrete frame building, increasing structural strength a stiffness. The structural influence of infill wall results into stiffer structure thus decreasing the storey drifts. This improved overall performance makes the structural design greater practical to consider infill wallsas a structural element in the earthquake resistant design of structures. 1.1 Objectives The objectives of this study are listed below.  To analyze the effect of soft storey in RC framed structure.  To study the behavior of the RC framed structure with soft storey and without soft storey.  To compare behaviour of RC framed plan regular and irregular structures under all seismic zones using response spectrum method.  To find the important parameters like Base shear, displacement, storey drifts and time period. 1.2 Methodology Following method is adopted for the analysis, 1. Extensive literature review is carriedout 2. Using the software SAP2000 analysis of the buildings with plan regular and irregularity is done, and also considered with and without soft storey as well as masonry infill. 3. VariousparameterslikeDisplacement,Storeydrift, and Base shear and time period were obtained. Based on the results obtained conclusions are derived. 2. MODEL DETAILS The study is carried out for the behaviour of G+13 storied R.C frame buildings with and without soft storeys as well as with and without masonry wall infill for plan regular andre- entrant type of irregularity. Floor height providing is 3.5m and plinth height as 1.8m and properties are defined for frame structures.12modelsareshapedinSAP2000software for dynamic analysis.
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 340 Table -1: Description of models MODEL NUMBE R EART HQUA KE ZONE PLAN TYPE STOREY DESCRIPTION Model 1 ZONE II Plan Regular Masonry wall in filled frame Model 2 ZONE II Plan Regular Bare Frame(without masonry wall infill) Model 3 ZONE II Plan Regular Soft Storey At Ground Floor frame Model 4 ZONE II Plan Irregular Masonry wall in filled frame Model 5 ZONE II Plan Irregular Bare Frame(without masonry wall infill) Model 6 ZONE II Plan Irregular Soft Storey At Ground Floor frame Model 7 ZONE V Plan Regular Masonry wall in filled frame Model 8 ZONE V Plan Regular Bare Frame(without masonry wall infill) Model 9 ZONE V Plan Regular Soft Storey At Ground Floor frame Model 10 ZONE V Plan Irregular Masonry wall in filled frame Model 11 ZONE V Plan Irregular Bare Frame(without masonry wall infill) Model 12 ZONE V Plan Irregular Soft Storey At Ground Floor frame 2.1 Model dimensions Building dimension X=30m, Y=30m, Height of the building Z=53m (Including head room) Number of stories = G+13 Each Storey height = 3.5m, 2m (Head Room) Column spacing along X direction = 5 m Column spacing along Y direction = 10 m 2.2 Material properties Concrete Grades = M25, M30, M35 (As per IS standards) Steel Grade = Fe500 2.3 Member properties Slab thickness = 200mm Wall thickness (outer) = 230mm (Masonry) Parapet and partition walls = 115mm (Masonry) Beam size = 230X350mm (M25), 250X850mm (M25) Column size = 350X350mm (M30), 500X1000mm (M30), [up to 26.5m] = 300X300mm (M30), 350X700mm (M30), [26.5m to 53m] Height of parapet wall =1.0m 2.4 General loading Wall (230mm) load on beam = 12kN/m Wall (115mm) load on beam = 6kN/m Floor finish = 1kN/m2 Water tank load (circular 1.1m dia) = 12 kN/m2 Lift load considered on slab = 12 kN/m2 Live load (IS 875-1987 part 2) = 4kN/m2 (floor) Live load (IS 875-1987 part 2) = 1.5kN/m2 (roof) For seismic Zone II  Importance factor = 1.0  Response reduction factor =5  Site type = Medium (II)  Zone Factor =0.10 For seismic Zone V  Importance factor =1.0  Response reduction factor= 5  Site type = Medium (II)  Zone Factor =0.36 2.5 Planning and modelling Before modelling, architectural plan of all the models are prepared using AutoCADD software. Fig -1: Regular plan ground floor
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 341 Fig -2: Regular plan 1 to 13 floors Fig -3: Irregular plan for ground floor [Re-entrant corner type irregular building having projections 50% along X direction and 33.33% along Y direction] Fig -4: Irregular plan for 1 to 13 floors [Re-entrant corner type irregular building having projections 50% along X direction and 33.33% along Y direction] Fig -5: Plan regular frame Fig -6: Plan regular with masonry wall in fill bare frame Fig -7: Plan regular frame Fig -8: Plan irregular frame with Soft storey at GF masonry wall in fill Fig -9: Plan irregular Fig -10: Plan irregular frame Bare frame with soft storey at GF 3. ANALYSIS Response spectrum analysis is done for the buildings by considering they are located in seismic zone II & V using SAP2000 software.
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 342 4 RESULTS AND DISCUSSIONS The various parameters like Displacement, Storey drift, Base shear and Time period are obtained by carrying response spectrum analysis for the different models considered in this study. 4.1 Displacement: Fig -11: Displacement along X direction at zone II Fig-11 Shows the plots of displacement of structure along the height in X direction for model 1 to model 6, obtained by dynamic analysis for zone II. Model 2 has higher displacement compare to other models. The highest displacement of the building found to be 17.32mm in Model 2 (Regular plan with bare frame) Fig -12: Displacement along X direction at zone V Fig-12 Shows the plots of displacement of building along height in X direction for model 7 to model 12,obtained by dynamic analysis for zone V. Model 8 has highest displacement compare to other models. The maximum displacement of the building found to be 61.77mm in Model 8 (Regular plan with bare frame) Fig -13: Displacement along Y direction at zone II Fig-13 Shows the plots of displacement of building along height in Y direction for model 1 to model 6, obtained by dynamic analysis for zone II. Model 5 has highest displacement compare to other models. The maximum displacement of the building found to be 17.32mm in Model 5 (Irregular plan with bare frame) Fig -14: Displacement along Y direction at zone V
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 343 Fig-14 Shows the plotsofdisplacementof buildingalong height in Y direction for model 7 to model 12, obtained by dynamic analysis for zone V. Model 11 has greater displacement compare to other models. The highest displacement of the building found to be 79.90mm in Model 11 (Irregular plan with bare frame) 4.2 Storey Drift: Fig -15: Storey drift along X direction at zone II Fig-15 Shows the plot of storey numberv/sstoreydrift for model 1 to model 6, and observed that the storey drift is highest in the storeys where the soft storey is located. The highest value of storey drift in the X direction 0.0056m is occurred in the model3 (Regular plan frame with soft storey at GF) located in seismic zone II. Fig -16: Storey drift along X direction at zone V Fig-16 shows the plot of storey numberv/sstoreydrift graph for model 7 to model 12, it is observed that storey drift is highest in the storeys where the soft storey is situated. The highest value of storey drift in the X direction 0.0203m is occurred in the model9 (Regularplanframewith soft storey at GF) located in seismic zone V. Fig -17: Storey drift along Y direction at zone II Fig-17 Shows the plot of storey number v/s storeydrift graph for model 1 to model 6, it is observed that the storey drift is maximum in the storeys where the there is no masonry wall infill is present. The maximum value of storey drift in the Y direction 0.0059m is occurred in the model 5 (Irregular plan with Bare frame) located in seismic zone II. Fig -18: Storey drift along Y direction at zone V
  • 6. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 344 Fig-18 shows the plot of storey numberv/sstoreydrift graph for model 1 to model 6, it is observed that the storey drift is maximum in the storeys where the there is no masonry wall infill is present. The maximum value of storey drift in the Y direction 0.0275m is occurred in the model 11 (Irregular plan with Bare frame) located in seismic zone V 4.3 Base shear: Fig -19: Maximum base shear along X direction at zone II Fig-19 Shows the plot between maximum base shear v/s various models considered in the analysis. It is observed that the highest base shear value 4267.05 kN is occurred in the model 1 (Regular plan frame in filled withmasonrywall) along the X direction located in seismic zone II. It is also observed that, masonry in fill influences the base shear of the building and model 1 which is in filledwithmasonrywall has higher base shear compared to other models. Fig -20: Maximum base shear along X direction at zone V Fig-20 Shows the plot between maximum base shear v/s various models considered in the analysis. In this observed that the highest base shear value 15094.74 kN is occurred in the model 7 (Regular plan frame in filled with masonry wall) along the X direction located in seismic zone V. And also observed that, models with bare frame has very less base shear compare to other models Fig -21: Maximum base shear along Y direction at zone II Fig-21 Showstheplotbetweenmaximumbaseshear v/s various models considered in the analysis. It is observed that the maximum base shear value 4266.95 kN is occurred in the model 1 (Regular plan frame in filled with masonry wall) along the Y direction located in seismic zone II. It is also observed that, masonry in fill influences the base shear of the building and model 1 which is in filled with masonry wall has higher base shear compared to other models. Fig -22: Maximum base shear along Y direction at zone V Fig-22 Shows the plot between highest base shear v/s various models considered in the analysis. In this observed that the maximum base shear value 15093.72kN isoccurred in the model 7 (Regular plan frame in filled with masonry wall) along the Y direction located in seismic zone V. And also observed that, models with bare frame has very less base shear compare to other models. 4.4 Time period: Fig -23: Maximum Time period at zone II Fig-23 Shows the plot between time period v/s various models considered in the analysis. In this observed that the maximum time period value 3.52 seconds is occurred in the model 2 (Regular plan with Bare frame) located in seismic zone II. And also observed that models with bare frame has very high time period compare to other models.
  • 7. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 345 Fig -24: Maximum Time period at zone V Fig-24 Shows the plot betweentimeperiodv/svarious models considered in the analysis. In this observed that the highest time period value 3.53 seconds is occurred in the model 8 (Regular plan with Bare frame) located in seismic zone V. It is also observed that models with masonry wall infill has very less time period compare to other models 5. CONCLUSIONS From this study following conclusions are drawn:  Models having bare frame shows the maximum value of displacement in Both X and Y direction and under both Earthquake zones II and V compare to all other models because of less lateral stiffness of the storey.  The displacement value is considerably reduced in the models with masonry wall infill in both X and Y direction under seismic forcesatbothEarthquakezones II and V. from this we can conclude that we should prefer masonry wall infill instead of bare frame structures under higher seismic zones.  Models with soft storey shows higher value of storey drift than models without soft storey, therefore we should avoid soft storey in the buildings under higher seismic zones or we should increase the lateral stiffness of the storey by providing shear wall, bracings etc.  The existence of masonry infill impacts the overall behaviour of structures when exposed to earthquake forces. Lateral displacements and storey drifts are noticeably reduced when the involvement of the infill brick wall is taken into account  Models with bare frame shows very less base shear compare to models with masonry wall infill therefore we conclude masonry wall influences the base shear of the building.  Models with bare frame shows high time period compare to other models, which indicates bare frame buildings are more flexible under seismic forces.  Models with masonry wall infill has very less time period compare to other models which shows masonry infill makes building more stiffer and less flexible under seismic forces.  Re-entrant type of plan irregularity buildings having projections less than 50 % are acceptable under both seismic zones II and V with masonry infill and not acceptable with bare frame .  When Column dimensions to be changed along the height of the building in bare frame buildings (considering economy point as well as requirements), sudden change of column dimensions with large difference should not be done which mayleadtosudden storey drift.  Steel framed structure can be used to Study on soft storey effect of plan regular and irregular structures under different Seismiczonesusingresponsespectrum method of analysis can be done.  Buildings can be analyzed in different soil types and seismic zones III and IV also.  Other forms of irregularities as per IS 1893 (part1): 2002 such as Torsion irregularity, diaphragm discontinuity,out-of-planeoffsets,non-parallel systems can be taken for further study REFERENCES [1] Singh Shailendra andVasaikarHemantBabulal,“Seismic Response of Soft Storey on High Rise Building Frame”, www.ijetcr.org Volume 3; Issue 4; July-August-2015; ISSN: 2348 – 2117. [2] K. Vamshi Satyanarayana and Vinod Kumar, “Seismic Response of RC Frame Building with Soft Storey at Different Floor Levels”, www.ijettjournal.org – Volume- 42 Number-4 - December 2016. [3] S.Arunkumar and Dr. G. Nadini Devi, “seismic demand study of soft storey building and it’s strengthening for seismic resistance”, www.ijettcs.org, ISSN 2278-6856, Volume 5, Issue 2, March - April 2016. [4] Pavithra R and Vasaikar Hemant Babulal, “Study of Behavior of the Soft Stories at Different Locations in the Multi-Story Building”, www.ijert.org, ISSN: 2278-0181, Vol. 7 Issue 06, June-2018. [5] Deekshitha Y.L and Kiran Kuldeep K.N,“study linearand non-linear dynamic analysis of multi storied R.C frame buildings with plan and vertical irregularities using ETABS”, www.irjet.net, p-ISSN: 2395-0072, Volume: 05 Issue: 07 | July 2018. [6] Ganesh Kumbhar and Anirudhha Banhatti, “Seismic Retrofitting of Building with Soft Storey and Floating Column”. www.irjet.net, ISSN: 2395-0072, Volume: 03 Issue: 07 | July-2016. 6. FUTURE SCOPE
  • 8. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 346 [7] Vihar S Desai, Hitesh K Dhameliya, Yati R Tank, “investigate performance of a building with soft storey at different level along with ground level”, www.ijert.org, ISSN: 2278-0181, Vol. 6 Issue 04, April- 2017. [8] Pritam C. Pawade, Dr P.P Saklecha and Milind R Nikhar, “Comparison and analysis of regular and irregular configuration of multistorey building in various seismic zones and various type of soil”, IARJSET, ISSN (Print) 2394-1588, Vol. 5, Issue 6, June 2018. [9] V Rajendra Kumar and Ranga Rao V,“comparativestudy on regular & irregular structures using equivalentstatic and response spectrum methods”, www.iaeme.com/IJCIET. ISSN Online: 0976-6316, Volume 8, Issue 1, January 2017. [11] IS: 1893 (Part 1):2002 Criteria for earthquake resistant design of structures. [12] IS: 456-2000 plain and reinforced concrete code of practice.IS: 875-1987 (part 1 to part 5) Code of Practice for Design Loads. And more. [10] Albert Philip and Dr. S. Elavenil , “Seismic analysis of high rise buildings with plan irregularity”, www.iaeme.com/IJCIET, Online: 0976-6316, Volume 8, Issue 4, April 2017.