This document provides an introduction to reinforcement learning. It defines reinforcement learning and compares it to machine learning. Key concepts in reinforcement learning are discussed such as policy, reward function, value function and environment. Examples of reinforcement learning applications include chess, robotics, petroleum refineries. Model-free and model-based methods are introduced. The document also discusses Monte Carlo methods, temporal difference learning, and Dyna-Q architecture. Finally, it provides examples of reinforcement learning problems like elevator dispatching and job shop scheduling.