This document summarizes the Maxmin Q-learning paper published at ICLR 2020. Maxmin Q-learning aims to address the overestimation bias of Q-learning and underestimation bias of Double Q-learning by maintaining multiple Q-functions and using the minimum value across them for the target in the Q-learning update. It defines the action selection and target construction for the update based on taking the maximum over the minimum Q-value for each action. The algorithm initializes multiple Q-functions, selects a random subset to update using the maxmin target constructed from the minimum Q-values. This approach reduces the biases seen in prior methods.