SlideShare a Scribd company logo
4
Most read
7
Most read
L3b-1
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Ideal CSTR
Design Eq
with XA:
Review: Design Eq & Conversion
D
a
d
C
a
c
B
a
b
A 
fedAmoles
reactedAmoles
XA 
BATCH
SYSTEM: A0Aj0jj XNNN   








j
A0A
j
j0TjT XNNNN 
FLOW
SYSTEM: A0Aj0jj XFFF   








j
A0A
j
j0TjT XFFFF 
r
XF
V
A
A0A


Vr
dt
dX
N A
A
0A 
Ideal Batch Reactor
Design Eq with XA:



AX
0 A
A
0A
Vr
dX
Nt
A
A
0A r
dV
dX
F 
Ideal SS PFR
Design Eq with XA:



AX
0 A
A
0A
r
dX
FV
'r
dW
dX
F A
A
0A 
Ideal SS PBR
Design Eq with XA:



AX
0 A
A
0A
'r
dX
FW
j≡ stoichiometric coefficient;
positive for products, negative
for reactants
L3b-2
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Review: Sizing CSTRsWe can determine the volume of the CSTR required to achieve a specific
conversion if we know how the reaction rate rj depends on the conversion Xj
A
A
0A
CSTR
A
A0A
CSTR X
r
F
V
r
XF
V 









Ideal SS
CSTR
design eq.
Volume is
product of FA0/-rA
and XA
• Plot FA0/-rA vs XA (Levenspiel plot)
• VCSTR is the rectangle with a base of XA,exit and a height of FA0/-rA at XA,exit

FA 0
rA
X
Area = Volume of CSTR
X1
V 
FA 0
rA



X1
 X1
L3b-3
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
FA 0
rA
Area = Volume of PFR
V 
0
X1

FA 0
rA





dX
X1
Area = VPFR or Wcatalyst, PBR
dX
'r
F
W
1X
0 A
0A
 







Review: Sizing PFRs & PBRs
We can determine the volume (catalyst weight) of a PFR (PBR) required to
achieve a specific Xj if we know how the reaction rate rj depends on Xj
A
exit,AX
0 A
0A
PFR
exit,AX
0 A
A
0APFR dX
r
F
V
r
dX
FV  









Ideal PFR
design eq.
• Plot FA0/-rA vs XA (Experimentally determined numerical values)
• VPFR (WPBR) is the area under the curve FA0/-rA vs XA,exit
A
exit,AX
0 A
0A
PBR
exit,AX
0 A
A
0APBR dX
r
F
W
r
dX
FW  








Ideal PBR
design eq.
dX
r
F
V
1X
0 A
0A
 







L3b-4
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Numerical Evaluation of Integrals (A.4)
Simpson’s one-third rule (3-point):
        210
2X
0
XfXf4Xf
3
h
dxxf 
hXX
2
XX
h 01
02 


Trapezoidal rule (2-point):
      10
1X
0
XfXf
2
h
dxxf 
01 XXh 
Simpson’s three-eights rule (4-point):
          3210
3X
0
XfXf3Xf3Xfh
8
3
dxxf 
3
XX
h 03 

h2XXhXX 0201 
Simpson’s five-point quadrature :
            43210
4X
0
XfXf4Xf2Xf4Xf
3
h
dxxf 
4
XX
h 04 

L3b-5
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Review: Reactors in Series
2 CSTRs 2 PFRs
CSTR→PFR
VCSTR1 VPFR2
VPFR2VCSTR1
VCSTR2
VPFR1
VPFR1
VCSTR2
VCSTR1 + VPFR2
≠
VPFR1 + CCSTR2
PFR→CSTR
A
A0
r-
F
 
i j
CSTRPFRPFR VVV
If is monotonically
increasing then:
CSTR
i j
CSTRPFR VVV  
L3b-6
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Chapter 2 Examples
L3b-7
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
1. Calculate FA0/-rA for each conversion value in the tableFA0/-rA
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X1=0.3
FA0, X0 X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
Convert to seconds→
min
mol
52F 0A 
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
-rA is in terms of mol/dm3∙s
L3b-8
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
A(
0
0)
AF
r

3
3
mol
0.0053
d
mol
0.867
s
s
m
m
d

164
1. Calculate FA0/-rA for each conversion value in the table
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X1=0.3
FA0, X0 X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


-rA is in terms of mol/dm3∙s
164
XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
min
mol
52F 0A 
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
Convert to seconds→
L3b-9
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
A(
0
0)
AF
r

3
3
mol
0.0053
d
mol
0.867
s
s
m
m
d

164
1. Calculate FA0/-rA for each conversion value in the table
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X1=0.3
FA0, X0 X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


-rA is in terms of mol/dm3∙s
164
XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
min
mol
52F 0A 
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
Convert to seconds→ For each –rA that corresponds to
a XA value, use FA0 to calculate
FA0/-rA & fill in the table
L3b-10
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
X1=0.3
FA0, X0
A( 0.85)
3A0
3
mol
0.867F s
molr
0.001
dm s
867 dm 


1. Calculate FA0/-rA for each conversion value in the table
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164 167 173 193 217 263 347 482 694 867
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


Convert to seconds→
min
mol
52F 0A 
-rA is in terms of mol/dm3∙s
XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
L3b-11
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164 167 173 193 217 263 347 482 694 867
FA0, X0
X1=0.3
X2=0.8
Config 1
Reactor 1, PFR from XA0=0 to XA=0.3:


 

 
   
 

        


A
A AA
A A0
A
0.3
A0
PFR1 A
0
A0
X
0
A X
A0
A
X 0.3
0.20A .X 1A 0
F 3 0.3 0
V dX 3
F F
3
rr
F
rr8 3
F
r
4-pt rule:
     1
0.3 A0
PFR A0
3
A
16
F 3
V dX 0.1 3 3 1
r 8
934 173 5167 1.6 dm         
  

A,out
2CSTR
A0
A,o A i
X
, nut
A
F
XV X
r
    2
3
CSTR 694 0.8 3470.3 dmV
Total volume for configuration 1: 51.6 dm3 + 347 dm3 = 398.6 dm3 = 399 dm3
←Use numerical
methods to solve
PFR1 CSTR2
0 
  
 

XA,exit A
PFRn AXA,in A
F
V dX
r
L3b-12
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164 167 173 193 217 263 347 482 694 867
Reactor 1, CSTR from XA0=0 to XA=0.3:
Need to evaluate at 6 pts, but since
there is no 6-pt rule, break it up
 0
0
1 0
3
A
A .
A,outCSTR A
F
XV X
r
 

Total volume for configuration 2: 58 dm3 + 173 dm3 = 231 dm3
X1=0.3
FA0, X0 X2=0.8
Config 2
    CSTR
3
0. 583 0193 dmV  

A0
PFR2 A
A
0.8
0.3
F
V dX
r
 
     PFRV
... .                     
 
263 263 34217
3
4 3 3
8 33 2
482193 694
0 08 5
7
0 30 5
3 point rule 4 point rule
3
173 dm
PFR2CSTR1
   
 
0.
A0 A0
PF
0.3
R2 A A
A
05
.
.
5
8
A0
F F
V dX dX
r r
Must evaluate as many
pts as possible when
the curve isn’t flat
L3b-13
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
ACSTR
A
A
V
X
C
r
 
    
 
 0
0
CSTR
A
A
A
V
C
r
X
 
   
 
00
For a given CA0, the space time  needed to achieve 80% conversion in a
CSTR is 5 h. Determine (if possible) the CSTR volume required to process 2
ft3/min and achieve 80% conversion for the same reaction using the same CA0.
What is the space velocity (SV) for this system?
space time holding time mean residenceh
V
time

    
0
5
=5 h 0=2 ft3/min
 
ft
min h
hV
min  
      
3
60
5
2 3
V ft  600
V
SV



0 1Space
velocity:
-1
h
SV . h   

0 2
5
1 1
Notice that we did not need to solve the CSTR design equation to solve this problem.
Also, this answer does not depend on the type of flow reactor used.
XA=0.8
A
CSTR A
AF
r
XV
 
  
 
0 A
A
CSTR
A
C
r
V
X
 
  



0
0
   0
0
V
V 


L3b-14
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA,exit
PFR
A
A
X AA,in
C
V dX
r
 
    
 
 0
0
A product is produced by a nonisothermal, nonelementary, multiple-reaction
mechanism. Assume the volumetric flow rate is constant & the same in both reactors.
Data for this reaction is shown in the graph below. Use this graph to determine which
of the 2 configurations that follow give the smaller total reactor volume.
FA0, X0
X1=0.3
X2=0.7
Config 2
X1=0.3
FA0, X0 X2=0.7
Config 1
 A
CSTR A,out A,in
A
V X X
r
C 
  
 
 0
0
Shown on graph
XA,exit
PFRn A
AA,in
A
X
V dX
F
r
 
   
 
0
CSTR
A
A
A
V X
r
F 
  
 
0
• Since 0 is the same in both reactors, we can use this graph to compare the 2
configurations
• PFR- volume is 0 multiplied by the area under the curve between XA,in & XA,out
• CSTR- volume is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in)
L3b-15
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
A product is produced by a nonisothermal, nonelementary, multiple-reaction
mechanism. Assume the volumetric flow rate is constant & the same in both reactors.
Data for this reaction is shown in the graph below. Use this graph to determine which
of the 2 configurations that follow give the smaller total reactor volume.
FA0, X0
X1=0.3
X2=0.7
Config 2
X1=0.3
FA0, X0 X2=0.7
Config 1
• PFR- V is 0 multiplied by the area under the curve between XA,in & XA,out
• CSTR- V is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in)
Config 1 Config 2
Less shaded area
Config 2 (PFRXA,out=0.3 first, and CSTRXA,out=0.7 second) has the smaller VTotal
XA=0.3
XA=0.7
XA=0.3
XA=0.7

More Related Content

DOC
experiment Cstr 40l
PDF
Transport phenomena-Mass Transfer 31-Jul-2016
PPT
Introduction to multicomponent distillation
PDF
Feed conditions in distillation column with respect to feed plate and reflux
PPTX
Gas Absorption & Stripping in Chemical Engineering (Part 2/4)
PDF
Study of spray dryer
experiment Cstr 40l
Transport phenomena-Mass Transfer 31-Jul-2016
Introduction to multicomponent distillation
Feed conditions in distillation column with respect to feed plate and reflux
Gas Absorption & Stripping in Chemical Engineering (Part 2/4)
Study of spray dryer

What's hot (20)

PPTX
Trays in distillation column
PPTX
Designing of liquid liquid extraction columns
PPTX
Design of-absorption-column
PPTX
Difference between batch,mixed flow & plug-flow reactor
PPTX
Reflux ratio
PDF
batch distillation, multi stage batch distillation
PDF
Shell and tube heat exchanger design
PDF
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 15
PPTX
Absorption Column: Foundations, Applications and Scientific Progress
PPTX
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
PPTX
Distillation Column-Pohnchon savrit method.pptx
PPT
Assignment 1
PPTX
LEACHING ( MASS TRANSFER OPERATION)
PPTX
PDF
CHEMICAL PROCESS EQUIPMENT.pdf
PPT
Distillation
Trays in distillation column
Designing of liquid liquid extraction columns
Design of-absorption-column
Difference between batch,mixed flow & plug-flow reactor
Reflux ratio
batch distillation, multi stage batch distillation
Shell and tube heat exchanger design
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 15
Absorption Column: Foundations, Applications and Scientific Progress
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Distillation Column-Pohnchon savrit method.pptx
Assignment 1
LEACHING ( MASS TRANSFER OPERATION)
CHEMICAL PROCESS EQUIPMENT.pdf
Distillation
Ad

Similar to L3b reactor sizing example problems (20)

PPTX
L3b Reactor sizing example problems.pptx
PPTX
L3b reactor sizing example problems
PPT
conversion and reactor sizing
PDF
Essentials of Chemical Reaction Engineering 1st Edition Fogler Solutions Manual
PPTX
Design of Reactors Presentation Module Useful
PPTX
L4 Rate laws and stoichiometry.pptx
PDF
AWWT-C1-Reactors-20ddddddddddddddddddddddd25.pdf
PPTX
Lec2_nonanimated cre book presentation for represent
PPTX
chemical thermodynamic and reactor design
PPTX
It is a presentation PPT of a CSTR Reactor
PDF
Algorithm of problem solving with example.pdf
DOCX
205938300 problemas-de-diseno-de-reactores
PPTX
kỹ thuật và thiết bị phản ứng, chuyên ngành công nghệ kĩ thuật hóa học
PPT
Lecture 1
PPT
ideal reactors
PPTX
DESIGN OF Homogeneous reactors-1..pptx
PPTX
Lec1_Reaction-Engineering.pptx
PPTX
Fogler apresentation about chemistry engeenierg
PPTX
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
PPTX
L9b Selectivity example problems.pptx
L3b Reactor sizing example problems.pptx
L3b reactor sizing example problems
conversion and reactor sizing
Essentials of Chemical Reaction Engineering 1st Edition Fogler Solutions Manual
Design of Reactors Presentation Module Useful
L4 Rate laws and stoichiometry.pptx
AWWT-C1-Reactors-20ddddddddddddddddddddddd25.pdf
Lec2_nonanimated cre book presentation for represent
chemical thermodynamic and reactor design
It is a presentation PPT of a CSTR Reactor
Algorithm of problem solving with example.pdf
205938300 problemas-de-diseno-de-reactores
kỹ thuật và thiết bị phản ứng, chuyên ngành công nghệ kĩ thuật hóa học
Lecture 1
ideal reactors
DESIGN OF Homogeneous reactors-1..pptx
Lec1_Reaction-Engineering.pptx
Fogler apresentation about chemistry engeenierg
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L9b Selectivity example problems.pptx
Ad

Recently uploaded (20)

PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Geodesy 1.pptx...............................................
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPT
Mechanical Engineering MATERIALS Selection
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
Well-logging-methods_new................
PDF
PPT on Performance Review to get promotions
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
DOCX
573137875-Attendance-Management-System-original
PDF
Digital Logic Computer Design lecture notes
Model Code of Practice - Construction Work - 21102022 .pdf
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Embodied AI: Ushering in the Next Era of Intelligent Systems
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
UNIT 4 Total Quality Management .pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Geodesy 1.pptx...............................................
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Mechanical Engineering MATERIALS Selection
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Operating System & Kernel Study Guide-1 - converted.pdf
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Well-logging-methods_new................
PPT on Performance Review to get promotions
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
573137875-Attendance-Management-System-original
Digital Logic Computer Design lecture notes

L3b reactor sizing example problems

  • 1. L3b-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with XA: Review: Design Eq & Conversion D a d C a c B a b A  fedAmoles reactedAmoles XA  BATCH SYSTEM: A0Aj0jj XNNN            j A0A j j0TjT XNNNN  FLOW SYSTEM: A0Aj0jj XFFF            j A0A j j0TjT XFFFF  r XF V A A0A   Vr dt dX N A A 0A  Ideal Batch Reactor Design Eq with XA:    AX 0 A A 0A Vr dX Nt A A 0A r dV dX F  Ideal SS PFR Design Eq with XA:    AX 0 A A 0A r dX FV 'r dW dX F A A 0A  Ideal SS PBR Design Eq with XA:    AX 0 A A 0A 'r dX FW j≡ stoichiometric coefficient; positive for products, negative for reactants
  • 2. L3b-2 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Review: Sizing CSTRsWe can determine the volume of the CSTR required to achieve a specific conversion if we know how the reaction rate rj depends on the conversion Xj A A 0A CSTR A A0A CSTR X r F V r XF V           Ideal SS CSTR design eq. Volume is product of FA0/-rA and XA • Plot FA0/-rA vs XA (Levenspiel plot) • VCSTR is the rectangle with a base of XA,exit and a height of FA0/-rA at XA,exit  FA 0 rA X Area = Volume of CSTR X1 V  FA 0 rA    X1  X1
  • 3. L3b-3 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. FA 0 rA Area = Volume of PFR V  0 X1  FA 0 rA      dX X1 Area = VPFR or Wcatalyst, PBR dX 'r F W 1X 0 A 0A          Review: Sizing PFRs & PBRs We can determine the volume (catalyst weight) of a PFR (PBR) required to achieve a specific Xj if we know how the reaction rate rj depends on Xj A exit,AX 0 A 0A PFR exit,AX 0 A A 0APFR dX r F V r dX FV            Ideal PFR design eq. • Plot FA0/-rA vs XA (Experimentally determined numerical values) • VPFR (WPBR) is the area under the curve FA0/-rA vs XA,exit A exit,AX 0 A 0A PBR exit,AX 0 A A 0APBR dX r F W r dX FW           Ideal PBR design eq. dX r F V 1X 0 A 0A         
  • 4. L3b-4 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Numerical Evaluation of Integrals (A.4) Simpson’s one-third rule (3-point):         210 2X 0 XfXf4Xf 3 h dxxf  hXX 2 XX h 01 02    Trapezoidal rule (2-point):       10 1X 0 XfXf 2 h dxxf  01 XXh  Simpson’s three-eights rule (4-point):           3210 3X 0 XfXf3Xf3Xfh 8 3 dxxf  3 XX h 03   h2XXhXX 0201  Simpson’s five-point quadrature :             43210 4X 0 XfXf4Xf2Xf4Xf 3 h dxxf  4 XX h 04  
  • 5. L3b-5 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Review: Reactors in Series 2 CSTRs 2 PFRs CSTR→PFR VCSTR1 VPFR2 VPFR2VCSTR1 VCSTR2 VPFR1 VPFR1 VCSTR2 VCSTR1 + VPFR2 ≠ VPFR1 + CCSTR2 PFR→CSTR A A0 r- F   i j CSTRPFRPFR VVV If is monotonically increasing then: CSTR i j CSTRPFR VVV  
  • 6. L3b-6 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Chapter 2 Examples
  • 7. L3b-7 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 1. Calculate FA0/-rA for each conversion value in the tableFA0/-rA Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X1=0.3 FA0, X0 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n Convert to seconds→ min mol 52F 0A  00 1 52 8 60 67        A mol min m mol . F sin s -rA is in terms of mol/dm3∙s
  • 8. L3b-8 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. A( 0 0) AF r  3 3 mol 0.0053 d mol 0.867 s s m m d  164 1. Calculate FA0/-rA for each conversion value in the table XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X1=0.3 FA0, X0 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    -rA is in terms of mol/dm3∙s 164 XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n min mol 52F 0A  00 1 52 8 60 67        A mol min m mol . F sin s Convert to seconds→
  • 9. L3b-9 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. A( 0 0) AF r  3 3 mol 0.0053 d mol 0.867 s s m m d  164 1. Calculate FA0/-rA for each conversion value in the table XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X1=0.3 FA0, X0 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    -rA is in terms of mol/dm3∙s 164 XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n min mol 52F 0A  00 1 52 8 60 67        A mol min m mol . F sin s Convert to seconds→ For each –rA that corresponds to a XA value, use FA0 to calculate FA0/-rA & fill in the table
  • 10. L3b-10 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. X1=0.3 FA0, X0 A( 0.85) 3A0 3 mol 0.867F s molr 0.001 dm s 867 dm    1. Calculate FA0/-rA for each conversion value in the table XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 167 173 193 217 263 347 482 694 867 Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    Convert to seconds→ min mol 52F 0A  -rA is in terms of mol/dm3∙s XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n 00 1 52 8 60 67        A mol min m mol . F sin s
  • 11. L3b-11 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 167 173 193 217 263 347 482 694 867 FA0, X0 X1=0.3 X2=0.8 Config 1 Reactor 1, PFR from XA0=0 to XA=0.3:                          A A AA A A0 A 0.3 A0 PFR1 A 0 A0 X 0 A X A0 A X 0.3 0.20A .X 1A 0 F 3 0.3 0 V dX 3 F F 3 rr F rr8 3 F r 4-pt rule:      1 0.3 A0 PFR A0 3 A 16 F 3 V dX 0.1 3 3 1 r 8 934 173 5167 1.6 dm              A,out 2CSTR A0 A,o A i X , nut A F XV X r     2 3 CSTR 694 0.8 3470.3 dmV Total volume for configuration 1: 51.6 dm3 + 347 dm3 = 398.6 dm3 = 399 dm3 ←Use numerical methods to solve PFR1 CSTR2 0        XA,exit A PFRn AXA,in A F V dX r
  • 12. L3b-12 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 167 173 193 217 263 347 482 694 867 Reactor 1, CSTR from XA0=0 to XA=0.3: Need to evaluate at 6 pts, but since there is no 6-pt rule, break it up  0 0 1 0 3 A A . A,outCSTR A F XV X r    Total volume for configuration 2: 58 dm3 + 173 dm3 = 231 dm3 X1=0.3 FA0, X0 X2=0.8 Config 2     CSTR 3 0. 583 0193 dmV    A0 PFR2 A A 0.8 0.3 F V dX r        PFRV ... .                        263 263 34217 3 4 3 3 8 33 2 482193 694 0 08 5 7 0 30 5 3 point rule 4 point rule 3 173 dm PFR2CSTR1       0. A0 A0 PF 0.3 R2 A A A 05 . . 5 8 A0 F F V dX dX r r Must evaluate as many pts as possible when the curve isn’t flat
  • 13. L3b-13 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. ACSTR A A V X C r           0 0 CSTR A A A V C r X         00 For a given CA0, the space time  needed to achieve 80% conversion in a CSTR is 5 h. Determine (if possible) the CSTR volume required to process 2 ft3/min and achieve 80% conversion for the same reaction using the same CA0. What is the space velocity (SV) for this system? space time holding time mean residenceh V time       0 5 =5 h 0=2 ft3/min   ft min h hV min          3 60 5 2 3 V ft  600 V SV    0 1Space velocity: -1 h SV . h     0 2 5 1 1 Notice that we did not need to solve the CSTR design equation to solve this problem. Also, this answer does not depend on the type of flow reactor used. XA=0.8 A CSTR A AF r XV        0 A A CSTR A C r V X         0 0    0 0 V V   
  • 14. L3b-14 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA,exit PFR A A X AA,in C V dX r           0 0 A product is produced by a nonisothermal, nonelementary, multiple-reaction mechanism. Assume the volumetric flow rate is constant & the same in both reactors. Data for this reaction is shown in the graph below. Use this graph to determine which of the 2 configurations that follow give the smaller total reactor volume. FA0, X0 X1=0.3 X2=0.7 Config 2 X1=0.3 FA0, X0 X2=0.7 Config 1  A CSTR A,out A,in A V X X r C        0 0 Shown on graph XA,exit PFRn A AA,in A X V dX F r         0 CSTR A A A V X r F       0 • Since 0 is the same in both reactors, we can use this graph to compare the 2 configurations • PFR- volume is 0 multiplied by the area under the curve between XA,in & XA,out • CSTR- volume is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in)
  • 15. L3b-15 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. A product is produced by a nonisothermal, nonelementary, multiple-reaction mechanism. Assume the volumetric flow rate is constant & the same in both reactors. Data for this reaction is shown in the graph below. Use this graph to determine which of the 2 configurations that follow give the smaller total reactor volume. FA0, X0 X1=0.3 X2=0.7 Config 2 X1=0.3 FA0, X0 X2=0.7 Config 1 • PFR- V is 0 multiplied by the area under the curve between XA,in & XA,out • CSTR- V is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in) Config 1 Config 2 Less shaded area Config 2 (PFRXA,out=0.3 first, and CSTRXA,out=0.7 second) has the smaller VTotal XA=0.3 XA=0.7 XA=0.3 XA=0.7