SlideShare a Scribd company logo
3
Most read
4
Most read
11
Most read
Low Voltage Dropout Regulator
Goal:
Design a voltage regulator to
provide an output voltage of 3.3V
For the calculations we assume the
following constants:
- Pass transistor current = 1ma
- Vout = 3.3V
- Dropout voltage =
- VDD=5V
-
Calculations:
- Calculation of a range of Vbias1
1. To find Ibias1:
From the desired a photodiode range, the minimum
value of Ibias1:
VGS3
=Vphmin
Ibias1 = ½ K1(W/L)3
(VGS3
-VTHN
)2
= ½ * 50 * 10-6 A/V2
*
3µm/0.6µm * (0.8V – 0.617)2
= 4.186µA =4µA
The maximum value of Ibias1:
Ibias1 = ½ K1(W/L)3
(VGS3
-VTHN
)2
= ½ * 50 * 10-6 A/V2
*
3µm/0.6µm * (3.0V – 0.617)2
= 0.7mA
Calculations:
- Calculation of a range of Vbias1
2. To find Vbias1:
Next we find the value of Vbias1 given by
Vbias1
= VDD
– VGS0
= VDD
- √[(2Ibias1)/(K2
(W/L)0
] –
VTHp
Vbias1
= VDD
– VGS0
= VDD
- √[
(2Ibias1)/(K2
(W/L)0
] – VTHp
p
The maximum value of Vbias1:
Vbias1(max) = 5V - √[(2*4µA)/(19.1µA/V2*
20µm/0.6µm)] – 0.915V =1.026 = 4V
The minimum value of Vbias1:
Vbias1(min) = VDD
– VGS0
= 5V- √[(2*0.7*10-3
)/25*
10-6
/V2 * 20µm/0.6µm) – 0.915V = 2.8V
Calculations:
- Calculation of sizes of the transistors M5, M4
1. To determine W5
From requirement to keep M5 in saturation
region:
VTH
≤VGS5
= Vbias1(min) + VTHp
– Vph
(max) =
2.8V +0.9V – 3.0V = 0.7V
W5 = (2InL5
)/(K1
(VGS5
-VTHN
)2
) = (2 * 1.2µA *
0.6µm)/(50µA/V2
* (0.7V – 0.617V)2
) = 4µm
Calculations:
- Calculation of sizes of the transistors M5, M4
2. To determine W4
VDS4
≥VGS4
– VTHN
VDS4
= Vph
(min) = 0.8V
Assumed VGS4
= 0.75V
W4 = (2InL4
)/(K1
(VGS4
-VTHN
)2
) = (2 * 1.2µA *
0.6µm)/(50µA/V2
* (0.75V – 0.617V)2
) = 1.60µm
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
1. To find VGS
for M1, M2, M7
VGS1
= VDS1
= VGS2
= VGS1
= √[(2Iout)/(K2
(W/L)2,7
] + VTHp
= √(2 *
1.2µA)/(25µA/V2
* (20/2.4)) + 0.915V = 0.107V + 0.915V = 1V
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
2. To find VDS
for current mirror:
Next we find VDS2
and VDS7
(which are the same in value)
VDS2,7
= VDD
– VDS6
= VDD
- √[(2Iout)/(K1
(W/L)6
] - VTHN
=
5V - √(2 * 1.2µA)/(50µA/V2
* (1.5/8.55)) - 0.617V = 3.85V
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
3. To determine W1:
Finally, we calculate the size of transistor M1. It's required that Iin =
Iout. Consequently, the current conveyor ought to have I1 = I2,7.
Assuming L1= L2,7:
W1/L1* (1 + ƛpDS2,7) = W2,7/L2,7(1 + ƛpDS2,7)
W1 = 2(1 + ƛpDS2,7)/(1 + ƛpDS1)
W1 = (20µm*(1+0.2*3.85V)/(1+0.2*1V) = 29.5µm
Summary of Transistor Sizes:
- Summary of calculated transistor sizes vs the
transistor simulation sizes
TransistTor Calculated Size Actual Size Used
Width(µm) Length(µm) Width(µm) Length(µm)
M1 100 0.6 19.55 0.6
M2 100 0.6 21.3 2.4
M3 20 0.6 19.55 0.6
M4 20 0.6 3 0.6
M5 300 0.6 3 1.5
Final Schematic
- Test Schematic
- Test Schematic
Test Schematic
- Pre-Layout Simulation
- Pre-Layout Simulation
PRE-LAYOUT DC INPUT TEST
- Pre-Layout Simulation- Pre-Layout Simulation
PRE-LAYOUT PHASE AND GAIN
LDO LAYOUT
- Post-Layout Simulation
POST LAYOUT DC FIXED INPUT
- Post-Layout Simulation
POST LAYOUT GAIN AND PHASE

More Related Content

PPT
Miller effect
PDF
105926921 cmos-digital-integrated-circuits-solution-manual-1
PDF
Line coding
PDF
19EEC03 Linear Integrated Circuits and its Applications
PDF
Digital communication systems unit 1
PPTX
AHB To APB BRIDGE.pptx
PPTX
Lcd module interface with xilinx software using verilog
Miller effect
105926921 cmos-digital-integrated-circuits-solution-manual-1
Line coding
19EEC03 Linear Integrated Circuits and its Applications
Digital communication systems unit 1
AHB To APB BRIDGE.pptx
Lcd module interface with xilinx software using verilog

What's hot (20)

PDF
Lic lab manual
PPT
Design of cmos based ring oscillator
PDF
UVM: Basic Sequences
PPTX
Eye diagram in Communication
PDF
Sta by usha_mehta
PPTX
design and analysis of voltage controlled oscillator
PPTX
Reversible logic gate
PPSX
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
PPTX
Leakage effects in mos-fets
PDF
Operational Amplifiers I
PPTX
Msp 430 addressing modes module 2
PPTX
bandgap ppt
PDF
Isa bus nptel
PPTX
System verilog coverage
PPT
Power divider, combiner and coupler.ppt
PPT
ISI and Pulse shaping.ppt
PDF
Deterministic Test Pattern Generation ( D-Algorithm of ATPG) (Testing of VLSI...
PPTX
AXI Protocol.pptx
Lic lab manual
Design of cmos based ring oscillator
UVM: Basic Sequences
Eye diagram in Communication
Sta by usha_mehta
design and analysis of voltage controlled oscillator
Reversible logic gate
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Leakage effects in mos-fets
Operational Amplifiers I
Msp 430 addressing modes module 2
bandgap ppt
Isa bus nptel
System verilog coverage
Power divider, combiner and coupler.ppt
ISI and Pulse shaping.ppt
Deterministic Test Pattern Generation ( D-Algorithm of ATPG) (Testing of VLSI...
AXI Protocol.pptx
Ad

Viewers also liked (20)

PPT
Low dropout regulator(ldo)
PPT
Msa august2010
PPT
Input output
PPTX
Effective communication
PPTX
Indian conquistadors
PDF
Tarjei krogh showreel 2010 the dark side
PPTX
The jesuit relations
PPTX
Mktg. zcharina
PDF
Blast Mitigation
PPTX
Effective communication
PPTX
Financial aspects of a franchise
PPTX
Pro/ E Training Noida
PDF
Advanced Fabric Technologies
PPTX
Beatniks
PPTX
LDO project
PPTX
Design of a low voltage low-dropout regulator
PPTX
Devyani 1st Ext. Presentation
PPT
chapter 1 linear dc power supply
PPTX
Voltage Regulation
PPT
BUCK CONVERTER
Low dropout regulator(ldo)
Msa august2010
Input output
Effective communication
Indian conquistadors
Tarjei krogh showreel 2010 the dark side
The jesuit relations
Mktg. zcharina
Blast Mitigation
Effective communication
Financial aspects of a franchise
Pro/ E Training Noida
Advanced Fabric Technologies
Beatniks
LDO project
Design of a low voltage low-dropout regulator
Devyani 1st Ext. Presentation
chapter 1 linear dc power supply
Voltage Regulation
BUCK CONVERTER
Ad

Similar to Ldo project (20)

PDF
Solutions for Problems in Microelectronic Circuits, 8th International Edition...
PDF
M a 723 datasheet
PDF
ua723 REGULADOR DE VOLTAJE ELECTRONICA .pdf
PPT
Small signal Analysis.ppt
PPT
Lecture07
PDF
5 experiment -_characteristics_of_bipolar_junction_transistors
PDF
Final esd lab manual (1)
PDF
St microelectronics l7815-cv-datasheet
PPT
cmos inv & bicomplementrymetal oxide os.ppt
PDF
CMOS inverter static Characteristics class
PDF
CMOS inverter static characteristics Class
PDF
Simulations of a typical CMOS amplifier circuit using the Monte Carlo method
PDF
PDF
Answers to Problems for Microelectronic Circuits, 8th Edition - Adel Sedra & ...
PPTX
emmanuel and catherine project.pptx
PDF
microelectronics-6ed-ch7_a-ppt-2025-spring
PDF
Lab 4 Report Switching Voltage Regulators
PDF
Original Opto TLP155E P155E 155E SOP-5 New
PDF
Original Opto TLP2168 P2168 SOP-8 New TOSHIBA
Solutions for Problems in Microelectronic Circuits, 8th International Edition...
M a 723 datasheet
ua723 REGULADOR DE VOLTAJE ELECTRONICA .pdf
Small signal Analysis.ppt
Lecture07
5 experiment -_characteristics_of_bipolar_junction_transistors
Final esd lab manual (1)
St microelectronics l7815-cv-datasheet
cmos inv & bicomplementrymetal oxide os.ppt
CMOS inverter static Characteristics class
CMOS inverter static characteristics Class
Simulations of a typical CMOS amplifier circuit using the Monte Carlo method
Answers to Problems for Microelectronic Circuits, 8th Edition - Adel Sedra & ...
emmanuel and catherine project.pptx
microelectronics-6ed-ch7_a-ppt-2025-spring
Lab 4 Report Switching Voltage Regulators
Original Opto TLP155E P155E 155E SOP-5 New
Original Opto TLP2168 P2168 SOP-8 New TOSHIBA

Ldo project

  • 2. Goal: Design a voltage regulator to provide an output voltage of 3.3V
  • 3. For the calculations we assume the following constants: - Pass transistor current = 1ma - Vout = 3.3V - Dropout voltage = - VDD=5V -
  • 4. Calculations: - Calculation of a range of Vbias1 1. To find Ibias1: From the desired a photodiode range, the minimum value of Ibias1: VGS3 =Vphmin Ibias1 = ½ K1(W/L)3 (VGS3 -VTHN )2 = ½ * 50 * 10-6 A/V2 * 3µm/0.6µm * (0.8V – 0.617)2 = 4.186µA =4µA The maximum value of Ibias1: Ibias1 = ½ K1(W/L)3 (VGS3 -VTHN )2 = ½ * 50 * 10-6 A/V2 * 3µm/0.6µm * (3.0V – 0.617)2 = 0.7mA
  • 5. Calculations: - Calculation of a range of Vbias1 2. To find Vbias1: Next we find the value of Vbias1 given by Vbias1 = VDD – VGS0 = VDD - √[(2Ibias1)/(K2 (W/L)0 ] – VTHp Vbias1 = VDD – VGS0 = VDD - √[ (2Ibias1)/(K2 (W/L)0 ] – VTHp p The maximum value of Vbias1: Vbias1(max) = 5V - √[(2*4µA)/(19.1µA/V2* 20µm/0.6µm)] – 0.915V =1.026 = 4V The minimum value of Vbias1: Vbias1(min) = VDD – VGS0 = 5V- √[(2*0.7*10-3 )/25* 10-6 /V2 * 20µm/0.6µm) – 0.915V = 2.8V
  • 6. Calculations: - Calculation of sizes of the transistors M5, M4 1. To determine W5 From requirement to keep M5 in saturation region: VTH ≤VGS5 = Vbias1(min) + VTHp – Vph (max) = 2.8V +0.9V – 3.0V = 0.7V W5 = (2InL5 )/(K1 (VGS5 -VTHN )2 ) = (2 * 1.2µA * 0.6µm)/(50µA/V2 * (0.7V – 0.617V)2 ) = 4µm
  • 7. Calculations: - Calculation of sizes of the transistors M5, M4 2. To determine W4 VDS4 ≥VGS4 – VTHN VDS4 = Vph (min) = 0.8V Assumed VGS4 = 0.75V W4 = (2InL4 )/(K1 (VGS4 -VTHN )2 ) = (2 * 1.2µA * 0.6µm)/(50µA/V2 * (0.75V – 0.617V)2 ) = 1.60µm
  • 8. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 1. To find VGS for M1, M2, M7 VGS1 = VDS1 = VGS2 = VGS1 = √[(2Iout)/(K2 (W/L)2,7 ] + VTHp = √(2 * 1.2µA)/(25µA/V2 * (20/2.4)) + 0.915V = 0.107V + 0.915V = 1V
  • 9. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 2. To find VDS for current mirror: Next we find VDS2 and VDS7 (which are the same in value) VDS2,7 = VDD – VDS6 = VDD - √[(2Iout)/(K1 (W/L)6 ] - VTHN = 5V - √(2 * 1.2µA)/(50µA/V2 * (1.5/8.55)) - 0.617V = 3.85V
  • 10. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 3. To determine W1: Finally, we calculate the size of transistor M1. It's required that Iin = Iout. Consequently, the current conveyor ought to have I1 = I2,7. Assuming L1= L2,7: W1/L1* (1 + ƛpDS2,7) = W2,7/L2,7(1 + ƛpDS2,7) W1 = 2(1 + ƛpDS2,7)/(1 + ƛpDS1) W1 = (20µm*(1+0.2*3.85V)/(1+0.2*1V) = 29.5µm
  • 11. Summary of Transistor Sizes: - Summary of calculated transistor sizes vs the transistor simulation sizes TransistTor Calculated Size Actual Size Used Width(µm) Length(µm) Width(µm) Length(µm) M1 100 0.6 19.55 0.6 M2 100 0.6 21.3 2.4 M3 20 0.6 19.55 0.6 M4 20 0.6 3 0.6 M5 300 0.6 3 1.5
  • 13. - Test Schematic - Test Schematic Test Schematic
  • 14. - Pre-Layout Simulation - Pre-Layout Simulation PRE-LAYOUT DC INPUT TEST
  • 15. - Pre-Layout Simulation- Pre-Layout Simulation PRE-LAYOUT PHASE AND GAIN
  • 17. - Post-Layout Simulation POST LAYOUT DC FIXED INPUT
  • 18. - Post-Layout Simulation POST LAYOUT GAIN AND PHASE