SlideShare a Scribd company logo
Introduction to
CMOS VLSI
Design
Introduction
Manoel E. de Lima
David Harris - Harvey Mudd College
CMOS VLSI Design
0: Introduction Slide 2
Introduction
 Integrated circuits: many transistors on one chip.
 Very Large Scale Integration (VLSI): very many
 Complementary Metal Oxide Semiconductor
– Fast, cheap, low power transistors
 Today: How to build your own simple CMOS chip
– CMOS transistors
– Building logic gates from transistors
– Transistor layout and fabrication
 Rest of the course: How to build a good CMOS chip
CMOS VLSI Design
WHY VLSI DESIGN?
Money, technology, civilization
CMOS VLSI Design
Annual Sales
 1018 transistors manufactured in 2003
 100 million for every human on the planet
0
50
100
150
200
1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002
Year
Global
Semiconductor
Billings
(Billions
of
US$)
CMOS VLSI Design
Digression: Silicon Semiconductors
 Modern electronic chips are built mostly on silicon substrates
 Silicon is a Group IV semiconducting material
 crystal lattice: covalent bonds hold each atom to four neighbors
Si Si
Si
Si Si
Si
Si Si
Si
http://onlineheavytheory.net/silicon.html
CMOS VLSI Design
0: Introduction Slide 6
Silicon Lattice
 Transistors are built on a silicon substrate
 Silicon is a Group IV material
 Forms crystal lattice with bonds to four neighbors
Si Si
Si
Si Si
Si
Si Si
Si
CMOS VLSI Design
0: Introduction Slide 7
Dopants
 Silicon is a semiconductor
 Pure silicon has no free carriers and conducts poorly
 Adding dopants increases the conductivity
 Group V: extra electron (n-type)
 Group III: missing electron, called hole (p-type)
As Si
Si
Si Si
Si
Si Si
Si
B Si
Si
Si Si
Si
Si Si
Si
-
+
+
-
CMOS VLSI Design
0: Introduction Slide 8
p-n Junctions
 A junction between p-type and n-type semiconductor
forms a diode.
 Current flows only in one direction
p-type n-type
anode cathode
CMOS VLSI Design
A Brief History
Invention of the Transistor
 Vacuum tubes ruled in first half of 20th century Large,
expensive, power-hungry, unreliable
 1947: first point contact transistor (3 terminal devices)
 Shockley, Bardeen and Brattain at Bell Labs
CMOS VLSI Design
A Brief History, contd..
 1958: First integrated circuit
 Flip-flop using two transistors
 Built by Jack Kilby (Nobel Laureate) at Texas Instruments
 Robert Noyce (Fairchild) is also considered as a co-inventor
smithsonianchips.si.edu/ augarten/
Kilby’s IC
CMOS VLSI Design
A Brief History, contd.
 First Planer IC built in 1961
 2003
 Intel Pentium 4 processor (55 million transistors)
 512 Mbit DRAM (> 0.5 billion transistors)
 53% compound annual growth rate over 45 years
 No other technology has grown so fast so long
 Driven by miniaturization of transistors
 Smaller is cheaper, faster, lower in power!
 Revolutionary effects on society
CMOS VLSI Design
 1970’s processes usually had only nMOS transistors
Inexpensive, but consume power while idle
 1980s-present: CMOS processes for low idle power
MOS Integrated Circuits
Intel 1101 256-bit SRAM Intel 4004 4-bit Proc
CMOS VLSI Design
Moore’s Law
 1965: Gordon Moore plotted transistor on each chip
 Fit straight line on semilog scale
 Transistor counts have doubled every 26 months
Year
Transistors
4004
8008
8080
8086
80286
Intel386
Intel486
Pentium
Pentium Pro
Pentium II
Pentium III
Pentium 4
1,000
10,000
100,000
1,000,000
10,000,000
100,000,000
1,000,000,000
1970 1975 1980 1985 1990 1995 2000
Integration Levels
SSI: 10 gates
MSI: 1000 gates
LSI: 10,000 gates
VLSI: > 10k gates
http://www.intel.com/technology/silicon/mooreslaw/
CMOS VLSI Design
Transistor Types
 Bipolar transistors
 npn or pnp silicon structure
 Small current into very thin base layer controls large
currents between emitter and collector
 Base currents limit integration density
 Metal Oxide Semiconductor Field Effect Transistors
 nMOS and pMOS MOSFETS
 Voltage applied to insulated gate controls current
between source and drain
 Low power allows very high integration
 First patent in the ’20s in USA and Germany
 Not widely used until the ’60s or ’70s
CMOS VLSI Design
0: Introduction Slide 15
nMOS Transistor
 Four terminals: gate, source, drain, body
 Gate – oxide – body stack looks like a capacitor
– Gate and body are conductors
– SiO2 (oxide) is a very good insulator
– Called metal – oxide – semiconductor (MOS)
capacitor
– Even though gate is
no longer made of metal
n+
p
Gate
Source Drain
bulk Si
SiO2
Polysilicon
n+
CMOS VLSI Design
0: Introduction Slide 16
nMOS Operation
 Body is commonly tied to ground (0 V)
 When the gate is at a low voltage:
– P-type body is at low voltage
– Source-body and drain-body diodes are OFF
– No current flows, transistor is OFF
n+
p
Gate
Source Drain
bulk Si
SiO2
Polysilicon
n+
D
0
S
CMOS VLSI Design
0: Introduction Slide 17
nMOS Operation Cont.
 When the gate is at a high voltage:
– Positive charge on gate of MOS capacitor
– Negative charge attracted to body
– Inverts a channel under gate to n-type
– Now current can flow through n-type silicon from
source through channel to drain, transistor is ON
n+
p
Gate
Source Drain
bulk Si
SiO2
Polysilicon
n+
D
1
S
CMOS VLSI Design
0: Introduction Slide 18
pMOS Transistor
 Similar, but doping and voltages reversed
– Body tied to high voltage (VDD)
– Gate low: transistor ON
– Gate high: transistor OFF
– Bubble indicates inverted behavior
SiO2
n
Gate
Source Drain
bulk Si
Polysilicon
p+ p+
CMOS VLSI Design
0: Introduction Slide 19
Power Supply Voltage
 GND = 0 V
 In 1980’s, VDD = 5V
 VDD has decreased in modern processes
– High VDD would damage modern tiny transistors
– Lower VDD saves power
 VDD = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, …
CMOS VLSI Design
0: Introduction Slide 20
Transistors as Switches
 We can view MOS transistors as electrically
controlled switches
 Voltage at gate controls path from source to drain
g
s
d
g = 0
s
d
g = 1
s
d
g
s
d
s
d
s
d
nMOS
pMOS
OFF
ON
ON
OFF
CMOS VLSI Design
Transistors
Level Symbol Switch Conditions
Strong 1 1 P-switch gate=0, source=Vdd
Weak 1 1 N-switch gate=1, source=Vdd
Strong 0 0 N-switch gate=1, source=Vss
Weak 0 0 P-switch gate=0, source=Vss
High impedance Z N-switch gate=0, or P-switch gate=1
0: Introduction Slide 21
Input
0
Output
Good 0
Input
1
Output
poor 1
Input
0
Output
poor 0
Input
1
Output
good 1
CMOS VLSI Design
0: Introduction Slide 22
Input
0
Output
Good 0
Input
1
Output
poor 1
Input
0
Output
poor 0
Input
1
Output
good 1
CMOS VLSI Design
0: Introduction Slide 23
CMOS Inverter
A Y
0
1
VDD
A Y
GND
A Y
CMOS VLSI Design
0: Introduction Slide 24
CMOS Inverter
A Y
0
1 0
VDD
A=1 Y=0
GND
ON
OFF
A Y
CMOS VLSI Design
0: Introduction Slide 25
CMOS Inverter
A Y
0 1
1 0
VDD
A=0 Y=1
GND
OFF
ON
A Y
CMOS VLSI Design
CMOS Inverter
Vin Vout
Vdd
Vss
Cload
Q1
Q2
Id
1- Vin = Vdd
Análise do circuito:
Vdd=+5V
0V
Vout
Roff
Ron
Cálculo de Vout
Vdd = Ids(Roff+Ron) =>
Vdd = Ids.Roff+Ids.Ron =>
Vdd = Ids.Roff+Vout =>
Vout = Vdd-Ids.Roff 0V

Ids
Ron < 1 Kohms
Roff 1010Kohms
Ids é pequeno, mas Roff é bastante grande

CMOS VLSI Design
CMOS Inverter
• Note que Vh = 5V, VL = 0V, e que Ids = 0A.
• Isto significa que não existe praticamente dissipação de potência.
CMOS VLSI Design
CMOS Inverter
+5V
GND
Vih=´1´
R
+5V
GND
Out
Iol Iil
In
Vol(max) Vil(max)
Tempo (seg)
Tensão(V)
Vil(max)
Nível ´0´
Capacitor carregado (´1´)
Transistor conduz
Ron  1 K
Transistor não conduz
Ron  1 K
CMOS VLSI Design
CMOS Inverter
Vin Vout
Vdd
Vss
Cload
Q1
Q2
Id
2- Vin = 0V
Análise do circuito:
Vdd=+5V
0V
Vout
Ron
Roff
Cálculo de Vout
Vdd = Ids(Roff+Ron) =>
Vdd = Ids.Roff+Ids.Ron =>
Vdd = Vout+Ids.Ron =>
Vout = Vdd-Ids.Ron Vdd=5V

Ids
Ron < 1 Kohms
Roff 1010Kohms
Ids é muito pequeno

CMOS VLSI Design
CMOS Inverter
• Note que Vh = 5V, VL = 0V, e que Ids = 0A.
• Isto significa que não existe praticamente dissipação de potência.
CMOS VLSI Design
CMOS Inverter
+5V
GND
Vil=0
R
+5V
GND
Out
Ioh Iih
In
Voh(min) Vih(min)
Tempo (seg)
Tensão(V)
Vih(min)
Nível ´1´
Capacitor
X
Transistor não conduz
Roff  1010
Transistor conduz
Ron  1 K
CMOS VLSI Design
0: Introduction Slide 32
CMOS NAND Gate
A B Y
0 0
0 1
1 0
1 1
A
B
Y
CMOS VLSI Design
0: Introduction Slide 33
CMOS NAND Gate
A B Y
0 0 1
0 1
1 0
1 1
A=0
B=0
Y=1
OFF
ON ON
OFF
CMOS VLSI Design
0: Introduction Slide 34
CMOS NAND Gate
A B Y
0 0 1
0 1 1
1 0
1 1
A=0
B=1
Y=1
OFF
OFF ON
ON
CMOS VLSI Design
0: Introduction Slide 35
CMOS NAND Gate
A B Y
0 0 1
0 1 1
1 0 1
1 1
A=1
B=0
Y=1
ON
ON OFF
OFF
CMOS VLSI Design
0: Introduction Slide 36
CMOS NAND Gate
A B Y
0 0 1
0 1 1
1 0 1
1 1 0
A=1
B=1
Y=0
ON
OFF OFF
ON
CMOS VLSI Design
Lógica Combinacional
 Porta NAND
saída A
0 1
0 1 1
B
1 1 0
A B
P P
N
N
Vcc (‘1’)
GND (‘0’)
saída
Vcc
GND
A
B
Saída Saída
GND
A
B
C
n
A B C
n
Vcc
Porta NAND de
n-entradas
(A+B)
(A B)
Dual Lógico
CMOS VLSI Design
0: Introduction Slide 38
CMOS NOR Gate
A B Y
0 0 1
0 1 0
1 0 0
1 1 0
A
B
Y
CMOS VLSI Design
Lógica Combinacional
 Porta NOR
A B
N N
P
Vcc (‘1’)
GND (‘0’)
saída
P
Vcc
GND
A
B
saída
Saída
Vcc
n
A
B
C
A B C n
GND
saída A
0 1
0 1 0
B
1 0 0
(A B)
(A+B)
Dual Lógico
CMOS VLSI Design
0: Introduction Slide 40
3-input NAND Gate
 Y pulls low if ALL inputs are 1
 Y pulls high if ANY input is 0
A
B
Y
C
CMOS VLSI Design
0: Introduction Slide 41
Summary
 MOS Transistors are stack of gate, oxide, silicon
 Can be viewed as electrically controlled switches
 Build logic gates out of switches

More Related Content

PPT
aet 402 lecture1.ppt vlsi CIRCUIT DESIGN
PPT
VLSI DESIGN- MOS TRANSISTOR
PDF
Lecture 0.pdf
PPT
Introduction to VLSI design and testing
PDF
CMOS vlsi design chapter 1vvccccffyhdjdjddn
PPT
lect0-intro.ppt
PPT
Lect 0 - intro.ppt
PDF
Lecture on Introduction to VLSI basics and basic logic gates
aet 402 lecture1.ppt vlsi CIRCUIT DESIGN
VLSI DESIGN- MOS TRANSISTOR
Lecture 0.pdf
Introduction to VLSI design and testing
CMOS vlsi design chapter 1vvccccffyhdjdjddn
lect0-intro.ppt
Lect 0 - intro.ppt
Lecture on Introduction to VLSI basics and basic logic gates

Similar to lect00_introducao of Very large scale Integration Tech .ppt (20)

PPT
Layout Fabrication and Elementary Logic Design.ppt
PPT
fabrication of vlsi colmponent by student.ppt
PPT
Layout Fabrication and Elementary Logic Design.ppt
PPT
lec0Fabrication_lecture_series_notes.ppt
PPT
EC6601 VLSI Design CMOS Fabrication
PPT
PPT
PPT
lec0Fab.ppt
PPT
EEE 4157_Lecture_7_8_9.ppt
PPTX
VLSIM11.pptx
PPT
Cmos fabrication by suvayan samanta
PPT
CMOS_design.ppt
PPT
Cmos design
PPT
cmos-fabrication and nmos fabrication.ppt
PPT
lecture_04.ppt
PPTX
Lect 2 CMOS Transistor Theory.pptx
PPTX
VLSI DESIGN BASICS TRANSISTOR THEORY AND MOS TRANSISTOR.pptx
PPT
Lec0 fab
PPT
Lec0 fab
Layout Fabrication and Elementary Logic Design.ppt
fabrication of vlsi colmponent by student.ppt
Layout Fabrication and Elementary Logic Design.ppt
lec0Fabrication_lecture_series_notes.ppt
EC6601 VLSI Design CMOS Fabrication
lec0Fab.ppt
EEE 4157_Lecture_7_8_9.ppt
VLSIM11.pptx
Cmos fabrication by suvayan samanta
CMOS_design.ppt
Cmos design
cmos-fabrication and nmos fabrication.ppt
lecture_04.ppt
Lect 2 CMOS Transistor Theory.pptx
VLSI DESIGN BASICS TRANSISTOR THEORY AND MOS TRANSISTOR.pptx
Lec0 fab
Lec0 fab
Ad

Recently uploaded (20)

PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPT
Mechanical Engineering MATERIALS Selection
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
web development for engineering and engineering
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
PPT on Performance Review to get promotions
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Well-logging-methods_new................
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Mechanical Engineering MATERIALS Selection
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Foundation to blockchain - A guide to Blockchain Tech
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
web development for engineering and engineering
R24 SURVEYING LAB MANUAL for civil enggi
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Automation-in-Manufacturing-Chapter-Introduction.pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPT on Performance Review to get promotions
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Well-logging-methods_new................
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Ad

lect00_introducao of Very large scale Integration Tech .ppt

  • 1. Introduction to CMOS VLSI Design Introduction Manoel E. de Lima David Harris - Harvey Mudd College
  • 2. CMOS VLSI Design 0: Introduction Slide 2 Introduction  Integrated circuits: many transistors on one chip.  Very Large Scale Integration (VLSI): very many  Complementary Metal Oxide Semiconductor – Fast, cheap, low power transistors  Today: How to build your own simple CMOS chip – CMOS transistors – Building logic gates from transistors – Transistor layout and fabrication  Rest of the course: How to build a good CMOS chip
  • 3. CMOS VLSI Design WHY VLSI DESIGN? Money, technology, civilization
  • 4. CMOS VLSI Design Annual Sales  1018 transistors manufactured in 2003  100 million for every human on the planet 0 50 100 150 200 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 Year Global Semiconductor Billings (Billions of US$)
  • 5. CMOS VLSI Design Digression: Silicon Semiconductors  Modern electronic chips are built mostly on silicon substrates  Silicon is a Group IV semiconducting material  crystal lattice: covalent bonds hold each atom to four neighbors Si Si Si Si Si Si Si Si Si http://onlineheavytheory.net/silicon.html
  • 6. CMOS VLSI Design 0: Introduction Slide 6 Silicon Lattice  Transistors are built on a silicon substrate  Silicon is a Group IV material  Forms crystal lattice with bonds to four neighbors Si Si Si Si Si Si Si Si Si
  • 7. CMOS VLSI Design 0: Introduction Slide 7 Dopants  Silicon is a semiconductor  Pure silicon has no free carriers and conducts poorly  Adding dopants increases the conductivity  Group V: extra electron (n-type)  Group III: missing electron, called hole (p-type) As Si Si Si Si Si Si Si Si B Si Si Si Si Si Si Si Si - + + -
  • 8. CMOS VLSI Design 0: Introduction Slide 8 p-n Junctions  A junction between p-type and n-type semiconductor forms a diode.  Current flows only in one direction p-type n-type anode cathode
  • 9. CMOS VLSI Design A Brief History Invention of the Transistor  Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable  1947: first point contact transistor (3 terminal devices)  Shockley, Bardeen and Brattain at Bell Labs
  • 10. CMOS VLSI Design A Brief History, contd..  1958: First integrated circuit  Flip-flop using two transistors  Built by Jack Kilby (Nobel Laureate) at Texas Instruments  Robert Noyce (Fairchild) is also considered as a co-inventor smithsonianchips.si.edu/ augarten/ Kilby’s IC
  • 11. CMOS VLSI Design A Brief History, contd.  First Planer IC built in 1961  2003  Intel Pentium 4 processor (55 million transistors)  512 Mbit DRAM (> 0.5 billion transistors)  53% compound annual growth rate over 45 years  No other technology has grown so fast so long  Driven by miniaturization of transistors  Smaller is cheaper, faster, lower in power!  Revolutionary effects on society
  • 12. CMOS VLSI Design  1970’s processes usually had only nMOS transistors Inexpensive, but consume power while idle  1980s-present: CMOS processes for low idle power MOS Integrated Circuits Intel 1101 256-bit SRAM Intel 4004 4-bit Proc
  • 13. CMOS VLSI Design Moore’s Law  1965: Gordon Moore plotted transistor on each chip  Fit straight line on semilog scale  Transistor counts have doubled every 26 months Year Transistors 4004 8008 8080 8086 80286 Intel386 Intel486 Pentium Pentium Pro Pentium II Pentium III Pentium 4 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000 1,000,000,000 1970 1975 1980 1985 1990 1995 2000 Integration Levels SSI: 10 gates MSI: 1000 gates LSI: 10,000 gates VLSI: > 10k gates http://www.intel.com/technology/silicon/mooreslaw/
  • 14. CMOS VLSI Design Transistor Types  Bipolar transistors  npn or pnp silicon structure  Small current into very thin base layer controls large currents between emitter and collector  Base currents limit integration density  Metal Oxide Semiconductor Field Effect Transistors  nMOS and pMOS MOSFETS  Voltage applied to insulated gate controls current between source and drain  Low power allows very high integration  First patent in the ’20s in USA and Germany  Not widely used until the ’60s or ’70s
  • 15. CMOS VLSI Design 0: Introduction Slide 15 nMOS Transistor  Four terminals: gate, source, drain, body  Gate – oxide – body stack looks like a capacitor – Gate and body are conductors – SiO2 (oxide) is a very good insulator – Called metal – oxide – semiconductor (MOS) capacitor – Even though gate is no longer made of metal n+ p Gate Source Drain bulk Si SiO2 Polysilicon n+
  • 16. CMOS VLSI Design 0: Introduction Slide 16 nMOS Operation  Body is commonly tied to ground (0 V)  When the gate is at a low voltage: – P-type body is at low voltage – Source-body and drain-body diodes are OFF – No current flows, transistor is OFF n+ p Gate Source Drain bulk Si SiO2 Polysilicon n+ D 0 S
  • 17. CMOS VLSI Design 0: Introduction Slide 17 nMOS Operation Cont.  When the gate is at a high voltage: – Positive charge on gate of MOS capacitor – Negative charge attracted to body – Inverts a channel under gate to n-type – Now current can flow through n-type silicon from source through channel to drain, transistor is ON n+ p Gate Source Drain bulk Si SiO2 Polysilicon n+ D 1 S
  • 18. CMOS VLSI Design 0: Introduction Slide 18 pMOS Transistor  Similar, but doping and voltages reversed – Body tied to high voltage (VDD) – Gate low: transistor ON – Gate high: transistor OFF – Bubble indicates inverted behavior SiO2 n Gate Source Drain bulk Si Polysilicon p+ p+
  • 19. CMOS VLSI Design 0: Introduction Slide 19 Power Supply Voltage  GND = 0 V  In 1980’s, VDD = 5V  VDD has decreased in modern processes – High VDD would damage modern tiny transistors – Lower VDD saves power  VDD = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, …
  • 20. CMOS VLSI Design 0: Introduction Slide 20 Transistors as Switches  We can view MOS transistors as electrically controlled switches  Voltage at gate controls path from source to drain g s d g = 0 s d g = 1 s d g s d s d s d nMOS pMOS OFF ON ON OFF
  • 21. CMOS VLSI Design Transistors Level Symbol Switch Conditions Strong 1 1 P-switch gate=0, source=Vdd Weak 1 1 N-switch gate=1, source=Vdd Strong 0 0 N-switch gate=1, source=Vss Weak 0 0 P-switch gate=0, source=Vss High impedance Z N-switch gate=0, or P-switch gate=1 0: Introduction Slide 21 Input 0 Output Good 0 Input 1 Output poor 1 Input 0 Output poor 0 Input 1 Output good 1
  • 22. CMOS VLSI Design 0: Introduction Slide 22 Input 0 Output Good 0 Input 1 Output poor 1 Input 0 Output poor 0 Input 1 Output good 1
  • 23. CMOS VLSI Design 0: Introduction Slide 23 CMOS Inverter A Y 0 1 VDD A Y GND A Y
  • 24. CMOS VLSI Design 0: Introduction Slide 24 CMOS Inverter A Y 0 1 0 VDD A=1 Y=0 GND ON OFF A Y
  • 25. CMOS VLSI Design 0: Introduction Slide 25 CMOS Inverter A Y 0 1 1 0 VDD A=0 Y=1 GND OFF ON A Y
  • 26. CMOS VLSI Design CMOS Inverter Vin Vout Vdd Vss Cload Q1 Q2 Id 1- Vin = Vdd Análise do circuito: Vdd=+5V 0V Vout Roff Ron Cálculo de Vout Vdd = Ids(Roff+Ron) => Vdd = Ids.Roff+Ids.Ron => Vdd = Ids.Roff+Vout => Vout = Vdd-Ids.Roff 0V  Ids Ron < 1 Kohms Roff 1010Kohms Ids é pequeno, mas Roff é bastante grande 
  • 27. CMOS VLSI Design CMOS Inverter • Note que Vh = 5V, VL = 0V, e que Ids = 0A. • Isto significa que não existe praticamente dissipação de potência.
  • 28. CMOS VLSI Design CMOS Inverter +5V GND Vih=´1´ R +5V GND Out Iol Iil In Vol(max) Vil(max) Tempo (seg) Tensão(V) Vil(max) Nível ´0´ Capacitor carregado (´1´) Transistor conduz Ron  1 K Transistor não conduz Ron  1 K
  • 29. CMOS VLSI Design CMOS Inverter Vin Vout Vdd Vss Cload Q1 Q2 Id 2- Vin = 0V Análise do circuito: Vdd=+5V 0V Vout Ron Roff Cálculo de Vout Vdd = Ids(Roff+Ron) => Vdd = Ids.Roff+Ids.Ron => Vdd = Vout+Ids.Ron => Vout = Vdd-Ids.Ron Vdd=5V  Ids Ron < 1 Kohms Roff 1010Kohms Ids é muito pequeno 
  • 30. CMOS VLSI Design CMOS Inverter • Note que Vh = 5V, VL = 0V, e que Ids = 0A. • Isto significa que não existe praticamente dissipação de potência.
  • 31. CMOS VLSI Design CMOS Inverter +5V GND Vil=0 R +5V GND Out Ioh Iih In Voh(min) Vih(min) Tempo (seg) Tensão(V) Vih(min) Nível ´1´ Capacitor X Transistor não conduz Roff  1010 Transistor conduz Ron  1 K
  • 32. CMOS VLSI Design 0: Introduction Slide 32 CMOS NAND Gate A B Y 0 0 0 1 1 0 1 1 A B Y
  • 33. CMOS VLSI Design 0: Introduction Slide 33 CMOS NAND Gate A B Y 0 0 1 0 1 1 0 1 1 A=0 B=0 Y=1 OFF ON ON OFF
  • 34. CMOS VLSI Design 0: Introduction Slide 34 CMOS NAND Gate A B Y 0 0 1 0 1 1 1 0 1 1 A=0 B=1 Y=1 OFF OFF ON ON
  • 35. CMOS VLSI Design 0: Introduction Slide 35 CMOS NAND Gate A B Y 0 0 1 0 1 1 1 0 1 1 1 A=1 B=0 Y=1 ON ON OFF OFF
  • 36. CMOS VLSI Design 0: Introduction Slide 36 CMOS NAND Gate A B Y 0 0 1 0 1 1 1 0 1 1 1 0 A=1 B=1 Y=0 ON OFF OFF ON
  • 37. CMOS VLSI Design Lógica Combinacional  Porta NAND saída A 0 1 0 1 1 B 1 1 0 A B P P N N Vcc (‘1’) GND (‘0’) saída Vcc GND A B Saída Saída GND A B C n A B C n Vcc Porta NAND de n-entradas (A+B) (A B) Dual Lógico
  • 38. CMOS VLSI Design 0: Introduction Slide 38 CMOS NOR Gate A B Y 0 0 1 0 1 0 1 0 0 1 1 0 A B Y
  • 39. CMOS VLSI Design Lógica Combinacional  Porta NOR A B N N P Vcc (‘1’) GND (‘0’) saída P Vcc GND A B saída Saída Vcc n A B C A B C n GND saída A 0 1 0 1 0 B 1 0 0 (A B) (A+B) Dual Lógico
  • 40. CMOS VLSI Design 0: Introduction Slide 40 3-input NAND Gate  Y pulls low if ALL inputs are 1  Y pulls high if ANY input is 0 A B Y C
  • 41. CMOS VLSI Design 0: Introduction Slide 41 Summary  MOS Transistors are stack of gate, oxide, silicon  Can be viewed as electrically controlled switches  Build logic gates out of switches