SlideShare a Scribd company logo
Numerical Simulation Exercise on B-spline Function
Subject: Image Procesing & Computer Vision
Dr. Varun Kumar
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 1 / 12
Outlines
1 Graphical Representation of B-spline Function
2 Relation Between Sampling and Interpolation
3 B-spline function
4 References
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 2 / 12
Resampling and interpolation
1D sampling operation
In this given figure, no value of amplitude exist for intermediate location in
time axis. We need interpolation for solving such a problem.
Desirable properties of interpolation:
1 Finite region of support
2 Smooth interpolation no-discontinuity
3 Shift invariant
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 3 / 12
B-spline function:
It is a piece wise polynomial function.
It is useful for local approximation of a curve.
Mathematical representation:
x(t) =
n
i=0
pi Bi,k(t) (1)
pi → control point how the B-spline function should be guided for
smooth curve.
Bi,k(t) → Normalized B-spline of order k
Bi,1(t) = 1 ∀ ti < t < 1
= 0 otherwise
(2)
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 4 / 12
Continued–
Bi,k(t) =
(t − ti )Bi,k−1(t)
ti+k−1 − ti
+
(ti+1 − 1)Bi+1,k1(t)
ti+k − ti+1
(3)
Conversion
Bi,k(t) = B0,k(t − i)
or
B0,1(t) = 1 ∀ 0 ≤ t < 1
= 0 otherwise
(4)
or
B0,2(t) = t ∀ 0 ≤ t < 1
= 2 − t ∀ 1 ≤ t < 2
= 0 otherwise
(5)
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 5 / 12
Continued–
B0,3(t) = t2
/2 ∀ 0 ≤ t < 1
= −t2
+ 3t − 1.5 ∀ 1 ≤ t < 2
= (3 − t)2
/2 ∀ 2 ≤ t < 3
= 0 otherwise
(6)
or
B0,4(t) = t3
/6 ∀ 0 ≤ t < 1
=
−3t3 + 12t2 − 12t + 4
6
∀ 1 ≤ t < 2
=
3t3 − 24t2 + 60t − 44
6
∀ 2 ≤ t < 3
=
(4 − t)3
6
∀ 3 ≤ t < 4
= 0 otherwise
(7)
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 6 / 12
Different interpolation
Constant interpolation
Linear interpolation
Quadratic interpolation
Cubic and higher order interpolation
f (t) =
n
i=0
pi Bi,1(t) ⇒ Bi,1 = 1
Q A sampled data is given as
x(n)= {1, 2, 0.75, 0.55, 0.8, 0.75, 0.9, 1.5, 1.1, 0.45, 0.35} ∀ 0 ≤ n ≤ 10
= 0 otherwise
Convert it into a continuous time signal x(t) ∀ 0 ≤ t ≤ 10 through
the different B-spline interpolation function.
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 7 / 12
Graphical representation of B-spline function
0 5 10
0
0.5
1
1.5
B0,1
(t)
0 5 10
0
0.5
1
1.5
B0,2
(t)
0 5 10
0
0.5
1
1.5
B0,3
(t)
0 5 10
0
0.5
1
1.5
B0,4
(t)
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 8 / 12
Constant Interpolation
0 1 2 3 4 5 6 7 8 9 10
0
0.5
1
1.5
2
2.5
Sampled data
0 1 2 3 4 5 6 7 8 9 10
0
0.5
1
1.5
2
2.5
Constant Interpolation
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 9 / 12
Linear Interpolation
0 1 2 3 4 5 6 7 8 9 10
0
0.5
1
1.5
2
2.5
Sample Data
0 1 2 3 4 5 6 7 8 9 10
0
0.5
1
1.5
2
2.5
Linear Interpolation
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 10 / 12
Cubic Interpolation
0 1 2 3 4 5 6 7 8 9 10
0
0.5
1
1.5
2
2.5
Sample Data
0 1 2 3 4 5 6 7 8 9 10
0
0.5
1
1.5
2
2.5
Cubic Interpolation
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 11 / 12
References
M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision.
Cengage Learning, 2014.
D. A. Forsyth and J. Ponce, “A modern approach,” Computer vision: a modern
approach, vol. 17, pp. 21–48, 2003.
L. Shapiro and G. Stockman, “Computer vision prentice hall,” Inc., New Jersey,
2001.
R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using
MATLAB. Pearson Education India, 2004.
Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 12 / 12

More Related Content

PDF
Image Registration (Digital Image Processing)
PPTX
Principal component analysis
PDF
A Correlative Information-Theoretic Measure for Image Similarity
PDF
Dimensionality Reduction
PDF
Pca ankita dubey
PDF
IRJET- Matrix Multiplication using Strassen’s Method
PPTX
"Principal Component Analysis - the original paper" presentation @ Papers We ...
PDF
Neural Networks: Principal Component Analysis (PCA)
Image Registration (Digital Image Processing)
Principal component analysis
A Correlative Information-Theoretic Measure for Image Similarity
Dimensionality Reduction
Pca ankita dubey
IRJET- Matrix Multiplication using Strassen’s Method
"Principal Component Analysis - the original paper" presentation @ Papers We ...
Neural Networks: Principal Component Analysis (PCA)

What's hot (19)

PDF
Rs lab 06
DOCX
Dynamic clustering algorithm using fuzzy c means
PPTX
Implement principal component analysis (PCA) in python from scratch
PDF
07 dimensionality reduction
PDF
Principal Component Analysis
PDF
A Novel Low Complexity Histogram Algorithm for High Performance Image Process...
PDF
Probabilistic PCA, EM, and more
PPTX
Wasserstein 1031 thesis [Chung il kim]
PPTX
Principal Component Analysis (PCA) and LDA PPT Slides
PDF
Introducing the Concept of Back-Inking as an Efficient Model for Document Ret...
PPTX
Self-organizing map
PPTX
Principal Component Analysis For Novelty Detection
PDF
Principal component analysis and lda
PPTX
PDF
The Gaussian Process Latent Variable Model (GPLVM)
PPT
Basics of CT- Lecture 9.ppt
PDF
Principal Component Analysis(PCA) understanding document
PPTX
PPT
Understandig PCA and LDA
Rs lab 06
Dynamic clustering algorithm using fuzzy c means
Implement principal component analysis (PCA) in python from scratch
07 dimensionality reduction
Principal Component Analysis
A Novel Low Complexity Histogram Algorithm for High Performance Image Process...
Probabilistic PCA, EM, and more
Wasserstein 1031 thesis [Chung il kim]
Principal Component Analysis (PCA) and LDA PPT Slides
Introducing the Concept of Back-Inking as an Efficient Model for Document Ret...
Self-organizing map
Principal Component Analysis For Novelty Detection
Principal component analysis and lda
The Gaussian Process Latent Variable Model (GPLVM)
Basics of CT- Lecture 9.ppt
Principal Component Analysis(PCA) understanding document
Understandig PCA and LDA
Ad

Similar to Lecture 10 (Digital Image Processing) (20)

PDF
Lecture 9 (Digital Image Processing)
PDF
Lecture 11 (Digital Image Processing)
PPTX
DIP_Lecture-35_36_RKJ_Interpolation_Resampling_Unitary_Transformations1.pptx
PPT
Final image processing
PDF
Image Interpolation Techniques in Digital Image Processing: An Overview
PPTX
Application of interpolation in CSE
PDF
Performance analysis of high resolution images using interpolation techniques...
PDF
Lecture-11.pdf
PDF
Interpolation
PDF
H infinity optimal_approximation_for_cau
PDF
Interpolation
PDF
Interpolation wikipedia
PDF
$$$ Cheap breville bta630 xl
PDF
$$$ Cheap breville bta630 xl
PDF
E046012533
PPT
Maths Topic on spline interpolation methods
DOCX
Computer vision,,summer training programme
PPTX
Image Interpolation Techniques with Optical and Digital Zoom Concepts
Lecture 9 (Digital Image Processing)
Lecture 11 (Digital Image Processing)
DIP_Lecture-35_36_RKJ_Interpolation_Resampling_Unitary_Transformations1.pptx
Final image processing
Image Interpolation Techniques in Digital Image Processing: An Overview
Application of interpolation in CSE
Performance analysis of high resolution images using interpolation techniques...
Lecture-11.pdf
Interpolation
H infinity optimal_approximation_for_cau
Interpolation
Interpolation wikipedia
$$$ Cheap breville bta630 xl
$$$ Cheap breville bta630 xl
E046012533
Maths Topic on spline interpolation methods
Computer vision,,summer training programme
Image Interpolation Techniques with Optical and Digital Zoom Concepts
Ad

More from VARUN KUMAR (20)

PDF
Distributed rc Model
PDF
Electrical Wire Model
PDF
Interconnect Parameter in Digital VLSI Design
PDF
Introduction to Digital VLSI Design
PDF
Challenges of Massive MIMO System
PDF
E-democracy or Digital Democracy
PDF
Ethics of Parasitic Computing
PDF
Action Lines of Geneva Plan of Action
PDF
Geneva Plan of Action
PDF
Fair Use in the Electronic Age
PDF
Software as a Property
PDF
Orthogonal Polynomial
PDF
Patent Protection
PDF
Copyright Vs Patent and Trade Secrecy Law
PDF
Property Right and Software
PDF
Investigating Data Trials
PDF
Gaussian Numerical Integration
PDF
Censorship and Controversy
PDF
Romberg's Integration
PDF
Introduction to Censorship
Distributed rc Model
Electrical Wire Model
Interconnect Parameter in Digital VLSI Design
Introduction to Digital VLSI Design
Challenges of Massive MIMO System
E-democracy or Digital Democracy
Ethics of Parasitic Computing
Action Lines of Geneva Plan of Action
Geneva Plan of Action
Fair Use in the Electronic Age
Software as a Property
Orthogonal Polynomial
Patent Protection
Copyright Vs Patent and Trade Secrecy Law
Property Right and Software
Investigating Data Trials
Gaussian Numerical Integration
Censorship and Controversy
Romberg's Integration
Introduction to Censorship

Recently uploaded (20)

PPTX
UNIT 4 Total Quality Management .pptx
PPT
Mechanical Engineering MATERIALS Selection
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Sustainable Sites - Green Building Construction
PDF
Digital Logic Computer Design lecture notes
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
additive manufacturing of ss316l using mig welding
PPTX
web development for engineering and engineering
PDF
composite construction of structures.pdf
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
UNIT 4 Total Quality Management .pptx
Mechanical Engineering MATERIALS Selection
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Sustainable Sites - Green Building Construction
Digital Logic Computer Design lecture notes
bas. eng. economics group 4 presentation 1.pptx
Operating System & Kernel Study Guide-1 - converted.pdf
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
additive manufacturing of ss316l using mig welding
web development for engineering and engineering
composite construction of structures.pdf
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
OOP with Java - Java Introduction (Basics)
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...

Lecture 10 (Digital Image Processing)

  • 1. Numerical Simulation Exercise on B-spline Function Subject: Image Procesing & Computer Vision Dr. Varun Kumar Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 1 / 12
  • 2. Outlines 1 Graphical Representation of B-spline Function 2 Relation Between Sampling and Interpolation 3 B-spline function 4 References Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 2 / 12
  • 3. Resampling and interpolation 1D sampling operation In this given figure, no value of amplitude exist for intermediate location in time axis. We need interpolation for solving such a problem. Desirable properties of interpolation: 1 Finite region of support 2 Smooth interpolation no-discontinuity 3 Shift invariant Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 3 / 12
  • 4. B-spline function: It is a piece wise polynomial function. It is useful for local approximation of a curve. Mathematical representation: x(t) = n i=0 pi Bi,k(t) (1) pi → control point how the B-spline function should be guided for smooth curve. Bi,k(t) → Normalized B-spline of order k Bi,1(t) = 1 ∀ ti < t < 1 = 0 otherwise (2) Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 4 / 12
  • 5. Continued– Bi,k(t) = (t − ti )Bi,k−1(t) ti+k−1 − ti + (ti+1 − 1)Bi+1,k1(t) ti+k − ti+1 (3) Conversion Bi,k(t) = B0,k(t − i) or B0,1(t) = 1 ∀ 0 ≤ t < 1 = 0 otherwise (4) or B0,2(t) = t ∀ 0 ≤ t < 1 = 2 − t ∀ 1 ≤ t < 2 = 0 otherwise (5) Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 5 / 12
  • 6. Continued– B0,3(t) = t2 /2 ∀ 0 ≤ t < 1 = −t2 + 3t − 1.5 ∀ 1 ≤ t < 2 = (3 − t)2 /2 ∀ 2 ≤ t < 3 = 0 otherwise (6) or B0,4(t) = t3 /6 ∀ 0 ≤ t < 1 = −3t3 + 12t2 − 12t + 4 6 ∀ 1 ≤ t < 2 = 3t3 − 24t2 + 60t − 44 6 ∀ 2 ≤ t < 3 = (4 − t)3 6 ∀ 3 ≤ t < 4 = 0 otherwise (7) Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 6 / 12
  • 7. Different interpolation Constant interpolation Linear interpolation Quadratic interpolation Cubic and higher order interpolation f (t) = n i=0 pi Bi,1(t) ⇒ Bi,1 = 1 Q A sampled data is given as x(n)= {1, 2, 0.75, 0.55, 0.8, 0.75, 0.9, 1.5, 1.1, 0.45, 0.35} ∀ 0 ≤ n ≤ 10 = 0 otherwise Convert it into a continuous time signal x(t) ∀ 0 ≤ t ≤ 10 through the different B-spline interpolation function. Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 7 / 12
  • 8. Graphical representation of B-spline function 0 5 10 0 0.5 1 1.5 B0,1 (t) 0 5 10 0 0.5 1 1.5 B0,2 (t) 0 5 10 0 0.5 1 1.5 B0,3 (t) 0 5 10 0 0.5 1 1.5 B0,4 (t) Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 8 / 12
  • 9. Constant Interpolation 0 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 Sampled data 0 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 Constant Interpolation Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 9 / 12
  • 10. Linear Interpolation 0 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 Sample Data 0 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 Linear Interpolation Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 10 / 12
  • 11. Cubic Interpolation 0 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 Sample Data 0 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 Cubic Interpolation Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 11 / 12
  • 12. References M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision. Cengage Learning, 2014. D. A. Forsyth and J. Ponce, “A modern approach,” Computer vision: a modern approach, vol. 17, pp. 21–48, 2003. L. Shapiro and G. Stockman, “Computer vision prentice hall,” Inc., New Jersey, 2001. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB. Pearson Education India, 2004. Subject: Image Procesing & Computer Vision Dr. Varun KumarLecture 10 12 / 12