SlideShare a Scribd company logo
4: DC and Transient Response Slide 1
CMOS VLSI Design
EE466: VLSI Design
Lecture 05: DC and transient response –
CMOS Inverters
4: DC and Transient Response Slide 2
CMOS VLSI Design
Outline
 DC Response
 Logic Levels and Noise Margins
 Transient Response
 Delay Estimation
4: DC and Transient Response Slide 3
CMOS VLSI Design
Activity
1) If the width of a transistor increases, the current will
increase decrease not change
2) If the length of a transistor increases, the current will
increase decrease not change
3) If the supply voltage of a chip increases, the maximum
transistor current will
increase decrease not change
4) If the width of a transistor increases, its gate capacitance will
increase decrease not change
5) If the length of a transistor increases, its gate capacitance will
increase decrease not change
6) If the supply voltage of a chip increases, the gate capacitance
of each transistor will
increase decrease not change
4: DC and Transient Response Slide 4
CMOS VLSI Design
Activity
1) If the width of a transistor increases, the current will
increase decrease not change
2) If the length of a transistor increases, the current will
increase decrease not change
3) If the supply voltage of a chip increases, the maximum
transistor current will
increase decrease not change
4) If the width of a transistor increases, its gate capacitance will
increase decrease not change
5) If the length of a transistor increases, its gate capacitance will
increase decrease not change
6) If the supply voltage of a chip increases, the gate capacitance
of each transistor will
increase decrease not change
4: DC and Transient Response Slide 5
CMOS VLSI Design
DC Response
 DC Response: Vout vs. Vin for a gate
 Ex: Inverter
– When Vin = 0 -> Vout = VDD
– When Vin = VDD -> Vout = 0
– In between, Vout depends on
transistor size and current
– By KCL, must settle such that
Idsn = |Idsp|
– We could solve equations
– But graphical solution gives more insight
Idsn
Idsp
Vout
VDD
Vin
4: DC and Transient Response Slide 6
CMOS VLSI Design
Transistor Operation
 Current depends on region of transistor behavior
 For what Vin and Vout are nMOS and pMOS in
– Cutoff?
– Linear?
– Saturation?
4: DC and Transient Response Slide 7
CMOS VLSI Design
nMOS Operation
Cutoff Linear Saturated
Vgsn < Vgsn >
Vdsn <
Vgsn >
Vdsn >
Idsn
Idsp
Vout
VDD
Vin
4: DC and Transient Response Slide 8
CMOS VLSI Design
nMOS Operation
Cutoff Linear Saturated
Vgsn < Vtn Vgsn > Vtn
Vdsn < Vgsn – Vtn
Vgsn > Vtn
Vdsn > Vgsn – Vtn
Idsn
Idsp
Vout
VDD
Vin
4: DC and Transient Response Slide 9
CMOS VLSI Design
nMOS Operation
Cutoff Linear Saturated
Vgsn < Vtn Vgsn > Vtn
Vdsn < Vgsn – Vtn
Vgsn > Vtn
Vdsn > Vgsn – Vtn
Idsn
Idsp
Vout
VDD
Vin
Vgsn = Vin
Vdsn = Vout
4: DC and Transient Response Slide 10
CMOS VLSI Design
nMOS Operation
Cutoff Linear Saturated
Vgsn < Vtn
Vin < Vtn
Vgsn > Vtn
Vin > Vtn
Vdsn < Vgsn – Vtn
Vout < Vin - Vtn
Vgsn > Vtn
Vin > Vtn
Vdsn > Vgsn – Vtn
Vout > Vin - Vtn
Idsn
Idsp
Vout
VDD
Vin
Vgsn = Vin
Vdsn = Vout
4: DC and Transient Response Slide 11
CMOS VLSI Design
pMOS Operation
Cutoff Linear Saturated
Vgsp > Vgsp <
Vdsp >
Vgsp <
Vdsp <
Idsn
Idsp
Vout
VDD
Vin
4: DC and Transient Response Slide 12
CMOS VLSI Design
pMOS Operation
Cutoff Linear Saturated
Vgsp > Vtp Vgsp < Vtp
Vdsp > Vgsp – Vtp
Vgsp < Vtp
Vdsp < Vgsp – Vtp
Idsn
Idsp
Vout
VDD
Vin
4: DC and Transient Response Slide 13
CMOS VLSI Design
pMOS Operation
Cutoff Linear Saturated
Vgsp > Vtp Vgsp < Vtp
Vdsp > Vgsp – Vtp
Vgsp < Vtp
Vdsp < Vgsp – Vtp
Idsn
Idsp
Vout
VDD
Vin
Vgsp = Vin - VDD
Vdsp = Vout - VDD
Vtp < 0
4: DC and Transient Response Slide 14
CMOS VLSI Design
pMOS Operation
Cutoff Linear Saturated
Vgsp > Vtp
Vin > VDD + Vtp
Vgsp < Vtp
Vin < VDD + Vtp
Vdsp > Vgsp – Vtp
Vout > Vin - Vtp
Vgsp < Vtp
Vin < VDD + Vtp
Vdsp < Vgsp – Vtp
Vout < Vin - Vtp
Idsn
Idsp
Vout
VDD
Vin
Vgsp = Vin - VDD
Vdsp = Vout - VDD
Vtp < 0
4: DC and Transient Response Slide 15
CMOS VLSI Design
I-V Characteristics
 Make pMOS is wider than nMOS such that n = p
Vgsn5
Vgsn4
Vgsn3
Vgsn2
Vgsn1
Vgsp5
Vgsp4
Vgsp3
Vgsp2
Vgsp1
VDD
-VDD
Vdsn
-Vdsp
-Idsp
Idsn
0
4: DC and Transient Response Slide 16
CMOS VLSI Design
Current vs. Vout, Vin
Vin5
Vin4
Vin3
Vin2
Vin1
Vin0
Vin1
Vin2
Vin3
Vin4
Idsn, |Idsp|
Vout
VDD
4: DC and Transient Response Slide 17
CMOS VLSI Design
Load Line Analysis
Vin5
Vin4
Vin3
Vin2
Vin1
Vin0
Vin1
Vin2
Vin3
Vin4
Idsn, |Idsp|
Vout
VDD
 For a given Vin:
– Plot Idsn, Idsp vs. Vout
– Vout must be where |currents| are equal in
Idsn
Idsp
Vout
VDD
Vin
4: DC and Transient Response Slide 18
CMOS VLSI Design
Load Line Analysis
Vin0
Vin0
Idsn, |Idsp|
Vout
VDD
 Vin = 0
4: DC and Transient Response Slide 19
CMOS VLSI Design
Load Line Analysis
Vin1
Vin1
Idsn, |Idsp|
Vout
VDD
 Vin = 0.2VDD
4: DC and Transient Response Slide 20
CMOS VLSI Design
Load Line Analysis
Vin2
Vin2
Idsn, |Idsp|
Vout
VDD
 Vin = 0.4VDD
4: DC and Transient Response Slide 21
CMOS VLSI Design
Load Line Analysis
Vin3
Vin3
Idsn, |Idsp|
Vout
VDD
 Vin = 0.6VDD
4: DC and Transient Response Slide 22
CMOS VLSI Design
Load Line Analysis
Vin4
Vin4
Idsn, |Idsp|
Vout
VDD
 Vin = 0.8VDD
4: DC and Transient Response Slide 23
CMOS VLSI Design
Load Line Analysis
Vin5
Vin0
Vin1
Vin2
Vin3
Vin4
Idsn, |Idsp|
Vout
VDD
 Vin = VDD
4: DC and Transient Response Slide 24
CMOS VLSI Design
Load Line Summary
Vin5
Vin4
Vin3
Vin2
Vin1
Vin0
Vin1
Vin2
Vin3
Vin4
Idsn, |Idsp|
Vout
VDD
4: DC and Transient Response Slide 25
CMOS VLSI Design
DC Transfer Curve
 Transcribe points onto Vin vs. Vout plot
Vin5
Vin4
Vin3
Vin2
Vin1
Vin0
Vin1
Vin2
Vin3
Vin4
Vout
VDD
C
Vout
0
Vin
VDD
VDD
A B
D
E
Vtn
VDD
/2 VDD
+Vtp
4: DC and Transient Response Slide 26
CMOS VLSI Design
Operating Regions
 Revisit transistor operating regions
C
Vout
0
Vin
VDD
VDD
A B
D
E
Vtn
VDD
/2 VDD
+Vtp
Region nMOS pMOS
A
B
C
D
E
4: DC and Transient Response Slide 27
CMOS VLSI Design
Operating Regions
 Revisit transistor operating regions
C
Vout
0
Vin
VDD
VDD
A B
D
E
Vtn
VDD
/2 VDD
+Vtp
Region nMOS pMOS
A Cutoff Linear
B Saturation Linear
C Saturation Saturation
D Linear Saturation
E Linear Cutoff
4: DC and Transient Response Slide 28
CMOS VLSI Design
Beta Ratio
 If p / n  1, switching point will move from VDD/2
 Called skewed gate
 Other gates: collapse into equivalent inverter
Vout
0
Vin
VDD
VDD
0.5
1
2
10
p
n



0.1
p
n



4: DC and Transient Response Slide 29
CMOS VLSI Design
Noise Margins
 How much noise can a gate input see before it does
not recognize the input?
Indeterminate
Region
NML
NMH
Input Characteristics
Output Characteristics
VOH
VDD
VOL
GND
VIH
VIL
Logical High
Input Range
Logical Low
Input Range
Logical High
Output Range
Logical Low
Output Range
4: DC and Transient Response Slide 30
CMOS VLSI Design
Logic Levels
 To maximize noise margins, select logic levels at
VDD
Vin
Vout
VDD
p/n > 1
Vin
Vout
0
4: DC and Transient Response Slide 31
CMOS VLSI Design
Logic Levels
 To maximize noise margins, select logic levels at
– unity gain point of DC transfer characteristic
VDD
Vin
Vout
VOH
VDD
VOL
VIL VIH
Vtn
Unity Gain Points
Slope = -1
VDD
-
|Vtp
|
p/n > 1
Vin
Vout
0
4: DC and Transient Response Slide 32
CMOS VLSI Design
Transient Response
 DC analysis tells us Vout if Vin is constant
 Transient analysis tells us Vout(t) if Vin(t) changes
– Requires solving differential equations
 Input is usually considered to be a step or ramp
– From 0 to VDD or vice versa
4: DC and Transient Response Slide 33
CMOS VLSI Design
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
( )
(
)
)
(
o
i
ut
n
out
V t t
t
V
t
V
d
d
t

 

Vin(t)
Vout(t)
Cload
Idsn(t)
4: DC and Transient Response Slide 34
CMOS VLSI Design
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
0
( )
( )
( )
( )
ou
DD
in
t
out
u t t V
d
d
t
t t
V t
V
V
t





Vin(t)
Vout(t)
Cload
Idsn(t)
4: DC and Transient Response Slide 35
CMOS VLSI Design
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
0
(
( )
)
(
(
)
)
DD
D
o
i
D
o t
n
ut
u
V t
u t t V
V
d
d
t
t
V
V
t
t
 



Vin(t)
Vout(t)
Cload
Idsn(t)
4: DC and Transient Response Slide 36
CMOS VLSI Design
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
0
( )
( )
( )
(
(
)
)
DD
DD
loa
d
ou
i
d
t
o
n
ut sn
V
V
u t t V
t t
V t
V
d
dt C
t
I t
 



0
( ) DD t
out
ou
ds
t DD t
n
I t V V
V
V V
V
t t



  

  

Vin(t)
Vout(t)
Cload
Idsn(t)
4: DC and Transient Response Slide 37
CMOS VLSI Design
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
0
( )
( )
( )
(
(
)
)
DD
DD
loa
d
ou
i
d
t
o
n
ut sn
V
V
u t t V
t t
V t
V
d
dt C
t
I t
 



 
0
2
2
0
2
)
)
(
( )
( DD DD t
DD
out
out
out out D t
n
t
ds
D
I V
t t
V V V V
V V V V
V
t
V t
V t






   


 
   
  
 

Vin(t)
Vout(t)
Cload
Idsn(t)
4: DC and Transient Response Slide 38
CMOS VLSI Design
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
0
( )
( )
( )
(
(
)
)
DD
DD
loa
d
ou
i
d
t
o
n
ut sn
V
V
u t t V
t t
V t
V
d
dt C
t
I t
 



 
0
2
2
0
2
)
)
(
( )
( DD DD t
DD
out
out
out out D t
n
t
ds
D
I V
t t
V V V V
V V V V
V
t
V t
V t






   


 
   
  
 

Vout
(t)
Vin
(t)
t0
t
Vin(t)
Vout(t)
Cload
Idsn(t)
4: DC and Transient Response Slide 39
CMOS VLSI Design
Delay Definitions
 tpdr:
 tpdf:
 tpd:
 tr:
 tf: fall time
4: DC and Transient Response Slide 40
CMOS VLSI Design
Delay Definitions
 tpdr: rising propagation delay
– From input to rising output crossing VDD/2
 tpdf: falling propagation delay
– From input to falling output crossing VDD/2
 tpd: average propagation delay
– tpd = (tpdr + tpdf)/2
 tr: rise time
– From output crossing 0.2 VDD to 0.8 VDD
 tf: fall time
– From output crossing 0.8 VDD to 0.2 VDD
4: DC and Transient Response Slide 41
CMOS VLSI Design
Delay Definitions
 tcdr: rising contamination delay
– From input to rising output crossing VDD/2
 tcdf: falling contamination delay
– From input to falling output crossing VDD/2
 tcd: average contamination delay
– tpd = (tcdr + tcdf)/2
4: DC and Transient Response Slide 42
CMOS VLSI Design
Simulated Inverter Delay
 Solving differential equations by hand is too hard
 SPICE simulator solves the equations numerically
– Uses more accurate I-V models too!
 But simulations take time to write
(V)
0.0
0.5
1.0
1.5
2.0
t(s)
0.0 200p 400p 600p 800p 1n
tpdf
= 66ps tpdr
= 83ps
Vin
Vout
4: DC and Transient Response Slide 43
CMOS VLSI Design
Delay Estimation
 We would like to be able to easily estimate delay
– Not as accurate as simulation
– But easier to ask “What if?”
 The step response usually looks like a 1st
order RC
response with a decaying exponential.
 Use RC delay models to estimate delay
– C = total capacitance on output node
– Use effective resistance R
– So that tpd = RC
 Characterize transistors by finding their effective R
– Depends on average current as gate switches
4: DC and Transient Response Slide 44
CMOS VLSI Design
Effective Resistance
 Shockley models have limited value
– Not accurate enough for modern transistors
– Too complicated for much hand analysis
 Simplification: treat transistor as resistor
– Replace Ids(Vds, Vgs) with effective resistance R
• Ids = Vds/R
– R averaged across switching of digital gate
 Too inaccurate to predict current at any given time
– But good enough to predict RC delay
4: DC and Transient Response Slide 45
CMOS VLSI Design
RC Delay Model
 Use equivalent circuits for MOS transistors
– Ideal switch + capacitance and ON resistance
– Unit nMOS has resistance R, capacitance C
– Unit pMOS has resistance 2R, capacitance C
 Capacitance proportional to width
 Resistance inversely proportional to width
k
g
s
d
g
s
d
kC
kC
kC
R/k
k
g
s
d
g
s
d
kC
kC
kC
2R/k
4: DC and Transient Response Slide 46
CMOS VLSI Design
RC Values
 Capacitance
– C = Cg = Cs = Cd = 2 fF/m of gate width
– Values similar across many processes
 Resistance
– R  6 K*m in 0.6um process
– Improves with shorter channel lengths
 Unit transistors
– May refer to minimum contacted device (4/2 )
– Or maybe 1 m wide device
– Doesn’t matter as long as you are consistent
4: DC and Transient Response Slide 47
CMOS VLSI Design
Inverter Delay Estimate
 Estimate the delay of a fanout-of-1 inverter
2
1
A
Y 2
1
4: DC and Transient Response Slide 48
CMOS VLSI Design
Inverter Delay Estimate
 Estimate the delay of a fanout-of-1 inverter
C
C
R
2C
2C
R
2
1
A
Y
C
2C
Y
2
1
4: DC and Transient Response Slide 49
CMOS VLSI Design
Inverter Delay Estimate
 Estimate the delay of a fanout-of-1 inverter
C
C
R
2C
2C
R
2
1
A
Y
C
2C
C
2C
C
2C
R
Y
2
1
4: DC and Transient Response Slide 50
CMOS VLSI Design
Inverter Delay Estimate
 Estimate the delay of a fanout-of-1 inverter
C
C
R
2C
2C
R
2
1
A
Y
C
2C
C
2C
C
2C
R
Y
2
1
d = 6RC
4: DC and Transient Response Slide 51
CMOS VLSI Design
Example: 3-input NAND
 Sketch a 3-input NAND with transistor widths chosen
to achieve effective rise and fall resistances equal to
a unit inverter (R).
4: DC and Transient Response Slide 52
CMOS VLSI Design
Example: 3-input NAND
 Sketch a 3-input NAND with transistor widths chosen
to achieve effective rise and fall resistances equal to
a unit inverter (R).
4: DC and Transient Response Slide 53
CMOS VLSI Design
Example: 3-input NAND
 Sketch a 3-input NAND with transistor widths chosen
to achieve effective rise and fall resistances equal to
a unit inverter (R).
3
3
2
2
2
3
4: DC and Transient Response Slide 54
CMOS VLSI Design
3-input NAND Caps
 Annotate the 3-input NAND gate with gate and
diffusion capacitance.
2 2 2
3
3
3
4: DC and Transient Response Slide 55
CMOS VLSI Design
3-input NAND Caps
 Annotate the 3-input NAND gate with gate and
diffusion capacitance.
2 2 2
3
3
3
3C
3C
3C
3C
2C
2C
2C
2C
2C
2C
3C
3C
3C
2C 2C 2C
4: DC and Transient Response Slide 56
CMOS VLSI Design
3-input NAND Caps
 Annotate the 3-input NAND gate with gate and
diffusion capacitance.
9C
3C
3C
3
3
3
2
2
2
5C
5C
5C
4: DC and Transient Response Slide 57
CMOS VLSI Design
Elmore Delay
 ON transistors look like resistors
 Pullup or pulldown network modeled as RC ladder
 Elmore delay of RC ladder
R1
R2
R3
RN
C1 C2 C3 CN
   
nodes
1 1 1 2 2 1 2
... ...
pd i to source i
i
N N
t R C
R C R R C R R R C
 

       

4: DC and Transient Response Slide 58
CMOS VLSI Design
Example: 2-input NAND
 Estimate worst-case rising and falling delay of 2-
input NAND driving h identical gates.
h copies
2
2
2
2
B
A
x
Y
4: DC and Transient Response Slide 59
CMOS VLSI Design
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
4: DC and Transient Response Slide 60
CMOS VLSI Design
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
R
(6+4h)C
Y
pdr
t 
4: DC and Transient Response Slide 61
CMOS VLSI Design
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
R
(6+4h)C
Y  
6 4
pdr
t h RC
 
4: DC and Transient Response Slide 62
CMOS VLSI Design
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
4: DC and Transient Response Slide 63
CMOS VLSI Design
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
pdf
t 
(6+4h)C
2C
R/2
R/2
x Y
4: DC and Transient Response Slide 64
CMOS VLSI Design
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
      
 
2 2 2
2 6 4
7 4
R R R
pdf
t C h C
h RC
   
 
 
 
(6+4h)C
2C
R/2
R/2
x Y
4: DC and Transient Response Slide 65
CMOS VLSI Design
Delay Components
 Delay has two parts
– Parasitic delay
• 6 or 7 RC
• Independent of load
– Effort delay
• 4h RC
• Proportional to load capacitance
4: DC and Transient Response Slide 66
CMOS VLSI Design
Contamination Delay
 Best-case (contamination) delay can be substantially
less than propagation delay.
 Ex: If both inputs fall simultaneously
6C
2C
2
2
2
2
4hC
B
A
x
Y
R
(6+4h)C
Y
R
 
3 2
cdr
t h RC
 
4: DC and Transient Response Slide 67
CMOS VLSI Design
7C
3C
3C
3
3
3
2
2
2
3C
2C
2C
3C
3C
Isolated
Contacted
Diffusion
Merged
Uncontacted
Diffusion
Shared
Contacted
Diffusion
Diffusion Capacitance
 we assumed contacted diffusion on every s / d.
 Good layout minimizes diffusion area
 Ex: NAND3 layout shares one diffusion contact
– Reduces output capacitance by 2C
– Merged uncontacted diffusion might help too
4: DC and Transient Response Slide 68
CMOS VLSI Design
Layout Comparison
 Which layout is better?
A
VDD
GND
B
Y
A
VDD
GND
B
Y

More Related Content

PPT
lecture_MR in Mosfet Operation and Charecteristics
PPTX
lecture-4_me_v01.pptx
PPT
Ppt 2- req portions
PPT
MOS Device: static and dynamic behavior.ppt
PPT
lecture 5_DC and Transient Response_VLSI.ppt
PPT
Dc Transfer characteristics in VLSI design
PPT
VLSI DESIGN- MOS TRANSISTOR
PPT
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
lecture_MR in Mosfet Operation and Charecteristics
lecture-4_me_v01.pptx
Ppt 2- req portions
MOS Device: static and dynamic behavior.ppt
lecture 5_DC and Transient Response_VLSI.ppt
Dc Transfer characteristics in VLSI design
VLSI DESIGN- MOS TRANSISTOR
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt

Similar to lecture for the Date on 25 and tomorrow _04.ppt (20)

PPT
Stick diagram with EEC 401 Basic VLSI Design.ppt
PPTX
VLSI_MOS.pptx
PDF
EMT529-VLSI-Design-wk1.pdf
PPTX
inveatedpresentationwhich has the details.pptx
PPTX
cmos vlsi design for b.tech 4th year students
PPT
Inverters_VLSI_Design powerpoint presentation
PDF
2016 ch4 delay
PPTX
UNIT-I-CMOS in the filed VLSI CIRCUIT.pptx
PPT
CMOS Transistor
PPTX
Lect 2 CMOS Transistor Theory.pptx
PDF
Lecture on Introduction to VLSI cmos transistor theory
PDF
Chapter 1: Circuit Characterization Of CMOS Circuits.pdf
PPTX
Design of ring oscillator using controlled low voltage swing inverter
PPTX
about mos transistors AND THEIR CHARACTERSTICS
PPT
lecture 3-CMOS Transistor Theory_VLSI1.ppt
PPT
lect00_introducao of Very large scale Integration Tech .ppt
PDF
Tluenotes lehmann
PPT
aet 402 lecture1.ppt vlsi CIRCUIT DESIGN
PPT
VLSI- Unit II
PPT
CMOS VLSI Design: Transistor theory lect3-transistors.ppt
Stick diagram with EEC 401 Basic VLSI Design.ppt
VLSI_MOS.pptx
EMT529-VLSI-Design-wk1.pdf
inveatedpresentationwhich has the details.pptx
cmos vlsi design for b.tech 4th year students
Inverters_VLSI_Design powerpoint presentation
2016 ch4 delay
UNIT-I-CMOS in the filed VLSI CIRCUIT.pptx
CMOS Transistor
Lect 2 CMOS Transistor Theory.pptx
Lecture on Introduction to VLSI cmos transistor theory
Chapter 1: Circuit Characterization Of CMOS Circuits.pdf
Design of ring oscillator using controlled low voltage swing inverter
about mos transistors AND THEIR CHARACTERSTICS
lecture 3-CMOS Transistor Theory_VLSI1.ppt
lect00_introducao of Very large scale Integration Tech .ppt
Tluenotes lehmann
aet 402 lecture1.ppt vlsi CIRCUIT DESIGN
VLSI- Unit II
CMOS VLSI Design: Transistor theory lect3-transistors.ppt
Ad

More from ArunK950324 (7)

PPTX
Review Sepghjvgfdfghjhhh ghhjjjjjt24.pptx
PPT
intro_to_maintenvhjhhgggrttgtance_ppt.ppt
PPT
lecture for vlsi design and course for physical design _07.ppt
PPTX
MTBF Good and good the jigtd hijj_BD.pptx
PPT
Audio for to and songs to listen lecture_05.ppt
PPTX
MTTR_BD for calculation of the gradient .pptx
PPTX
smart-card-ppt.pptx6rto78r66r8tou7t8o7to87t8r
Review Sepghjvgfdfghjhhh ghhjjjjjt24.pptx
intro_to_maintenvhjhhgggrttgtance_ppt.ppt
lecture for vlsi design and course for physical design _07.ppt
MTBF Good and good the jigtd hijj_BD.pptx
Audio for to and songs to listen lecture_05.ppt
MTTR_BD for calculation of the gradient .pptx
smart-card-ppt.pptx6rto78r66r8tou7t8o7to87t8r
Ad

Recently uploaded (20)

PPTX
Cell Types and Its function , kingdom of life
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Classroom Observation Tools for Teachers
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Pharma ospi slides which help in ospi learning
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Cell Types and Its function , kingdom of life
TR - Agricultural Crops Production NC III.pdf
Complications of Minimal Access Surgery at WLH
Abdominal Access Techniques with Prof. Dr. R K Mishra
Pharmacology of Heart Failure /Pharmacotherapy of CHF
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Classroom Observation Tools for Teachers
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
VCE English Exam - Section C Student Revision Booklet
Supply Chain Operations Speaking Notes -ICLT Program
Module 4: Burden of Disease Tutorial Slides S2 2025
Renaissance Architecture: A Journey from Faith to Humanism
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Pharma ospi slides which help in ospi learning
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
FourierSeries-QuestionsWithAnswers(Part-A).pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf

lecture for the Date on 25 and tomorrow _04.ppt

  • 1. 4: DC and Transient Response Slide 1 CMOS VLSI Design EE466: VLSI Design Lecture 05: DC and transient response – CMOS Inverters
  • 2. 4: DC and Transient Response Slide 2 CMOS VLSI Design Outline  DC Response  Logic Levels and Noise Margins  Transient Response  Delay Estimation
  • 3. 4: DC and Transient Response Slide 3 CMOS VLSI Design Activity 1) If the width of a transistor increases, the current will increase decrease not change 2) If the length of a transistor increases, the current will increase decrease not change 3) If the supply voltage of a chip increases, the maximum transistor current will increase decrease not change 4) If the width of a transistor increases, its gate capacitance will increase decrease not change 5) If the length of a transistor increases, its gate capacitance will increase decrease not change 6) If the supply voltage of a chip increases, the gate capacitance of each transistor will increase decrease not change
  • 4. 4: DC and Transient Response Slide 4 CMOS VLSI Design Activity 1) If the width of a transistor increases, the current will increase decrease not change 2) If the length of a transistor increases, the current will increase decrease not change 3) If the supply voltage of a chip increases, the maximum transistor current will increase decrease not change 4) If the width of a transistor increases, its gate capacitance will increase decrease not change 5) If the length of a transistor increases, its gate capacitance will increase decrease not change 6) If the supply voltage of a chip increases, the gate capacitance of each transistor will increase decrease not change
  • 5. 4: DC and Transient Response Slide 5 CMOS VLSI Design DC Response  DC Response: Vout vs. Vin for a gate  Ex: Inverter – When Vin = 0 -> Vout = VDD – When Vin = VDD -> Vout = 0 – In between, Vout depends on transistor size and current – By KCL, must settle such that Idsn = |Idsp| – We could solve equations – But graphical solution gives more insight Idsn Idsp Vout VDD Vin
  • 6. 4: DC and Transient Response Slide 6 CMOS VLSI Design Transistor Operation  Current depends on region of transistor behavior  For what Vin and Vout are nMOS and pMOS in – Cutoff? – Linear? – Saturation?
  • 7. 4: DC and Transient Response Slide 7 CMOS VLSI Design nMOS Operation Cutoff Linear Saturated Vgsn < Vgsn > Vdsn < Vgsn > Vdsn > Idsn Idsp Vout VDD Vin
  • 8. 4: DC and Transient Response Slide 8 CMOS VLSI Design nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vgsn > Vtn Vdsn < Vgsn – Vtn Vgsn > Vtn Vdsn > Vgsn – Vtn Idsn Idsp Vout VDD Vin
  • 9. 4: DC and Transient Response Slide 9 CMOS VLSI Design nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vgsn > Vtn Vdsn < Vgsn – Vtn Vgsn > Vtn Vdsn > Vgsn – Vtn Idsn Idsp Vout VDD Vin Vgsn = Vin Vdsn = Vout
  • 10. 4: DC and Transient Response Slide 10 CMOS VLSI Design nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vin < Vtn Vgsn > Vtn Vin > Vtn Vdsn < Vgsn – Vtn Vout < Vin - Vtn Vgsn > Vtn Vin > Vtn Vdsn > Vgsn – Vtn Vout > Vin - Vtn Idsn Idsp Vout VDD Vin Vgsn = Vin Vdsn = Vout
  • 11. 4: DC and Transient Response Slide 11 CMOS VLSI Design pMOS Operation Cutoff Linear Saturated Vgsp > Vgsp < Vdsp > Vgsp < Vdsp < Idsn Idsp Vout VDD Vin
  • 12. 4: DC and Transient Response Slide 12 CMOS VLSI Design pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vgsp < Vtp Vdsp > Vgsp – Vtp Vgsp < Vtp Vdsp < Vgsp – Vtp Idsn Idsp Vout VDD Vin
  • 13. 4: DC and Transient Response Slide 13 CMOS VLSI Design pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vgsp < Vtp Vdsp > Vgsp – Vtp Vgsp < Vtp Vdsp < Vgsp – Vtp Idsn Idsp Vout VDD Vin Vgsp = Vin - VDD Vdsp = Vout - VDD Vtp < 0
  • 14. 4: DC and Transient Response Slide 14 CMOS VLSI Design pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vin > VDD + Vtp Vgsp < Vtp Vin < VDD + Vtp Vdsp > Vgsp – Vtp Vout > Vin - Vtp Vgsp < Vtp Vin < VDD + Vtp Vdsp < Vgsp – Vtp Vout < Vin - Vtp Idsn Idsp Vout VDD Vin Vgsp = Vin - VDD Vdsp = Vout - VDD Vtp < 0
  • 15. 4: DC and Transient Response Slide 15 CMOS VLSI Design I-V Characteristics  Make pMOS is wider than nMOS such that n = p Vgsn5 Vgsn4 Vgsn3 Vgsn2 Vgsn1 Vgsp5 Vgsp4 Vgsp3 Vgsp2 Vgsp1 VDD -VDD Vdsn -Vdsp -Idsp Idsn 0
  • 16. 4: DC and Transient Response Slide 16 CMOS VLSI Design Current vs. Vout, Vin Vin5 Vin4 Vin3 Vin2 Vin1 Vin0 Vin1 Vin2 Vin3 Vin4 Idsn, |Idsp| Vout VDD
  • 17. 4: DC and Transient Response Slide 17 CMOS VLSI Design Load Line Analysis Vin5 Vin4 Vin3 Vin2 Vin1 Vin0 Vin1 Vin2 Vin3 Vin4 Idsn, |Idsp| Vout VDD  For a given Vin: – Plot Idsn, Idsp vs. Vout – Vout must be where |currents| are equal in Idsn Idsp Vout VDD Vin
  • 18. 4: DC and Transient Response Slide 18 CMOS VLSI Design Load Line Analysis Vin0 Vin0 Idsn, |Idsp| Vout VDD  Vin = 0
  • 19. 4: DC and Transient Response Slide 19 CMOS VLSI Design Load Line Analysis Vin1 Vin1 Idsn, |Idsp| Vout VDD  Vin = 0.2VDD
  • 20. 4: DC and Transient Response Slide 20 CMOS VLSI Design Load Line Analysis Vin2 Vin2 Idsn, |Idsp| Vout VDD  Vin = 0.4VDD
  • 21. 4: DC and Transient Response Slide 21 CMOS VLSI Design Load Line Analysis Vin3 Vin3 Idsn, |Idsp| Vout VDD  Vin = 0.6VDD
  • 22. 4: DC and Transient Response Slide 22 CMOS VLSI Design Load Line Analysis Vin4 Vin4 Idsn, |Idsp| Vout VDD  Vin = 0.8VDD
  • 23. 4: DC and Transient Response Slide 23 CMOS VLSI Design Load Line Analysis Vin5 Vin0 Vin1 Vin2 Vin3 Vin4 Idsn, |Idsp| Vout VDD  Vin = VDD
  • 24. 4: DC and Transient Response Slide 24 CMOS VLSI Design Load Line Summary Vin5 Vin4 Vin3 Vin2 Vin1 Vin0 Vin1 Vin2 Vin3 Vin4 Idsn, |Idsp| Vout VDD
  • 25. 4: DC and Transient Response Slide 25 CMOS VLSI Design DC Transfer Curve  Transcribe points onto Vin vs. Vout plot Vin5 Vin4 Vin3 Vin2 Vin1 Vin0 Vin1 Vin2 Vin3 Vin4 Vout VDD C Vout 0 Vin VDD VDD A B D E Vtn VDD /2 VDD +Vtp
  • 26. 4: DC and Transient Response Slide 26 CMOS VLSI Design Operating Regions  Revisit transistor operating regions C Vout 0 Vin VDD VDD A B D E Vtn VDD /2 VDD +Vtp Region nMOS pMOS A B C D E
  • 27. 4: DC and Transient Response Slide 27 CMOS VLSI Design Operating Regions  Revisit transistor operating regions C Vout 0 Vin VDD VDD A B D E Vtn VDD /2 VDD +Vtp Region nMOS pMOS A Cutoff Linear B Saturation Linear C Saturation Saturation D Linear Saturation E Linear Cutoff
  • 28. 4: DC and Transient Response Slide 28 CMOS VLSI Design Beta Ratio  If p / n  1, switching point will move from VDD/2  Called skewed gate  Other gates: collapse into equivalent inverter Vout 0 Vin VDD VDD 0.5 1 2 10 p n    0.1 p n   
  • 29. 4: DC and Transient Response Slide 29 CMOS VLSI Design Noise Margins  How much noise can a gate input see before it does not recognize the input? Indeterminate Region NML NMH Input Characteristics Output Characteristics VOH VDD VOL GND VIH VIL Logical High Input Range Logical Low Input Range Logical High Output Range Logical Low Output Range
  • 30. 4: DC and Transient Response Slide 30 CMOS VLSI Design Logic Levels  To maximize noise margins, select logic levels at VDD Vin Vout VDD p/n > 1 Vin Vout 0
  • 31. 4: DC and Transient Response Slide 31 CMOS VLSI Design Logic Levels  To maximize noise margins, select logic levels at – unity gain point of DC transfer characteristic VDD Vin Vout VOH VDD VOL VIL VIH Vtn Unity Gain Points Slope = -1 VDD - |Vtp | p/n > 1 Vin Vout 0
  • 32. 4: DC and Transient Response Slide 32 CMOS VLSI Design Transient Response  DC analysis tells us Vout if Vin is constant  Transient analysis tells us Vout(t) if Vin(t) changes – Requires solving differential equations  Input is usually considered to be a step or ramp – From 0 to VDD or vice versa
  • 33. 4: DC and Transient Response Slide 33 CMOS VLSI Design Inverter Step Response  Ex: find step response of inverter driving load cap 0 ( ) ( ) ) ( o i ut n out V t t t V t V d d t     Vin(t) Vout(t) Cload Idsn(t)
  • 34. 4: DC and Transient Response Slide 34 CMOS VLSI Design Inverter Step Response  Ex: find step response of inverter driving load cap 0 0 ( ) ( ) ( ) ( ) ou DD in t out u t t V d d t t t V t V V t      Vin(t) Vout(t) Cload Idsn(t)
  • 35. 4: DC and Transient Response Slide 35 CMOS VLSI Design Inverter Step Response  Ex: find step response of inverter driving load cap 0 0 ( ( ) ) ( ( ) ) DD D o i D o t n ut u V t u t t V V d d t t V V t t      Vin(t) Vout(t) Cload Idsn(t)
  • 36. 4: DC and Transient Response Slide 36 CMOS VLSI Design Inverter Step Response  Ex: find step response of inverter driving load cap 0 0 ( ) ( ) ( ) ( ( ) ) DD DD loa d ou i d t o n ut sn V V u t t V t t V t V d dt C t I t      0 ( ) DD t out ou ds t DD t n I t V V V V V V t t            Vin(t) Vout(t) Cload Idsn(t)
  • 37. 4: DC and Transient Response Slide 37 CMOS VLSI Design Inverter Step Response  Ex: find step response of inverter driving load cap 0 0 ( ) ( ) ( ) ( ( ) ) DD DD loa d ou i d t o n ut sn V V u t t V t t V t V d dt C t I t        0 2 2 0 2 ) ) ( ( ) ( DD DD t DD out out out out D t n t ds D I V t t V V V V V V V V V t V t V t                         Vin(t) Vout(t) Cload Idsn(t)
  • 38. 4: DC and Transient Response Slide 38 CMOS VLSI Design Inverter Step Response  Ex: find step response of inverter driving load cap 0 0 ( ) ( ) ( ) ( ( ) ) DD DD loa d ou i d t o n ut sn V V u t t V t t V t V d dt C t I t        0 2 2 0 2 ) ) ( ( ) ( DD DD t DD out out out out D t n t ds D I V t t V V V V V V V V V t V t V t                         Vout (t) Vin (t) t0 t Vin(t) Vout(t) Cload Idsn(t)
  • 39. 4: DC and Transient Response Slide 39 CMOS VLSI Design Delay Definitions  tpdr:  tpdf:  tpd:  tr:  tf: fall time
  • 40. 4: DC and Transient Response Slide 40 CMOS VLSI Design Delay Definitions  tpdr: rising propagation delay – From input to rising output crossing VDD/2  tpdf: falling propagation delay – From input to falling output crossing VDD/2  tpd: average propagation delay – tpd = (tpdr + tpdf)/2  tr: rise time – From output crossing 0.2 VDD to 0.8 VDD  tf: fall time – From output crossing 0.8 VDD to 0.2 VDD
  • 41. 4: DC and Transient Response Slide 41 CMOS VLSI Design Delay Definitions  tcdr: rising contamination delay – From input to rising output crossing VDD/2  tcdf: falling contamination delay – From input to falling output crossing VDD/2  tcd: average contamination delay – tpd = (tcdr + tcdf)/2
  • 42. 4: DC and Transient Response Slide 42 CMOS VLSI Design Simulated Inverter Delay  Solving differential equations by hand is too hard  SPICE simulator solves the equations numerically – Uses more accurate I-V models too!  But simulations take time to write (V) 0.0 0.5 1.0 1.5 2.0 t(s) 0.0 200p 400p 600p 800p 1n tpdf = 66ps tpdr = 83ps Vin Vout
  • 43. 4: DC and Transient Response Slide 43 CMOS VLSI Design Delay Estimation  We would like to be able to easily estimate delay – Not as accurate as simulation – But easier to ask “What if?”  The step response usually looks like a 1st order RC response with a decaying exponential.  Use RC delay models to estimate delay – C = total capacitance on output node – Use effective resistance R – So that tpd = RC  Characterize transistors by finding their effective R – Depends on average current as gate switches
  • 44. 4: DC and Transient Response Slide 44 CMOS VLSI Design Effective Resistance  Shockley models have limited value – Not accurate enough for modern transistors – Too complicated for much hand analysis  Simplification: treat transistor as resistor – Replace Ids(Vds, Vgs) with effective resistance R • Ids = Vds/R – R averaged across switching of digital gate  Too inaccurate to predict current at any given time – But good enough to predict RC delay
  • 45. 4: DC and Transient Response Slide 45 CMOS VLSI Design RC Delay Model  Use equivalent circuits for MOS transistors – Ideal switch + capacitance and ON resistance – Unit nMOS has resistance R, capacitance C – Unit pMOS has resistance 2R, capacitance C  Capacitance proportional to width  Resistance inversely proportional to width k g s d g s d kC kC kC R/k k g s d g s d kC kC kC 2R/k
  • 46. 4: DC and Transient Response Slide 46 CMOS VLSI Design RC Values  Capacitance – C = Cg = Cs = Cd = 2 fF/m of gate width – Values similar across many processes  Resistance – R  6 K*m in 0.6um process – Improves with shorter channel lengths  Unit transistors – May refer to minimum contacted device (4/2 ) – Or maybe 1 m wide device – Doesn’t matter as long as you are consistent
  • 47. 4: DC and Transient Response Slide 47 CMOS VLSI Design Inverter Delay Estimate  Estimate the delay of a fanout-of-1 inverter 2 1 A Y 2 1
  • 48. 4: DC and Transient Response Slide 48 CMOS VLSI Design Inverter Delay Estimate  Estimate the delay of a fanout-of-1 inverter C C R 2C 2C R 2 1 A Y C 2C Y 2 1
  • 49. 4: DC and Transient Response Slide 49 CMOS VLSI Design Inverter Delay Estimate  Estimate the delay of a fanout-of-1 inverter C C R 2C 2C R 2 1 A Y C 2C C 2C C 2C R Y 2 1
  • 50. 4: DC and Transient Response Slide 50 CMOS VLSI Design Inverter Delay Estimate  Estimate the delay of a fanout-of-1 inverter C C R 2C 2C R 2 1 A Y C 2C C 2C C 2C R Y 2 1 d = 6RC
  • 51. 4: DC and Transient Response Slide 51 CMOS VLSI Design Example: 3-input NAND  Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).
  • 52. 4: DC and Transient Response Slide 52 CMOS VLSI Design Example: 3-input NAND  Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).
  • 53. 4: DC and Transient Response Slide 53 CMOS VLSI Design Example: 3-input NAND  Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R). 3 3 2 2 2 3
  • 54. 4: DC and Transient Response Slide 54 CMOS VLSI Design 3-input NAND Caps  Annotate the 3-input NAND gate with gate and diffusion capacitance. 2 2 2 3 3 3
  • 55. 4: DC and Transient Response Slide 55 CMOS VLSI Design 3-input NAND Caps  Annotate the 3-input NAND gate with gate and diffusion capacitance. 2 2 2 3 3 3 3C 3C 3C 3C 2C 2C 2C 2C 2C 2C 3C 3C 3C 2C 2C 2C
  • 56. 4: DC and Transient Response Slide 56 CMOS VLSI Design 3-input NAND Caps  Annotate the 3-input NAND gate with gate and diffusion capacitance. 9C 3C 3C 3 3 3 2 2 2 5C 5C 5C
  • 57. 4: DC and Transient Response Slide 57 CMOS VLSI Design Elmore Delay  ON transistors look like resistors  Pullup or pulldown network modeled as RC ladder  Elmore delay of RC ladder R1 R2 R3 RN C1 C2 C3 CN     nodes 1 1 1 2 2 1 2 ... ... pd i to source i i N N t R C R C R R C R R R C            
  • 58. 4: DC and Transient Response Slide 58 CMOS VLSI Design Example: 2-input NAND  Estimate worst-case rising and falling delay of 2- input NAND driving h identical gates. h copies 2 2 2 2 B A x Y
  • 59. 4: DC and Transient Response Slide 59 CMOS VLSI Design Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y
  • 60. 4: DC and Transient Response Slide 60 CMOS VLSI Design Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y R (6+4h)C Y pdr t 
  • 61. 4: DC and Transient Response Slide 61 CMOS VLSI Design Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y R (6+4h)C Y   6 4 pdr t h RC  
  • 62. 4: DC and Transient Response Slide 62 CMOS VLSI Design Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y
  • 63. 4: DC and Transient Response Slide 63 CMOS VLSI Design Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y pdf t  (6+4h)C 2C R/2 R/2 x Y
  • 64. 4: DC and Transient Response Slide 64 CMOS VLSI Design Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y          2 2 2 2 6 4 7 4 R R R pdf t C h C h RC           (6+4h)C 2C R/2 R/2 x Y
  • 65. 4: DC and Transient Response Slide 65 CMOS VLSI Design Delay Components  Delay has two parts – Parasitic delay • 6 or 7 RC • Independent of load – Effort delay • 4h RC • Proportional to load capacitance
  • 66. 4: DC and Transient Response Slide 66 CMOS VLSI Design Contamination Delay  Best-case (contamination) delay can be substantially less than propagation delay.  Ex: If both inputs fall simultaneously 6C 2C 2 2 2 2 4hC B A x Y R (6+4h)C Y R   3 2 cdr t h RC  
  • 67. 4: DC and Transient Response Slide 67 CMOS VLSI Design 7C 3C 3C 3 3 3 2 2 2 3C 2C 2C 3C 3C Isolated Contacted Diffusion Merged Uncontacted Diffusion Shared Contacted Diffusion Diffusion Capacitance  we assumed contacted diffusion on every s / d.  Good layout minimizes diffusion area  Ex: NAND3 layout shares one diffusion contact – Reduces output capacitance by 2C – Merged uncontacted diffusion might help too
  • 68. 4: DC and Transient Response Slide 68 CMOS VLSI Design Layout Comparison  Which layout is better? A VDD GND B Y A VDD GND B Y