SlideShare a Scribd company logo
Section 4.4
                  Curve Sketching

                V63.0121.002.2010Su, Calculus I

                        New York University


                        June 10, 2010



Announcements
   Homework 4 due Tuesday


                                              .   .   .   .   .   .
Announcements




           Homework 4 due Tuesday




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010       2 / 45
Objectives




           given a function, graph it
           completely, indicating
                   zeroes (if easy)
                   asymptotes if applicable
                   critical points
                   local/global max/min
                   inflection points




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010       3 / 45
Why?




  Graphing functions is like
  dissection




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010       4 / 45
Why?




  Graphing functions is like
  dissection … or diagramming
  sentences




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010       4 / 45
Why?




  Graphing functions is like
  dissection … or diagramming
  sentences
  You can really know a lot about
  a function when you know all of
  its anatomy.




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010       4 / 45
The Increasing/Decreasing Test

 Theorem (The Increasing/Decreasing Test)
 If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b), then f
 is decreasing on (a, b).

 Example
 Here f(x) = x3 + x2 , and f′ (x) = 3x2 + 2x.

                                                                      f
                                                                      .(x)
                                                           .′ (x)
                                                           f



                                                .


                                                                       .     .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                  June 10, 2010       5 / 45
Testing for Concavity
 Theorem (Concavity Test)
 If f′′ (x) > 0 for all x in (a, b), then the graph of f is concave upward on
 (a, b) If f′′ (x) < 0 for all x in (a, b), then the graph of f is concave
 downward on (a, b).

 Example
 Here f(x) = x3 + x2 , f′ (x) = 3x2 + 2x, and f′′ (x) = 6x + 2.
                                            .′′ (x)
                                            f                    f
                                                                 .(x)
                                                      .′ (x)
                                                      f




                                                .


                                                                        .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                 June 10, 2010       6 / 45
Graphing Checklist


To graph a function f, follow this plan:
  0. Find when f is positive, negative, zero,
     not defined.
  1. Find f′ and form its sign chart. Conclude
     information about increasing/decreasing
     and local max/min.
  2. Find f′′ and form its sign chart. Conclude
     concave up/concave down and inflection.
  3. Put together a big chart to assemble
     monotonicity and concavity data
  4. Graph!



                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010       7 / 45
Outline



 Simple examples
    A cubic function
    A quartic function


 More Examples
   Points of nondifferentiability
   Horizontal asymptotes
   Vertical asymptotes
   Trigonometric and polynomial together
   Logarithmic



                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010       8 / 45
Graphing a cubic


 Example
 Graph f(x) = 2x3 − 3x2 − 12x.




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010       9 / 45
Graphing a cubic


 Example
 Graph f(x) = 2x3 − 3x2 − 12x.

 (Step 0) First, let’s find the zeros. We can at least factor out one power
 of x:
                             f(x) = x(2x2 − 3x − 12)
 so f(0) = 0. The other factor is a quadratic, so we the other two roots
 are                        √
                                                     √
                       3 ± 32 − 4(2)(−12)        3 ± 105
                  x=                          =
                                  4                  4
 It’s OK to skip this step for now since the roots are so complicated.


                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010       9 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                                        .




                                                                          .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching               June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                                        .                     .               . −2
                                                                              x
                                                            2
                                                            .
                                  .                                           x
                                                                              . +1
                                −
                                . 1
                                                                              .′ (x)
                                                                              f
                                  .                           .
                                −
                                . 1                         2
                                                            .                 f
                                                                              .(x)


                                                                          .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                            −
                            .             −
                                        . .               .       .
                                                                  +
                                                                          . −2
                                                                          x
                                                        2
                                                        .
                                  .                                       x
                                                                          . +1
                                −
                                . 1
                                                                          .′ (x)
                                                                          f
                                  .                       .
                                −
                                . 1                     2
                                                        .                 f
                                                                          .(x)


                                                                      .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                            −
                            .             −
                                        . .               .       .
                                                                  +
                                                                          . −2
                                                                          x
                                                        2
                                                        .
                            −
                            . .          .
                                         +                        .
                                                                  +
                                                                          x
                                                                          . +1
                              −
                              . 1
                                                                          .′ (x)
                                                                          f
                                  .                       .
                                −
                                . 1                     2
                                                        .                 f
                                                                          .(x)


                                                                      .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                            −
                            .             −
                                        . .               .       .
                                                                  +
                                                                          . −2
                                                                          x
                                                        2
                                                        .
                            −
                            . .          .
                                         +                        .
                                                                  +
                                                                          x
                                                                          . +1
                              −
                              . 1
                            . .
                            +                                             .′ (x)
                                                                          f
                                                          .
                                −
                                . 1                     2
                                                        .                 f
                                                                          .(x)


                                                                      .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                            −
                            .             −
                                        . .               .       .
                                                                  +
                                                                          . −2
                                                                          x
                                                        2
                                                        .
                            −
                            . .          .
                                         +                        .
                                                                  +
                                                                          x
                                                                          . +1
                              −
                              . 1
                            . .
                            +            −
                                         .                                .′ (x)
                                                                          f
                                                          .
                                −
                                . 1                     2
                                                        .                 f
                                                                          .(x)


                                                                      .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                            −
                            .             −
                                        . .               .       .
                                                                  +
                                                                          . −2
                                                                          x
                                                        2
                                                        .
                            −
                            . .          .
                                         +                        .
                                                                  +
                                                                          x
                                                                          . +1
                              −
                              . 1
                            . .
                            +            −
                                         .                        .
                                                                  +       .′ (x)
                                                                          f
                                                          .
                                −
                                . 1                     2
                                                        .                 f
                                                                          .(x)


                                                                      .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                            −
                            .             −
                                        . .               .       .
                                                                  +
                                                                          . −2
                                                                          x
                                                        2
                                                        .
                            −
                            . .          .
                                         +                        .
                                                                  +
                                                                          x
                                                                          . +1
                              −
                              . 1
                            . .
                            +            −
                                         .                        .
                                                                  +       .′ (x)
                                                                          f
                                                          .
                            ↗−
                            . . 1                       2
                                                        .                 f
                                                                          .(x)


                                                                      .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                            −
                            .             −
                                        . .               .       .
                                                                  +
                                                                          . −2
                                                                          x
                                                        2
                                                        .
                            −
                            . .          .
                                         +                        .
                                                                  +
                                                                          x
                                                                          . +1
                              −
                              . 1
                            . .
                            +            −
                                         .                        .
                                                                  +       .′ (x)
                                                                          f
                                                          .
                            ↗−
                            . . 1        ↘
                                         .              2
                                                        .                 f
                                                                          .(x)


                                                                      .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                            −
                            .             −
                                        . .               .       .
                                                                  +
                                                                          . −2
                                                                          x
                                                        2
                                                        .
                            −
                            . .          .
                                         +                        .
                                                                  +
                                                                          x
                                                                          . +1
                              −
                              . 1
                            . .
                            +            −
                                         .                       .
                                                                 +        .′ (x)
                                                                          f
                                                          .
                            ↗−
                            . . 1        ↘
                                         .              2
                                                        .        ↗
                                                                 .        f
                                                                          .(x)


                                                                      .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                            −
                            .             −
                                        . .               .       .
                                                                  +
                                                                          . −2
                                                                          x
                                                        2
                                                        .
                            −
                            . .          .
                                         +                        .
                                                                  +
                                                                          x
                                                                          . +1
                               −
                               . 1
                            . .
                            +            −
                                         .                       .
                                                                 +        .′ (x)
                                                                          f
                                                          .
                            ↗−
                            . . 1        ↘
                                         .              2
                                                        .        ↗
                                                                 .        f
                                                                          .(x)
                              m
                              . ax

                                                                      .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 1: Monotonicity



                                 f(x) = 2x3 − 3x2 − 12x
                        =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

 We can form a sign chart from this:

                            −
                            .             −
                                        . .               .       .
                                                                  +
                                                                          . −2
                                                                          x
                                                        2
                                                        .
                            −
                            . .          .
                                         +                        .
                                                                  +
                                                                          x
                                                                          . +1
                               −
                               . 1
                            . .
                            +            −
                                         .                       .
                                                                 +        .′ (x)
                                                                          f
                                                         .
                            ↗−
                            . . 1        ↘
                                         .             2
                                                       .         ↗
                                                                 .        f
                                                                          .(x)
                              m
                              . ax                    m
                                                      . in

                                                                      .   .        .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                    June 10, 2010   10 / 45
Step 2: Concavity




                                        f′ (x) = 6x2 − 6x − 12
                                 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:                     .




                                                                           .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching               June 10, 2010   11 / 45
Step 2: Concavity




                                        f′ (x) = 6x2 − 6x − 12
                                 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:                     .
                                                                               .′′ (x)
                                                                               f
                                                .
                                              ./2
                                              1                                f
                                                                               .(x)




                                                                           .   .      .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   11 / 45
Step 2: Concavity




                                        f′ (x) = 6x2 − 6x − 12
                                 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:                     .

                                −
                                . −                                            .′′ (x)
                                                                               f
                                                .
                                              ./2
                                              1                                f
                                                                               .(x)




                                                                           .   .      .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   11 / 45
Step 2: Concavity




                                        f′ (x) = 6x2 − 6x − 12
                                 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:                     .

                                −
                                . −                    . +
                                                       +                       .′′ (x)
                                                                               f
                                                .
                                              ./2
                                              1                                f
                                                                               .(x)




                                                                           .   .      .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   11 / 45
Step 2: Concavity




                                        f′ (x) = 6x2 − 6x − 12
                                 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:                     .

                                −
                                . −                    . +
                                                       +                       .′′ (x)
                                                                               f
                                                .
                                 .
                                 ⌢            ./2
                                              1                                f
                                                                               .(x)




                                                                           .   .      .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   11 / 45
Step 2: Concavity




                                        f′ (x) = 6x2 − 6x − 12
                                 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:                     .

                                −
                                . −                    . +
                                                       +                       .′′ (x)
                                                                               f
                                                .
                                 .
                                 ⌢            ./2
                                              1         .
                                                        ⌣                      f
                                                                               .(x)




                                                                           .   .      .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   11 / 45
Step 2: Concavity




                                        f′ (x) = 6x2 − 6x − 12
                                 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:                     .

                                −
                                . −                    . +
                                                       +                       .′′ (x)
                                                                               f
                                                .
                                 .
                                 ⌢            ./2
                                              1         .
                                                        ⌣                      f
                                                                               .(x)
                                              I
                                              .P




                                                                           .   .      .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   11 / 45
Step 3: One sign chart to rule them all



 Remember, f(x) = 2x3 − 3x2 − 12x.

                                        .




                                                                          .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching               June 10, 2010   12 / 45
Step 3: One sign chart to rule them all



 Remember, f(x) = 2x3 − 3x2 − 12x.

                            −
                      . . . .
                      +                   −
                                          .                .
                                                           +              .′ (x)
                                                                          f
                                                    .
                      ↗− ↘
                      . . 1 .             ↘
                                          .       2
                                                  .        ↗
                                                           .              m
                                                                          . onotonicity




                                                                      .            .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                        June 10, 2010   12 / 45
Step 3: One sign chart to rule them all



 Remember, f(x) = 2x3 − 3x2 − 12x.

                     . .
                     +            −
                                  . .       −
                                            .                .
                                                             +              .′ (x)
                                                                            f
                                                .
                     ↗−
                     . . 1        ↘
                                  .         ↘ .
                                            .  2             ↗
                                                             .              m
                                                                            .′′ onotonicity
                    −
                    . −          −
                                 . − .     . +
                                           +                . +
                                                            +               f
                                                                            . (x)
                     .
                     ⌢            .
                                  ⌢ 1/2
                                      .     .
                                            ⌣                .
                                                             ⌣              c
                                                                            . oncavity




                                                                        .            .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                        June 10, 2010   12 / 45
Step 3: One sign chart to rule them all



 Remember, f(x) = 2x3 − 3x2 − 12x.

                     . .
                     +         −
                               . .       −
                                         .        .
                                                  +                       .′ (x)
                                                                          f
                                               .
                     ↗−
                     . . 1     ↘
                               .         ↘ .
                                         .   2    ↗
                                                  .                       m
                                                                          .′′ onotonicity
                    −
                    . −       −
                              . − . . + +        . +
                                                 +                        f
                                                                          . (x)
                     .
                     ⌢         ⌢ ./2 .
                               .   1     ⌣        .
                                                  ⌣                       c
                                                                          . oncavity
                           7
                           ..    −
                                 . 6 1/2   −.
                                           . 20                           f
                                                                          .(x)
                                     .
                          −
                          . 1      .
                                   1/2       2
                                             .                            s
                                                                          . hape of f
                         m
                         . ax      I
                                   .P       m
                                            . in




                                                                      .            .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                        June 10, 2010   12 / 45
Combinations of monotonicity and concavity




                                        I
                                        .I                              I
                                                                        .


                                                       .



                                        I
                                        .II                        I
                                                                   .V




                                                                            .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                   June 10, 2010   13 / 45
Combinations of monotonicity and concavity
                                                                                .
                                                                                decreasing,
                                                                                concave
                                                                                down

                                        I
                                        .I                              I
                                                                        .


                                                       .



                                        I
                                        .II                        I
                                                                   .V




                                                                            .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                      June 10, 2010   13 / 45
Combinations of monotonicity and concavity
                     .                                                          .
                     increasing,                                                decreasing,
                     concave                                                    concave
                     down                                                       down

                                        I
                                        .I                              I
                                                                        .


                                                       .



                                        I
                                        .II                        I
                                                                   .V




                                                                            .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                      June 10, 2010   13 / 45
Combinations of monotonicity and concavity
                     .                                                          .
                     increasing,                                                decreasing,
                     concave                                                    concave
                     down                                                       down

                                        I
                                        .I                              I
                                                                        .


                                                       .



                                        I
                                        .II                        I
                                                                   .V

                     .
                     decreasing,
                     concave up
                                                                            .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                      June 10, 2010   13 / 45
Combinations of monotonicity and concavity
                     .                                                          .
                     increasing,                                                decreasing,
                     concave                                                    concave
                     down                                                       down

                                        I
                                        .I                              I
                                                                        .


                                                       .



                                        I
                                        .II                        I
                                                                   .V

                     .                                                          .
                     decreasing,                                                increasing,
                     concave up                                                 concave up
                                                                            .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                      June 10, 2010   13 / 45
Step 3: One sign chart to rule them all



 Remember, f(x) = 2x3 − 3x2 − 12x.

                     . .
                     +        −
                              . .       −
                                        .        .
                                                 +                        .′ (x)
                                                                          f
                                              .
                     ↗−
                     . . 1    ↘
                              .         ↘ .
                                        .   2    ↗
                                                 .                        m
                                                                          .′′ onotonicity
                    −
                    . −      −
                             . − . . + +        . +
                                                +                         f
                                                                          . (x)
                     .
                     ⌢        ⌢ ./2 .
                              .   1     ⌣        .
                                                 ⌣                        c
                                                                          . oncavity
                          7
                          ..    −
                                . 6 1/2   −.
                                          . 20                            f
                                                                          .(x)
                                    .
                      . . 1
                         −        .
                                  1/2       2
                                            .                             s
                                                                          . hape of f
                        m
                        . ax      I
                                  .P       m
                                           . in




                                                                      .            .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                        June 10, 2010   14 / 45
Step 3: One sign chart to rule them all



 Remember, f(x) = 2x3 − 3x2 − 12x.

                     . .
                     +        −
                              . .       −
                                        .        .
                                                 +                        .′ (x)
                                                                          f
                                              .
                     ↗−
                     . . 1    ↘
                              .         ↘ .
                                        .   2    ↗
                                                 .                        m
                                                                          .′′ onotonicity
                    −
                    . −      −
                             . − . . + +        . +
                                                +                         f
                                                                          . (x)
                     .
                     ⌢        ⌢ ./2 .
                              .   1     ⌣        .
                                                 ⌣                        c
                                                                          . oncavity
                          7
                          ..    −
                                . 6 1/2   −.
                                          . 20                            f
                                                                          .(x)
                                    .
                      . . 1 . ./2
                         −        1         2
                                            .                             s
                                                                          . hape of f
                        m
                        . ax      I
                                  .P       m
                                           . in




                                                                      .            .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                        June 10, 2010   14 / 45
Step 3: One sign chart to rule them all



 Remember, f(x) = 2x3 − 3x2 − 12x.

                     . .
                     +        −
                              . .       −
                                        .        .
                                                 +                        .′ (x)
                                                                          f
                                              .
                     ↗−
                     . . 1    ↘
                              .         ↘ .
                                        .   2    ↗
                                                 .                        m
                                                                          .′′ onotonicity
                    −
                    . −      −
                             . − . . + +        . +
                                                +                         f
                                                                          . (x)
                     .
                     ⌢        ⌢ ./2 .
                              .   1     ⌣        .
                                                 ⌣                        c
                                                                          . oncavity
                          7
                          ..    −
                                . 6 1/2   −.
                                          . 20                            f
                                                                          .(x)
                                    .
                      . . 1 . ./2 .
                         −        1         2
                                            .                             s
                                                                          . hape of f
                        m
                        . ax      I
                                  .P       m
                                           . in




                                                                      .            .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                        June 10, 2010   14 / 45
Step 3: One sign chart to rule them all



 Remember, f(x) = 2x3 − 3x2 − 12x.

                     . .
                     +        −
                              . .       −
                                        .        .
                                                 +                        .′ (x)
                                                                          f
                                              .
                     ↗−
                     . . 1    ↘
                              .         ↘ .
                                        .   2    ↗
                                                 .                        m
                                                                          .′′ onotonicity
                    −
                    . −      −
                             . − . . + +        . +
                                                +                         f
                                                                          . (x)
                     .
                     ⌢        ⌢ ./2 .
                              .   1     ⌣        .
                                                 ⌣                        c
                                                                          . oncavity
                          7
                          ..    −
                                . 6 1/2   −.
                                          . 20                            f
                                                                          .(x)
                                    .
                      . . 1 . ./2 .
                         −        1         2
                                            .     .                       s
                                                                          . hape of f
                        m
                        . ax      I
                                  .P       m
                                           . in




                                                                      .            .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                        June 10, 2010   14 / 45
Step 4: Graph
                                                   f
                                                   .(x)




                      .(x) = 2x3 − 3x2 − 12x
                      f

                     ( √          )         . −1, 7)
                                            (
                                                .
                     . 3− 4105 , 0                            . 0, 0)
                                                              (
                                        .                 .                                 .
                                                                    . 1/2, −61/2)
                                                                    (                           ( . x
                                                                                                    √        )
                                                                .                               . 3+ 4105 , 0

                                                                        . 2, −20)
                                                                        (
                                                                              .

                                                7
                                                ..  −
                                                    . 61/2 −.
                                                           . 20                                         f
                                                                                                        .(x)
                                                        .
                                            . . 1 . ./2 .
                                               −      1      2
                                                             .                          .               s
                                                                                                        . hape of f
                                              m
                                              . ax    I
                                                      .P    m
                                                            . in            .       .       .       .          .   .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                         June 10, 2010     15 / 45
Step 4: Graph
                                                   f
                                                   .(x)




                      .(x) = 2x3 − 3x2 − 12x
                      f

                     ( √          )         . −1, 7)
                                            (
                                                .
                     . 3− 4105 , 0                            . 0, 0)
                                                              (
                                        .                 .                                 .
                                                                    . 1/2, −61/2)
                                                                    (                           ( . x
                                                                                                    √        )
                                                                .                               . 3+ 4105 , 0

                                                                        . 2, −20)
                                                                        (
                                                                              .

                                                7
                                                ..  −
                                                    . 61/2 −.
                                                           . 20                                         f
                                                                                                        .(x)
                                                        .
                                            . . 1 . ./2 .
                                               −      1      2
                                                             .                          .               s
                                                                                                        . hape of f
                                              m
                                              . ax    I
                                                      .P    m
                                                            . in            .       .       .       .          .   .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                         June 10, 2010     15 / 45
Step 4: Graph
                                                   f
                                                   .(x)




                      .(x) = 2x3 − 3x2 − 12x
                      f

                     ( √          )         . −1, 7)
                                            (
                                                .
                     . 3− 4105 , 0                            . 0, 0)
                                                              (
                                        .                 .                                 .
                                                                    . 1/2, −61/2)
                                                                    (                           ( . x
                                                                                                    √        )
                                                                .                               . 3+ 4105 , 0

                                                                        . 2, −20)
                                                                        (
                                                                              .

                                                7
                                                ..  −
                                                    . 61/2 −.
                                                           . 20                                         f
                                                                                                        .(x)
                                                        .
                                            . . 1 . ./2 .
                                               −      1      2
                                                             .                          .               s
                                                                                                        . hape of f
                                              m
                                              . ax    I
                                                      .P    m
                                                            . in            .       .       .       .          .   .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                         June 10, 2010     15 / 45
Step 4: Graph
                                                   f
                                                   .(x)




                      .(x) = 2x3 − 3x2 − 12x
                      f

                     ( √          )         . −1, 7)
                                            (
                                                .
                     . 3− 4105 , 0                            . 0, 0)
                                                              (
                                        .                 .                                 .
                                                                    . 1/2, −61/2)
                                                                    (                           ( . x
                                                                                                    √        )
                                                                .                               . 3+ 4105 , 0

                                                                        . 2, −20)
                                                                        (
                                                                              .

                                                7
                                                ..  −
                                                    . 61/2 −.
                                                           . 20                                         f
                                                                                                        .(x)
                                                        .
                                            . . 1 . ./2 .
                                               −      1      2
                                                             .                          .               s
                                                                                                        . hape of f
                                              m
                                              . ax    I
                                                      .P    m
                                                            . in            .       .       .       .          .   .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                         June 10, 2010     15 / 45
Step 4: Graph
                                                   f
                                                   .(x)




                      .(x) = 2x3 − 3x2 − 12x
                      f

                     ( √          )         . −1, 7)
                                            (
                                                .
                     . 3− 4105 , 0                            . 0, 0)
                                                              (
                                        .                 .                                 .
                                                                    . 1/2, −61/2)
                                                                    (                           ( . x
                                                                                                    √        )
                                                                .                               . 3+ 4105 , 0

                                                                        . 2, −20)
                                                                        (
                                                                              .

                                                7
                                                ..  −
                                                    . 61/2 −.
                                                           . 20                                         f
                                                                                                        .(x)
                                                        .
                                            . . 1 . ./2 .
                                               −      1      2
                                                             .                          .               s
                                                                                                        . hape of f
                                              m
                                              . ax    I
                                                      .P    m
                                                            . in            .       .       .       .          .   .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                         June 10, 2010     15 / 45
Graphing a quartic




 Example
 Graph f(x) = x4 − 4x3 + 10




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   16 / 45
Graphing a quartic




 Example
 Graph f(x) = x4 − 4x3 + 10

 (Step 0) We know f(0) = 10 and lim f(x) = +∞. Not too many other
                                                 x→±∞
 points on the graph are evident.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   16 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)




                                                                          .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching               June 10, 2010   17 / 45
Step 1: Monotonicity



                                            f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                                        .




                                                                              .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)           Section 4.4 Curve Sketching               June 10, 2010   17 / 45
Step 1: Monotonicity



                                             f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                                        0
                                        ..
                                                                               . x2
                                                                               4
                                        0
                                        .




                                                                               .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)            Section 4.4 Curve Sketching                  June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0
                                                                          . x2
                                                                          4
                                 0
                                 .




                                                                          .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                  June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +
                                                                          . x2
                                                                          4
                                 0
                                 .




                                                                          .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                  June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                   .
                                                                    +
                                                                          . x2
                                                                          4
                                 0
                                 .




                                                                          .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                  June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                    .
                                                                     +
                                                                          . x2
                                                                          4
                                 0
                                 .
                                                                0
                                                                ..
                                                                          . x − 3)
                                                                          (
                                                                3
                                                                .




                                                                          .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                  June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                    .
                                                                     +
                                                                          . x2
                                                                          4
                                 0
                                 .
                               −
                               .                                0
                                                                ..
                                                                          . x − 3)
                                                                          (
                                                                3
                                                                .




                                                                          .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                  June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                    .
                                                                     +
                                                                          . x2
                                                                          4
                                 0
                                 .
                               −
                               .                −
                                                .               0
                                                                ..
                                                                          . x − 3)
                                                                          (
                                                                3
                                                                .




                                                                          .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                  June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                   .
                                                                    +
                                                                          . x2
                                                                          4
                                 0
                                 .
                               −
                               .                −
                                                .               .. .
                                                                0 +
                                                                          . x − 3)
                                                                          (
                                                                3
                                                                .




                                                                          .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                  June 10, 2010   17 / 45
Step 1: Monotonicity



                                             f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0                   .
                                                     +                   .
                                                                         +
                                                                               . x2
                                                                               4
                                 0
                                 .
                               −
                               .                     −
                                                     .               .. .
                                                                     0 +
                                                                               . x − 3)
                                                                               (
                                                                     3
                                                                     .
                                        0
                                        ..                           0
                                                                     ..        .′ (x)
                                                                               f
                                        0
                                        .                            3
                                                                     .         f
                                                                               .(x)


                                                                               .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)            Section 4.4 Curve Sketching                    June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                   .
                                                                    +
                                                                          . x2
                                                                          4
                                 0
                                 .
                               −
                               .                −
                                                .               .. .
                                                                0 +
                                                                          . x − 3)
                                                                          (
                                                                3
                                                                .
                               − 0
                               . ..                             0
                                                                ..        .′ (x)
                                                                          f
                                 0
                                 .                              3
                                                                .         f
                                                                          .(x)


                                                                          .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                   .
                                                                    +
                                                                          . x2
                                                                          4
                                 0
                                 .
                               −
                               .                −
                                                .               .. .
                                                                0 +
                                                                          . x − 3)
                                                                          (
                                                                3
                                                                .
                               − 0
                               . ..             −
                                                .               0
                                                                ..        .′ (x)
                                                                          f
                                 0
                                 .                              3
                                                                .         f
                                                                          .(x)


                                                                          .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                   .
                                                                    +
                                                                          . x2
                                                                          4
                                 0
                                 .
                               −
                               .                −
                                                .               .. .
                                                                0 +
                                                                          . x − 3)
                                                                          (
                                                                3
                                                                .
                               − 0
                               . ..             −
                                                .               .. .
                                                                0 +       .′ (x)
                                                                          f
                                 0
                                 .                              3
                                                                .         f
                                                                          .(x)


                                                                          .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                   .
                                                                    +
                                                                          . x2
                                                                          4
                                 0
                                 .
                               −
                               .                −
                                                .               .. .
                                                                0 +
                                                                          . x − 3)
                                                                          (
                                                                3
                                                                .
                               − 0
                               . ..             −
                                                .               .. .
                                                                0 +       .′ (x)
                                                                          f
                               ↘ 0
                               . .                              3
                                                                .         f
                                                                          .(x)


                                                                          .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                   .
                                                                    +
                                                                          . x2
                                                                          4
                                 0
                                 .
                               −
                               .                −
                                                .               .. .
                                                                0 +
                                                                          . x − 3)
                                                                          (
                                                                3
                                                                .
                               − 0
                               . ..             −
                                                .               .. .
                                                                0 +       .′ (x)
                                                                          f
                               ↘ 0
                               . .              ↘
                                                .               3
                                                                .         f
                                                                          .(x)


                                                                          .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                   .
                                                                    +
                                                                          . x2
                                                                          4
                                 0
                                 .
                               −
                               .                −
                                                .               .. .
                                                                0 +
                                                                          . x − 3)
                                                                          (
                                                                3
                                                                .
                               − 0
                               . ..             −
                                                .               .. .
                                                                0 +       .′ (x)
                                                                          f
                               ↘ 0
                               . .              ↘
                                                .               3 ↗
                                                                . .       f
                                                                          .(x)


                                                                          .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   17 / 45
Step 1: Monotonicity



                                        f(x) = x4 − 4x3 + 10
                              =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

 We make its sign chart.

                               . ..
                               + 0              .
                                                +                   .
                                                                    +
                                                                          . x2
                                                                          4
                                 0
                                 .
                               −
                               .                −
                                                .              .. .
                                                               0 +
                                                                          . x − 3)
                                                                          (
                                                               3
                                                               .
                               − 0
                               . ..             −
                                                .              .. .
                                                               0 +        .′ (x)
                                                                          f
                               ↘ 0
                               . .              ↘
                                                .              3 ↗
                                                               . .        f
                                                                          .(x)
                                                              m
                                                              . in

                                                                          .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   17 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)



                                        .




                                                                           .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching               June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                        .




                                                                           .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching               June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                        0
                                        ..
                                                                               1
                                                                               . 2x
                                        0
                                        .




                                                                           .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..
                                                                               1
                                                                               . 2x
                                   0
                                   .




                                                                           .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +
                                                                               1
                                                                               . 2x
                                   0
                                   .




                                                                           .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .




                                                                           .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                                        0
                                                        ..
                                                                               . −2
                                                                               x
                                                        2
                                                        .




                                                                           .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .                      0
                                                        ..
                                                                               . −2
                                                                               x
                                                        2
                                                        .




                                                                           .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .         0
                                                        ..
                                                                               . −2
                                                                               x
                                                        2
                                                        .




                                                                           .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .         0
                                                        ..        .
                                                                  +
                                                                               . −2
                                                                               x
                                                        2
                                                        .




                                                                           .      .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                  June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .         0
                                                        ..        .
                                                                  +
                                                                               . −2
                                                                               x
                                                        2
                                                        .
                                        0
                                        ..              0
                                                        ..                     .′′ (x)
                                                                               f
                                        0
                                        .               2
                                                        .                      f
                                                                               .(x)


                                                                           .        .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                     June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .         0
                                                        ..        .
                                                                  +
                                                                               . −2
                                                                               x
                                                        2
                                                        .
                               . + ..
                               + 0                      0
                                                        ..                     .′′ (x)
                                                                               f
                                        0
                                        .               2
                                                        .                      f
                                                                               .(x)


                                                                           .        .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                     June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .         0
                                                        ..        .
                                                                  +
                                                                               . −2
                                                                               x
                                                        2
                                                        .
                               . + ..
                               + 0           −
                                             . −        0
                                                        ..                     .′′ (x)
                                                                               f
                                        0
                                        .               2
                                                        .                      f
                                                                               .(x)


                                                                           .        .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                     June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .         0
                                                        ..        .
                                                                  +
                                                                               . −2
                                                                               x
                                                        2
                                                        .
                               . + ..
                               + 0           −
                                             . −        0
                                                        ..      . +
                                                                +              .′′ (x)
                                                                               f
                                        0
                                        .               2
                                                        .                      f
                                                                               .(x)


                                                                           .        .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                     June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .         0
                                                        ..        .
                                                                  +
                                                                               . −2
                                                                               x
                                                        2
                                                        .
                               . + ..
                               + 0           −
                                             . −        0
                                                        ..      . +
                                                                +              .′′ (x)
                                                                               f
                                . .
                                ⌣ 0                     2
                                                        .                      f
                                                                               .(x)


                                                                           .        .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                     June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .         0
                                                        ..        .
                                                                  +
                                                                               . −2
                                                                               x
                                                        2
                                                        .
                               . + ..
                               + 0           −
                                             . −        0
                                                        ..      . +
                                                                +              .′′ (x)
                                                                               f
                                . .
                                ⌣ 0           .
                                              ⌢         2
                                                        .                      f
                                                                               .(x)


                                                                           .        .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                     June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .         0
                                                        ..        .
                                                                  +
                                                                               . −2
                                                                               x
                                                        2
                                                        .
                               . + ..
                               + 0           −
                                             . −        0
                                                        ..      . +
                                                                +              .′′ (x)
                                                                               f
                                . .
                                ⌣ 0           .
                                              ⌢         2
                                                        .        .
                                                                 ⌣             f
                                                                               .(x)


                                                                           .        .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                     June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .         0
                                                        ..        .
                                                                  +
                                                                               . −2
                                                                               x
                                                        2
                                                        .
                               . + ..
                               + 0           −
                                             . −        0
                                                        ..      . +
                                                                +              .′′ (x)
                                                                               f
                                . .
                                ⌣ 0           .
                                              ⌢         2
                                                        .        .
                                                                 ⌣             f
                                                                               .(x)
                                        I
                                        .P

                                                                           .        .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                     June 10, 2010   18 / 45
Step 2: Concavity



                                        f′ (x) = 4x3 − 12x2
                             =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

 Here is its sign chart:

                                 − 0
                                 . ..         .
                                              +                   .
                                                                  +
                                                                               1
                                                                               . 2x
                                   0
                                   .
                                 −
                                 .            −
                                              .          0
                                                         ..       .
                                                                  +
                                                                               . −2
                                                                               x
                                                         2
                                                         .
                               . + ..
                               + 0           −
                                             . −         0
                                                         ..     . +
                                                                +              .′′ (x)
                                                                               f
                                . .
                                ⌣ 0           .
                                              ⌢          2
                                                         .       .
                                                                 ⌣             f
                                                                               .(x)
                                        I
                                        .P              I
                                                        .P

                                                                           .        .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                     June 10, 2010   18 / 45
Step 3: Grand Unified Sign Chart

                                        .

 Remember, f(x) = x4 − 4x3 + 10.

                               − 0
                               . ..          −
                                             .           − 0 +
                                                         . .. .                   .′ (x)
                                                                                  f
                               ↘ 0
                               . .           ↘
                                             .           ↘ 3 ↗
                                                         . . .                    m
                                                                                  .′′ onotonicity
                              . + ..
                              + 0           −
                                            . −      .. . + . +
                                                     0+       +                   f
                                                                                  . (x)
                               . .
                               ⌣ 0           .
                                             ⌢       2
                                                     .   .
                                                         ⌣    .
                                                              ⌣                   c
                                                                                  . oncavity
                                    1.
                                    .0              −      −.
                                                    . .6 . 17                     f
                                                                                  .(x)
                                     0
                                     .                2
                                                      .        3
                                                               .                  s
                                                                                  . hape
                                    I
                                    .P               I
                                                     .P       m
                                                              . in




                                                                          .   .      .        .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   19 / 45
Step 3: Grand Unified Sign Chart

                                        .

 Remember, f(x) = x4 − 4x3 + 10.

                               − 0
                               . ..          −
                                             .           − 0 +
                                                         . .. .                   .′ (x)
                                                                                  f
                               ↘ 0
                               . .           ↘
                                             .           ↘ 3 ↗
                                                         . . .                    m
                                                                                  .′′ onotonicity
                              . + ..
                              + 0           −
                                            . −      .. . + . +
                                                     0+       +                   f
                                                                                  . (x)
                               . .
                               ⌣ 0           .
                                             ⌢       2
                                                     .   .
                                                         ⌣    .
                                                              ⌣                   c
                                                                                  . oncavity
                                  1.
                                  .0                −      −.
                                                    . .6 . 17                     f
                                                                                  .(x)
                                . .0                  2
                                                      .        3
                                                               .                  s
                                                                                  . hape
                                  I
                                  .P                 I
                                                     .P       m
                                                              . in




                                                                          .   .      .        .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   19 / 45
Step 3: Grand Unified Sign Chart

                                        .

 Remember, f(x) = x4 − 4x3 + 10.

                               − 0
                               . ..          −
                                             .           − 0 +
                                                         . .. .                   .′ (x)
                                                                                  f
                               ↘ 0
                               . .           ↘
                                             .           ↘ 3 ↗
                                                         . . .                    m
                                                                                  .′′ onotonicity
                              . + ..
                              + 0           −
                                            . −      .. . + . +
                                                     0+       +                   f
                                                                                  . (x)
                               . .
                               ⌣ 0           .
                                             ⌢       2
                                                     .   .
                                                         ⌣    .
                                                              ⌣                   c
                                                                                  . oncavity
                                  1.
                                  .0                −      −.
                                                    . .6 . 17                     f
                                                                                  .(x)
                                . .0         .        2
                                                      .        3
                                                               .                  s
                                                                                  . hape
                                  I
                                  .P                 I
                                                     .P       m
                                                              . in




                                                                          .   .      .        .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   19 / 45
Step 3: Grand Unified Sign Chart

                                        .

 Remember, f(x) = x4 − 4x3 + 10.

                               − 0
                               . ..          −
                                             .           − 0 +
                                                         . .. .                   .′ (x)
                                                                                  f
                               ↘ 0
                               . .           ↘
                                             .           ↘ 3 ↗
                                                         . . .                    m
                                                                                  .′′ onotonicity
                              . + ..
                              + 0           −
                                            . −      .. . + . +
                                                     0+       +                   f
                                                                                  . (x)
                               . .
                               ⌣ 0           .
                                             ⌢       2
                                                     .   .
                                                         ⌣    .
                                                              ⌣                   c
                                                                                  . oncavity
                                  1.
                                  .0                −      −.
                                                    . .6 . 17                     f
                                                                                  .(x)
                                . .0         .       2
                                                     .    . .
                                                            3                     s
                                                                                  . hape
                                  I
                                  .P                 I
                                                     .P       m
                                                              . in




                                                                          .   .      .        .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   19 / 45
Step 3: Grand Unified Sign Chart

                                        .

 Remember, f(x) = x4 − 4x3 + 10.

                               − 0
                               . ..          −
                                             .           − 0 +
                                                         . .. .                   .′ (x)
                                                                                  f
                               ↘ 0
                               . .           ↘
                                             .           ↘ 3 ↗
                                                         . . .                    m
                                                                                  .′′ onotonicity
                              . + ..
                              + 0           −
                                            . −      .. . + . +
                                                     0+       +                   f
                                                                                  . (x)
                               . .
                               ⌣ 0           .
                                             ⌢       2
                                                     .   .
                                                         ⌣    .
                                                              ⌣                   c
                                                                                  . oncavity
                                  1.
                                  .0                −      −.
                                                    . .6 . 17                     f
                                                                                  .(x)
                                . .0         .       2
                                                     .    . . .
                                                            3                     s
                                                                                  . hape
                                  I
                                  .P                 I
                                                     .P       m
                                                              . in




                                                                          .   .      .        .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                    June 10, 2010   19 / 45
Step 4: Graph
                                                   y
                                                   .




              .(x) = x4 − 4x3 + 10
              f


                                        . 0, 10)
                                        (
                                                   .
                                                   .                 .                       x
                                                                                             .
                                                                               .
                                                       . 2, −6)
                                                       (
                                                                         . 3, −17)
                                                                         (

                                               1.
                                               .0                 −    −.
                                                                  . .6 . 17                  f
                                                                                             .(x)
                                             . .0         .         2
                                                                    . . . .
                                                                         3                   s
                                                                                             . hape
                                               I
                                               .P                  I
                                                                   .P . in
                                                                        m   .    .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                June 10, 2010   20 / 45
Step 4: Graph
                                                   y
                                                   .




              .(x) = x4 − 4x3 + 10
              f


                                        . 0, 10)
                                        (
                                                   .
                                                   .                 .                       x
                                                                                             .
                                                                               .
                                                       . 2, −6)
                                                       (
                                                                         . 3, −17)
                                                                         (

                                               1.
                                               .0                 −    −.
                                                                  . .6 . 17                  f
                                                                                             .(x)
                                             . .0         .         2
                                                                    . . . .
                                                                         3                   s
                                                                                             . hape
                                               I
                                               .P                  I
                                                                   .P . in
                                                                        m   .    .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                June 10, 2010   20 / 45
Step 4: Graph
                                                   y
                                                   .




              .(x) = x4 − 4x3 + 10
              f


                                        . 0, 10)
                                        (
                                                   .
                                                   .                 .                       x
                                                                                             .
                                                                               .
                                                       . 2, −6)
                                                       (
                                                                         . 3, −17)
                                                                         (

                                               1.
                                               .0                 −    −.
                                                                  . .6 . 17                  f
                                                                                             .(x)
                                             . .0         .         2
                                                                    . . . .
                                                                         3                   s
                                                                                             . hape
                                               I
                                               .P                  I
                                                                   .P . in
                                                                        m   .    .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                June 10, 2010   20 / 45
Step 4: Graph
                                                   y
                                                   .




              .(x) = x4 − 4x3 + 10
              f


                                        . 0, 10)
                                        (
                                                   .
                                                   .                 .                       x
                                                                                             .
                                                                               .
                                                       . 2, −6)
                                                       (
                                                                         . 3, −17)
                                                                         (

                                               1.
                                               .0                 −    −.
                                                                  . .6 . 17                  f
                                                                                             .(x)
                                             . .0         .         2
                                                                    . . . .
                                                                         3                   s
                                                                                             . hape
                                               I
                                               .P                  I
                                                                   .P . in
                                                                        m   .    .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                June 10, 2010   20 / 45
Step 4: Graph
                                                   y
                                                   .




              .(x) = x4 − 4x3 + 10
              f


                                        . 0, 10)
                                        (
                                                   .
                                                   .                 .                       x
                                                                                             .
                                                                               .
                                                       . 2, −6)
                                                       (
                                                                         . 3, −17)
                                                                         (

                                               1.
                                               .0                 −    −.
                                                                  . .6 . 17                  f
                                                                                             .(x)
                                             . .0         .         2
                                                                    . . . .
                                                                         3                   s
                                                                                             . hape
                                               I
                                               .P                  I
                                                                   .P . in
                                                                        m   .    .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                June 10, 2010   20 / 45
Outline



 Simple examples
    A cubic function
    A quartic function


 More Examples
   Points of nondifferentiability
   Horizontal asymptotes
   Vertical asymptotes
   Trigonometric and polynomial together
   Logarithmic



                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   21 / 45
Graphing a function with a cusp




 Example
                              √
 Graph f(x) = x +                 |x|




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   22 / 45
Graphing a function with a cusp




 Example
                              √
 Graph f(x) = x +                 |x|

 This function looks strange because of the absolute value. But
 whenever we become nervous, we can just take cases.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   22 / 45
Step 0: Finding Zeroes

                  √
 f(x) = x +           |x|
         First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if
         x is positive.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   23 / 45
Step 0: Finding Zeroes

                  √
 f(x) = x +           |x|
         First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if
         x is positive.
         Are there negative numbers which are zeroes for f?




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   23 / 45
Step 0: Finding Zeroes

                  √
 f(x) = x +           |x|
         First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if
         x is positive.
         Are there negative numbers which are zeroes for f?
                                     √
                                 x + −x = 0
                                     √
                                      −x = −x
                                                      −x = x2
                                                 x2 + x = 0

         The only solutions are x = 0 and x = −1.


                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   23 / 45
Step 0: Asymptotic behavior

                  √
 f(x) = x +           |x|
          lim f(x) = ∞, because both terms tend to ∞.
         x→∞




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   24 / 45
Step 0: Asymptotic behavior

                  √
 f(x) = x +           |x|
          lim f(x) = ∞, because both terms tend to ∞.
         x→∞
           lim f(x) is indeterminate of the form −∞ + ∞. It’s the same as
         x→−∞          √
           lim (−y + y)
         y→+∞




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   24 / 45
Step 0: Asymptotic behavior

                  √
 f(x) = x +           |x|
          lim f(x) = ∞, because both terms tend to ∞.
         x→∞
           lim f(x) is indeterminate of the form −∞ + ∞. It’s the same as
         x→−∞          √
           lim (−y + y)
         y→+∞
                                                           √
                                      √          √          y+y
                             lim (−y + y) = lim ( y − y) · √
                            y→+∞           y→∞              y+y
                                                        y − y2
                                                  = lim √      = −∞
                                                   y→∞    y+y




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   24 / 45
Step 1: The derivative


                           √
 Remember, f(x) = x + |x|.
 To find f′ , first assume x > 0. Then
                                             d (   √ )    1
                                  f′ (x) =       x+ x =1+ √
                                             dx          2 x




                                                                           .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching               June 10, 2010   25 / 45
Step 1: The derivative


                           √
 Remember, f(x) = x + |x|.
 To find f′ , first assume x > 0. Then
                                             d (   √ )    1
                                  f′ (x) =       x+ x =1+ √
                                             dx          2 x

 Notice
         f′ (x) > 0 when x > 0 (so no critical points here)




                                                                           .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching               June 10, 2010   25 / 45
Step 1: The derivative


                           √
 Remember, f(x) = x + |x|.
 To find f′ , first assume x > 0. Then
                                             d (   √ )    1
                                  f′ (x) =       x+ x =1+ √
                                             dx          2 x

 Notice
         f′ (x) > 0 when x > 0 (so no critical points here)
          lim f′ (x) = ∞ (so 0 is a critical point)
         x→0+




                                                                           .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching               June 10, 2010   25 / 45
Step 1: The derivative


                           √
 Remember, f(x) = x + |x|.
 To find f′ , first assume x > 0. Then
                                             d (   √ )    1
                                  f′ (x) =       x+ x =1+ √
                                             dx          2 x

 Notice
         f′ (x) > 0 when x > 0 (so no critical points here)
          lim f′ (x) = ∞ (so 0 is a critical point)
         x→0+
          lim f′ (x) = 1 (so the graph is asymptotic to a line of slope 1)
         x→∞




                                                                           .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching               June 10, 2010   25 / 45
Step 1: The derivative
                         √
 Remember, f(x) = x + |x|.
 If x is negative, we have

                                          d (    √ )        1
                               f′ (x) =       x + −x = 1 − √
                                          dx              2 −x

 Notice
          lim f′ (x) = −∞ (other side of the critical point)
         x→0−




                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching               June 10, 2010   26 / 45
Step 1: The derivative
                         √
 Remember, f(x) = x + |x|.
 If x is negative, we have

                                          d (    √ )        1
                               f′ (x) =       x + −x = 1 − √
                                          dx              2 −x

 Notice
          lim f′ (x) = −∞ (other side of the critical point)
         x→0−
           lim f′ (x) = 1 (asymptotic to a line of slope 1)
         x→−∞




                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching               June 10, 2010   26 / 45
Step 1: The derivative
                         √
 Remember, f(x) = x + |x|.
 If x is negative, we have

                                          d (    √ )        1
                               f′ (x) =       x + −x = 1 − √
                                          dx              2 −x

 Notice
          lim f′ (x) = −∞ (other side of the critical point)
         x→0−
           lim f′ (x) = 1 (asymptotic to a line of slope 1)
         x→−∞
          ′
         f (x) = 0 when

                   1        √     1         1          1
               1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
                 2 −x             2         4          4

                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching               June 10, 2010   26 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                 if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                                                                           .′ (x)
                                                                                           f
                                                     .
                                                                                           f
                                                                                           .(x)




                                                                      .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                 if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                          0
                                          ..                                               .′ (x)
                                                                                           f
                                                     .
                                         −4
                                         . 1                                               f
                                                                                           .(x)




                                                                      .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                 if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                          0
                                          ..      ∓.
                                                  . ∞                                      .′ (x)
                                                                                           f
                                         −4
                                         . 1        0
                                                    .                                      f
                                                                                           .(x)




                                                                      .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                    if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                     if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                        .
                                        +     0
                                              ..      ∓.
                                                      . ∞                                      .′ (x)
                                                                                               f
                                             −4
                                             . 1        0
                                                        .                                      f
                                                                                               .(x)




                                                                          .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                    if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                     if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                        .
                                        +     0 −∓ .
                                              .. . . ∞                                         .′ (x)
                                                                                               f
                                             −4
                                             . 1     0
                                                     .                                         f
                                                                                               .(x)




                                                                          .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                    if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                     if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                        .
                                        +     0 −∓ .
                                              .. . . ∞                    .
                                                                          +                    .′ (x)
                                                                                               f
                                             −4
                                             . 1     0
                                                     .                                         f
                                                                                               .(x)




                                                                          .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                    if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                     if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                        .
                                        +     0 −∓ .
                                              .. . . ∞                    .
                                                                          +                    .′ (x)
                                                                                               f
                                        ↗
                                        .    −4
                                             . 1     0
                                                     .                                         f
                                                                                               .(x)




                                                                          .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                    if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                     if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                        .
                                        +     0 −∓ .
                                              .. . . ∞                    .
                                                                          +                    .′ (x)
                                                                                               f
                                        ↗
                                        .    −4 ↘ 0
                                             . 1. .                                            f
                                                                                               .(x)




                                                                          .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                    if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                     if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                        .
                                        +     0 −∓ .
                                              .. . . ∞                    .
                                                                          +                    .′ (x)
                                                                                               f
                                        ↗
                                        .    −4 ↘ 0
                                             . 1. .                       ↗
                                                                          .                    f
                                                                                               .(x)




                                                                          .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                      if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                       if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                        .
                                        +      0 −∓ .
                                               .. . . ∞                     .
                                                                            +                    .′ (x)
                                                                                                 f
                                        ↗
                                        .     −4 ↘ 0
                                              . 1. .                        ↗
                                                                            .                    f
                                                                                                 .(x)
                                          .
                                              max



                                                                            .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 1: Monotonicity


                                                1
                                            1 + √
                                                                      if x > 0
                                   f′ (x) =     2 x
                                            1 − √
                                                 1
                                                                       if x < 0
                                                2 −x
 We can’t make a multi-factor sign chart because of the absolute value,
 but we can test points in between critical points.

                                        .
                                        +      0 −∓ .
                                               .. . . ∞                     .
                                                                            +                    .′ (x)
                                                                                                 f
                                        ↗
                                        .     −4 ↘ 0
                                              . .1 . .                      ↗
                                                                            .                    f
                                                                                                 .(x)
                                          .
                                              max min



                                                                            .     .   .      .          .   .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                 June 10, 2010     27 / 45
Step 2: Concavity
         If x > 0, then
                                                 (         )
                                            d        1         1
                                f′′ (x) =         1 + x−1/2 = − x−3/2
                                            dx       2         4
         This is negative whenever x > 0.




                                                                          .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching               June 10, 2010   28 / 45
Step 2: Concavity
         If x > 0, then
                                                 (         )
                                            d        1         1
                                f′′ (x) =         1 + x−1/2 = − x−3/2
                                            dx       2         4
         This is negative whenever x > 0.
         If x < 0, then
                                (              )
                      ′′     d      1     −1/2      1
                     f (x) =     1 − (−x)        = − (−x)−3/2
                             dx     2               4
         which is also always negative for negative x.




                                                                          .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching               June 10, 2010   28 / 45
Step 2: Concavity
         If x > 0, then
                                                 (         )
                                            d        1         1
                                f′′ (x) =         1 + x−1/2 = − x−3/2
                                            dx       2         4
         This is negative whenever x > 0.
         If x < 0, then
                                (              )
                      ′′     d      1     −1/2      1
                     f (x) =     1 − (−x)        = − (−x)−3/2
                             dx     2               4
         which is also always negative for negative x.
                                    1
         In other words, f′′ (x) = − |x|−3/2 .
                                    4




                                                                          .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching               June 10, 2010   28 / 45
Step 2: Concavity
         If x > 0, then
                                                   (         )
                                              d        1         1
                                f′′ (x) =           1 + x−1/2 = − x−3/2
                                              dx       2         4
         This is negative whenever x > 0.
         If x < 0, then
                                (              )
                      ′′     d      1     −1/2      1
                     f (x) =     1 − (−x)        = − (−x)−3/2
                             dx     2               4
     which is also always negative for negative x.
                                1
     In other words, f′′ (x) = − |x|−3/2 .
                                4
 Here is the sign chart:
                                                                                                 ′′
                                        −
                                        . −            −.
                                                       . ∞                  −
                                                                            . −             . . (x)
                                                                                              f
                                         .
                                         ⌢                                   .
                                                                             ⌢              .
                                                          0
                                                          .                                   f
                                                                                              .(x)
                                                                             .    .   .      .        .   .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                 June 10, 2010   28 / 45
Step 3: Synthesis


 Now we can put these things together.
                                      √
                           f(x) = x + |x|

                                                                                      ′
    . 1
    +                            .
                                 +       0 −∓ .
                                         .. . . ∞                   .
                                                                    +             +. f
                                                                                  . 1 (x)
     ↗
     .                           ↗
                                 .      −1 ↘ 0
                                        . 4. .                      ↗
                                                                    .              ↗m
                                                                                   . . onotonicity
   −
   . ∞                          −
                                . −         − . .
                                            . − ∞
                                               −                   −
                                                                   . −           − . f′′
                                                                                 . ∞ (x)
     .
     ⌢                           .
                                 ⌢           . .
                                             ⌢ 0                    .
                                                                    ⌢              . . oncavity
                                                                                   ⌢c
   −
   . ∞        0
              ..                         .1
                                          4     0
                                                ..                               . ∞
                                                                                 + .(x)
                                                                                     f
                                          .
             −
             . 1                        −1
                                        . .4    0
                                                .                                     s
                                                                                      . hape
      .                            .
            zero                        max min



                                                                         .   .    .       .      .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                 June 10, 2010   29 / 45
Step 3: Synthesis


 Now we can put these things together.
                                      √
                           f(x) = x + |x|

                                                                                      ′
    . 1
    +                            .
                                 +       0 −∓ .
                                         .. . . ∞                   .
                                                                    +             +. f
                                                                                  . 1 (x)
     ↗
     .                           ↗
                                 .      −1 ↘ 0
                                        . 4. .                      ↗
                                                                    .              ↗m
                                                                                   . . onotonicity
   −
   . ∞                          −
                                . −         − . .
                                            . − ∞
                                               −                   −
                                                                   . −           − . f′′
                                                                                 . ∞ (x)
     .
     ⌢                           .
                                 ⌢           . .
                                             ⌢ 0                    .
                                                                    ⌢              . . oncavity
                                                                                   ⌢c
   −
   . ∞     0
           ..                            .1
                                          4     0
                                                ..                               . ∞
                                                                                 + .(x)
                                                                                     f
                                          .
        . . 1
          −                             −1
                                        . .4    0
                                                .                                     s
                                                                                      . hape
      .                            .
         zero                           max min



                                                                         .   .    .       .      .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                 June 10, 2010   29 / 45
Step 3: Synthesis


 Now we can put these things together.
                                      √
                           f(x) = x + |x|

                                                                                      ′
    . 1
    +                            .
                                 +       0 −∓ .
                                         .. . . ∞                   .
                                                                    +             +. f
                                                                                  . 1 (x)
     ↗
     .                           ↗
                                 .      −1 ↘ 0
                                        . 4. .                      ↗
                                                                    .              ↗m
                                                                                   . . onotonicity
   −
   . ∞                          −
                                . −         − . .
                                            . − ∞
                                               −                   −
                                                                   . −           − . f′′
                                                                                 . ∞ (x)
     .
     ⌢                           .
                                 ⌢           . .
                                             ⌢ 0                    .
                                                                    ⌢              . . oncavity
                                                                                   ⌢c
   −
   . ∞     0
           ..                            .1
                                          4     0
                                                ..                               . ∞
                                                                                 + .(x)
                                                                                     f
                                          .
        . . 1
          −                       .     −1
                                        . .4    0
                                                .                                     s
                                                                                      . hape
      .                            .
         zero                           max min



                                                                         .   .    .       .      .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                 June 10, 2010   29 / 45
Step 3: Synthesis


 Now we can put these things together.
                                      √
                           f(x) = x + |x|

                                                                                      ′
    . 1
    +                            .
                                 +       0 −∓ .
                                         .. . . ∞                   .
                                                                    +             +. f
                                                                                  . 1 (x)
     ↗
     .                           ↗
                                 .      −1 ↘ 0
                                        . 4. .                      ↗
                                                                    .              ↗m
                                                                                   . . onotonicity
   −
   . ∞                          −
                                . −         − . .
                                            . − ∞
                                               −                   −
                                                                   . −           − . f′′
                                                                                 . ∞ (x)
     .
     ⌢                           .
                                 ⌢           . .
                                             ⌢ 0                    .
                                                                    ⌢              . . oncavity
                                                                                   ⌢c
   −
   . ∞     0
           ..                            .1
                                          4     0
                                                ..                               . ∞
                                                                                 + .(x)
                                                                                     f
                                          .
        . . 1
          −                       .     −1
                                        . .4  . .
                                                0                                     s
                                                                                      . hape
      .                            .
         zero                           max min



                                                                         .   .    .       .      .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                 June 10, 2010   29 / 45
Step 3: Synthesis


 Now we can put these things together.
                                      √
                           f(x) = x + |x|

                                                                                         ′
    . 1
    +                            .
                                 +       0 −∓ .
                                         .. . . ∞                   .
                                                                    +                +. f
                                                                                     . 1 (x)
     ↗
     .                           ↗
                                 .      −1 ↘ 0
                                        . 4. .                      ↗
                                                                    .                 ↗m
                                                                                      . . onotonicity
   −
   . ∞                          −
                                . −         − . .
                                            . − ∞
                                               −                   −
                                                                   . −              − . f′′
                                                                                    . ∞ (x)
     .
     ⌢                           .
                                 ⌢           . .
                                             ⌢ 0                    .
                                                                    ⌢                 . . oncavity
                                                                                      ⌢c
   −
   . ∞     0
           ..                            .1
                                          4     0
                                                ..                                  . ∞
                                                                                    + .(x)
                                                                                        f
                                          .
        . . 1
          −                       .     −1
                                        . .4  . .
                                                0                       .                s
                                                                                         . hape
      .                            .
         zero                           max min



                                                                            .   .    .       .      .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                    June 10, 2010   29 / 45
Graph


                                                               √
                                             f(x) = x +            |x|

                                                       f
                                                       .(x)




                                                          .                                x
                                                                                           .



               − 0
               . ∞ ..                         .1
                                               4    0
                                                    ..                             . ∞ .(x)
                                                                                   +   f
                                                .
          .        −
                   . 1                  .    . .1 . .
                                             −4     0                      .               s
                                                                                           . hape
           .                             .
                  zero                       max min
                                                                           .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                June 10, 2010   30 / 45
Graph


                                                               √
                                             f(x) = x +            |x|

                                                       f
                                                       .(x)




                . −1, 0)
                (
                    .                                     .                                x
                                                                                           .



               − 0
               . ∞ ..                         .1
                                               4    0
                                                    ..                             . ∞ .(x)
                                                                                   +   f
                                                .
          .        −
                   . 1                  .    . .1 . .
                                             −4     0                      .               s
                                                                                           . hape
           .                             .
                  zero                       max min
                                                                           .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.4 Curve Sketching                June 10, 2010   30 / 45
Graph


                                                                √
                                               f(x) = x +           |x|

                                                        f
                                                        .(x)



                                             .−1, 1)
                                             ( 4 4
                . −1, 0)
                (                               .
                    .                                      .                                x
                                                                                            .



               − 0
               . ∞ ..                          .1
                                                4    0
                                                     ..                             . ∞ .(x)
                                                                                    +   f
                                                 .
          .        −
                   . 1                  .     . .1 . .
                                              −4     0                      .               s
                                                                                            . hape
           .                             .
                  zero                        max min
                                                                            .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                June 10, 2010   30 / 45
Graph


                                                                 √
                                               f(x) = x +            |x|

                                                        f
                                                        .(x)



                                             .−1, 1)
                                             ( 4 4
                . −1, 0)
                (                               .
                    .                                      .                                x
                                                                                            .
                                                               . 0, 0)
                                                               (


               − 0
               . ∞ ..                          .1
                                                4    0
                                                     ..                             . ∞ .(x)
                                                                                    +   f
                                                 .
          .        −
                   . 1                  .     . .1 . .
                                              −4     0                      .               s
                                                                                            . hape
           .                             .
                  zero                        max min
                                                                            .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                June 10, 2010   30 / 45
Graph


                                                                 √
                                               f(x) = x +            |x|

                                                        f
                                                        .(x)



                                             .−1, 1)
                                             ( 4 4
                . −1, 0)
                (                               .
                    .                                      .                                x
                                                                                            .
                                                               . 0, 0)
                                                               (


               − 0
               . ∞ ..                          .1
                                                4    0
                                                     ..                             . ∞ .(x)
                                                                                    +   f
                                                 .
          .        −
                   . 1                  .     . .1 . .
                                              −4     0                      .               s
                                                                                            . hape
           .                             .
                  zero                        max min
                                                                            .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                June 10, 2010   30 / 45
Graph


                                                                 √
                                               f(x) = x +            |x|

                                                        f
                                                        .(x)



                                             .−1, 1)
                                             ( 4 4
                . −1, 0)
                (                               .
                    .                                      .                                x
                                                                                            .
                                                               . 0, 0)
                                                               (


               − 0
               . ∞ ..                          .1
                                                4    0
                                                     ..                             . ∞ .(x)
                                                                                    +   f
                                                 .
          .        −
                   . 1                  .     . .1 . .
                                              −4     0                      .               s
                                                                                            . hape
           .                             .
                  zero                        max min
                                                                            .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                June 10, 2010   30 / 45
Graph


                                                                 √
                                               f(x) = x +            |x|

                                                        f
                                                        .(x)



                                             .−1, 1)
                                             ( 4 4
                . −1, 0)
                (                               .
                    .                                      .                                x
                                                                                            .
                                                               . 0, 0)
                                                               (


               − 0
               . ∞ ..                          .1
                                                4    0
                                                     ..                             . ∞ .(x)
                                                                                    +   f
                                                 .
          .        −
                   . 1                  .     . .1 . .
                                              −4     0                      .               s
                                                                                            . hape
           .                             .
                  zero                        max min
                                                                            .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                June 10, 2010   30 / 45
Example with Horizontal Asymptotes




 Example
 Graph f(x) = xe−x
                               2




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   31 / 45
Example with Horizontal Asymptotes




 Example
 Graph f(x) = xe−x
                               2




 Before taking derivatives, we notice that f is odd, that f(0) = 0, and
 lim f(x) = 0
 x→∞




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   31 / 45
Step 1: Monotonicity
 If f(x) = xe−x , then
                      2


                                                    (       )
                     f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                                     2      2                    2


                              (     √ )(      √ )
                            = 1 − 2x 1 + 2x e−x
                                                      2




 The factor e−x is always positive so it doesn’t figure into the sign of
                          2


 f′ (x). So our sign chart looks like this:

                     .
                     +                             ..
                                                   +        0
                                                            .                    −
                                                                                 .                  √
                                                          √.                                 . −
                                                                                             1       2x
                                                          . 1/2
                     −
                     .                  0
                                        ..         .
                                                   +                             .
                                                                                 +                  √
                                        √                                                    1
                                                                                             . +     2x
                                   −
                                   .         1/2
                    −
                    .                   0
                                        ..         .
                                                   +        0
                                                            .                    −
                                                                                 .           .′ (x)
                                                                                             f
                                        √                 √.
                    ↘
                    .            − 1/2             ↗
                                                   .                             ↘
                                                                                 .           f
                                                                                             .(x)
                               . .                   .    . 1/2
                                   min                    max
                                                                             .       .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)          Section 4.4 Curve Sketching                   June 10, 2010   32 / 45
Step 2: Concavity
 If f′ (x) = (1 − 2x2 )e−x , we know
                                        2


                                                     (        )
           f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                             2               2                     2




                   = 2x(2x2 − 3)e−x
                                                 2




                   −
                   .                        −
                                            .     0
                                                  ..       .
                                                           +                  .
                                                                              +
                                                                                            2
                                                                                            .x
                                                  0
                                                  .
                   −
                   .                        −
                                            .              −
                                                           .       0
                                                                   .          .
                                                                              +             √     √
                                                                 √.                         . 2x − 3
                                                                 . 3/2
                   −
                   .      0
                          ..  .
                              +                            .
                                                           +                  .
                                                                              +             √     √
                         √                                                                  . 2x + 3
                       −
                       . 3/2
                  −
                  . −     .. . +
                          0 +                     0
                                                  ..     −
                                                         . − .. 0             . +
                                                                              +             .′′ (x)
                                                                                            f
                   .
                   ⌢     √    .
                              ⌣                           ⌢ √3
                                                          .                    .
                                                                               ⌣
                       − 3/2 .                    0
                                                  .                                         f
                                                                                            .(x)
                     . .                                    . . /2
                         IP                      IP            IP
                                                                              .     .   .        .     .    .

V63.0121.002.2010Su, Calculus I (NYU)           Section 4.4 Curve Sketching                 June 10, 2010   33 / 45
Step 3: Synthesis

                                              f(x) = xe−x
                                                                 2




         −
         .                  − 0 +
                            . .. .              + . −                             −            .′ (x)
                                                                                               f
                                √             . . √. .
                                                    0                             .
         ↘
         .                  ↘       ↗
                            . . 1/2 .
                              −                 ↗      ↘
                                                . . 1/2.                          ↘
                                                                                  .            m
                                                                                               . onotonicity

        −
        . −           .. . +
                      0+                + 0 −
                                        . + .. . −              − 0
                                                                . − ..            . +
                                                                                  +            .′′ (x)
                                                                                               f
         .
         ⌢            √.  ⌣              ⌣ . .
                                         .                       . √3              .
                    −
                    . 3/2                   0 ⌢                  ⌢
                                                                   . /2
                                                                                   ⌣           c
                                                                                               . oncavity

                        √                                     √
                    −
                    .        3
                            2e3
                                −
                                . √1                     .√1  . 33                             f
                                                                                               .(x)
                     .     .       2e        0
                                             ..           . √2e
                                                           2e
          .         √ . √                               √ . .
                  −
                . . . .  − 1/2 .
                       3/2
                             .
                                             . .
                                             0
                                                .       . 1/2 . 3/2
                                                           .
                                                                                   .           s
                                                                                               . hape
                    IP min                  IP          max IP

                                                                          .   .         .      .        .   .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching                      June 10, 2010   34 / 45
Step 4: Graph

                                                 f
                                                 .(x)

                                                        (√        )(
                                                        . 1/2, √1    √      √ )
                                                                2e .          3
                   .(x) = xe−x
                                        2                              3/2,
                   f                                         .               2e3
                                                                  .
                                                    .                                                x
                                                                                                     .
                                                        . 0, 0)
                                                        (
  (                   .
     √       √ )            .
  . − 3/2, − 2e3 ( √
               3                  )
                   . − 1/2, − √1
                               2e
                    √                                              √
                 − 2e3 √1
                 .      3
                          −
                          .                                   .√1 . 2e33
                                                                                                     f
                                                                                                     .(x)
                      . √2e       0
                                  .                             2e
            .        √ . . . . .                             √ . . √.
                                                                                  .
                 − 3 . 1/2 . .
                         − .      0                                                                  s
                                                                                                     . hape
              . . . /2                                       . .1/2 . 3/2
                     IP min      IP                          max IP
                                                                          .   .       .      .       .      .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                   June 10, 2010     35 / 45
Example with Vertical Asymptotes




 Example
                        1   1
 Graph f(x) =             + 2
                        x x




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   36 / 45
Step 0
 Find when f is positive, negative, zero, not defined.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   37 / 45
Step 0
 Find when f is positive, negative, zero, not defined. We need to factor f:
                                                 1   1   x+1
                                        f(x) =     +   =     .
                                                 x x2     x2
 This means f is 0 at −1 and has trouble at 0. In fact,
                                              x+1
                                            lim   = ∞,
                                           x→0 x2

 so x = 0 is a vertical asymptote of the graph.




                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching               June 10, 2010   37 / 45
Step 0
 Find when f is positive, negative, zero, not defined. We need to factor f:
                                                   1   1   x+1
                                          f(x) =     +   =     .
                                                   x x2     x2
 This means f is 0 at −1 and has trouble at 0. In fact,
                                                 x+1
                                              lim    = ∞,
                                              x→0 x2

 so x = 0 is a vertical asymptote of the graph. We can make a sign
 chart as follows:
                               −
                               .         0
                                         ..          .                      .
                                                                            +
                                                                                    x
                                                                                    . +1
                                        −
                                        . 1
                               .
                               +                    0
                                                    ..                      .
                                                                            +
                                                                                    .2
                                                                                    x
                                                    0
                                                    .
                               −
                               .         .. .
                                         0 +        ∞
                                                    ..                      .
                                                                            +
                                                                                    f
                                                                                    .(x)
                                        −
                                        . 1         0
                                                    .
                                                                                .   .      .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)         Section 4.4 Curve Sketching                      June 10, 2010   37 / 45
Step 0, continued




 For horizontal asymptotes, notice that

                                           x+1
                                         lim   = 0,
                                        x→∞ x2

 so y = 0 is a horizontal asymptote of the graph. The same is true at
 −∞.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   38 / 45
Step 1: Monotonicity

 We have
                                 1    2     x+2
                                   −f′ (x) = −
                                        =− 3 .
                                x2 x3        x
 The critical points are x = −2 and x = 0. We have the following sign
 chart:
                            .
                            +      0
                                   ..                        .     −
                                                                   .
                                                                            −
                                                                            . (x + 2)
                                  −
                                  . 2
                            −
                            .                               0
                                                            ..     .
                                                                   +
                                                                            .3
                                                                            x
                                                            0
                                                            .




                                                                        .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                    June 10, 2010   39 / 45
Step 1: Monotonicity

 We have
                                 1    2     x+2
                                   −f′ (x) = −
                                        =− 3 .
                                x2 x3        x
 The critical points are x = −2 and x = 0. We have the following sign
 chart:
                            .
                            +      0
                                   ..                        .     −
                                                                   .
                                                                            −
                                                                            . (x + 2)
                                  −
                                  . 2
                            −
                            .                              0
                                                           ..      .
                                                                   +
                                                                            .3
                                                                            x
                                                           0
                                                           .
                            −
                            .      0
                                   ..        .
                                             +             ∞
                                                           ..      −
                                                                   .        .′ (x)
                                                                            f
                                  −
                                  . 2                      0
                                                           .                f
                                                                            .(x)



                                                                        .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                    June 10, 2010   39 / 45
Step 1: Monotonicity

 We have
                                 1    2     x+2
                                   −f′ (x) = −
                                        =− 3 .
                                x2 x3        x
 The critical points are x = −2 and x = 0. We have the following sign
 chart:
                            .
                            +      0
                                   ..                        .     −
                                                                   .
                                                                            −
                                                                            . (x + 2)
                                  −
                                  . 2
                            −
                            .                              0
                                                           ..      .
                                                                   +
                                                                            .3
                                                                            x
                                                           0
                                                           .
                           − ..
                           .  0              .
                                             +             ∞
                                                           ..      −
                                                                   .        .′ (x)
                                                                            f
                           ↘ . 2
                           . −                             0
                                                           .                f
                                                                            .(x)



                                                                        .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                    June 10, 2010   39 / 45
Step 1: Monotonicity

 We have
                                 1    2     x+2
                                   −f′ (x) = −
                                        =− 3 .
                                x2 x3        x
 The critical points are x = −2 and x = 0. We have the following sign
 chart:
                            .
                            +      0
                                   ..                        .     −
                                                                   .
                                                                            −
                                                                            . (x + 2)
                                  −
                                  . 2
                            −
                            .                              0
                                                           ..      .
                                                                   +
                                                                            .3
                                                                            x
                                                           0
                                                           .
                           − ..
                           .  0             .
                                            +              ∞
                                                           ..      −
                                                                   .        .′ (x)
                                                                            f
                           ↘ . 2
                           . −              ↗
                                            .              0
                                                           .                f
                                                                            .(x)



                                                                        .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                    June 10, 2010   39 / 45
Step 1: Monotonicity

 We have
                                 1    2     x+2
                                   −f′ (x) = −
                                        =− 3 .
                                x2 x3        x
 The critical points are x = −2 and x = 0. We have the following sign
 chart:
                            .
                            +      0
                                   ..                        .     −
                                                                   .
                                                                            −
                                                                            . (x + 2)
                                  −
                                  . 2
                            −
                            .                              .. .
                                                           0 +
                                                                            .3
                                                                            x
                                                           0
                                                           .
                           − ..
                           .  0             .
                                            +              ∞ −
                                                           .. .             .′ (x)
                                                                            f
                           ↘ . 2
                           . −              ↗
                                            .              0 ↘
                                                           . .              f
                                                                            .(x)



                                                                        .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                    June 10, 2010   39 / 45
Step 1: Monotonicity

 We have
                                 1    2     x+2
                                   −f′ (x) = −
                                        =− 3 .
                                x2 x3        x
 The critical points are x = −2 and x = 0. We have the following sign
 chart:
                            .
                            +      0
                                   ..                        .     −
                                                                   .
                                                                            −
                                                                            . (x + 2)
                                  −
                                  . 2
                            −
                            .                              .. .
                                                           0 +
                                                                            .3
                                                                            x
                                                           0
                                                           .
                           − ..
                           .  0             .
                                            +              ∞ −
                                                           .. .             .′ (x)
                                                                            f
                           ↘ . 2
                           . −              ↗
                                            .              0 ↘
                                                           . .              f
                                                                            .(x)
                             m
                             . in


                                                                        .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                    June 10, 2010   39 / 45
Step 1: Monotonicity

 We have
                                 1    2     x+2
                                   −f′ (x) = −
                                        =− 3 .
                                x2 x3        x
 The critical points are x = −2 and x = 0. We have the following sign
 chart:
                            .
                            +      0
                                   ..                        .     −
                                                                   .
                                                                            −
                                                                            . (x + 2)
                                  −
                                  . 2
                            −
                            .                               .. .
                                                            0 +
                                                                            .3
                                                                            x
                                                            0
                                                            .
                           − ..
                           .  0             .
                                            +              ∞ −
                                                           .. .             .′ (x)
                                                                            f
                           ↘ . 2
                           . −              ↗
                                            .               0 ↘
                                                            . .             f
                                                                            .(x)
                             m
                             . in                          V
                                                           .A


                                                                        .        .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.4 Curve Sketching                    June 10, 2010   39 / 45
Step 2: Concavity


 We have
                                                2   6   2(x + 3)
                                    f′′ (x) =     +   =          .
                                                x3 x4      x4
 The critical points of f′ are −3 and 0. Sign chart:

                      −
                      .      0
                             ..                                          .       .
                                                                                 +
                                                                                         . x + 3)
                                                                                         (
                            −
                            . 3
                      .
                      +                                              0
                                                                     ..          .
                                                                                 +
                                                                                         .4
                                                                                         x
                                                                     0
                                                                     .
                             0
                             ..                                      ∞
                                                                     ..                  .′′ (x)
                                                                                         f
                            −
                            . 3                                      0
                                                                     .                   f
                                                                                         .(x)




                                                                             .       .    .        .     .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching                        June 10, 2010   40 / 45
Step 2: Concavity


 We have
                                                2   6   2(x + 3)
                                    f′′ (x) =     +   =          .
                                                x3 x4      x4
 The critical points of f′ are −3 and 0. Sign chart:

                      −
                      .      0
                             ..                                          .       .
                                                                                 +
                                                                                         . x + 3)
                                                                                         (
                            −
                            . 3
                      .
                      +                                              0
                                                                     ..          .
                                                                                 +
                                                                                         .4
                                                                                         x
                                                                     0
                                                                     .
                    −
                    . − ..
                         0                                           ∞
                                                                     ..                  .′′ (x)
                                                                                         f
                        −
                        . 3                                          0
                                                                     .                   f
                                                                                         .(x)




                                                                             .       .    .        .     .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching                        June 10, 2010   40 / 45
Step 2: Concavity


 We have
                                                2   6   2(x + 3)
                                    f′′ (x) =     +   =          .
                                                x3 x4      x4
 The critical points of f′ are −3 and 0. Sign chart:

                      −
                      .      0
                             ..                                          .       .
                                                                                 +
                                                                                         . x + 3)
                                                                                         (
                            −
                            . 3
                      .
                      +                                              0
                                                                     ..          .
                                                                                 +
                                                                                         .4
                                                                                         x
                                                                     0
                                                                     .
                    −
                    . − ..
                         0                      . +
                                                +                    ∞
                                                                     ..                  .′′ (x)
                                                                                         f
                        −
                        . 3                                          0
                                                                     .                   f
                                                                                         .(x)




                                                                             .       .    .        .     .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching                        June 10, 2010   40 / 45
Step 2: Concavity


 We have
                                                2   6   2(x + 3)
                                    f′′ (x) =     +   =          .
                                                x3 x4      x4
 The critical points of f′ are −3 and 0. Sign chart:

                      −
                      .      0
                             ..                                          .       .
                                                                                 +
                                                                                         . x + 3)
                                                                                         (
                            −
                            . 3
                      .
                      +                                              .. .
                                                                     0 +
                                                                                         .4
                                                                                         x
                                                                     0
                                                                     .
                    −
                    . − ..
                         0                      . +
                                                +                    ∞ +
                                                                     .. . +              .′′ (x)
                                                                                         f
                        −
                        . 3                                          0
                                                                     .                   f
                                                                                         .(x)




                                                                             .       .    .        .     .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching                        June 10, 2010   40 / 45
Step 2: Concavity


 We have
                                                2   6   2(x + 3)
                                    f′′ (x) =     +   =          .
                                                x3 x4      x4
 The critical points of f′ are −3 and 0. Sign chart:

                      −
                      .      0
                             ..                                          .       .
                                                                                 +
                                                                                         . x + 3)
                                                                                         (
                            −
                            . 3
                      .
                      +                                              .. .
                                                                     0 +
                                                                                         .4
                                                                                         x
                                                                     0
                                                                     .
                    −
                    . − ..
                        0                       . +
                                                +                    ∞ +
                                                                     .. . +              .′′ (x)
                                                                                         f
                     .
                     ⌢ . 3
                        −                                            0
                                                                     .                   f
                                                                                         .(x)




                                                                             .       .    .        .     .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching                        June 10, 2010   40 / 45
Step 2: Concavity


 We have
                                                2   6   2(x + 3)
                                    f′′ (x) =     +   =          .
                                                x3 x4      x4
 The critical points of f′ are −3 and 0. Sign chart:

                      −
                      .      0
                             ..                                          .       .
                                                                                 +
                                                                                         . x + 3)
                                                                                         (
                            −
                            . 3
                      .
                      +                                              .. .
                                                                     0 +
                                                                                         .4
                                                                                         x
                                                                     0
                                                                     .
                    −
                    . − ..
                        0                       . +
                                                +                    ∞ +
                                                                     .. . +              .′′ (x)
                                                                                         f
                     .
                     ⌢ . 3
                        −                        .
                                                 ⌣                   0
                                                                     .                   f
                                                                                         .(x)




                                                                             .       .    .        .     .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching                        June 10, 2010   40 / 45
Step 2: Concavity


 We have
                                                2   6   2(x + 3)
                                    f′′ (x) =     +   =          .
                                                x3 x4      x4
 The critical points of f′ are −3 and 0. Sign chart:

                      −
                      .      0
                             ..                                          .       .
                                                                                 +
                                                                                         . x + 3)
                                                                                         (
                            −
                            . 3
                      .
                      +                                              .. .
                                                                     0 +
                                                                                         .4
                                                                                         x
                                                                     0
                                                                     .
                    −
                    . − ..
                        0                       . +
                                                +                    ∞ +
                                                                     .. . +              .′′ (x)
                                                                                         f
                     .
                     ⌢ . 3
                        −                        .
                                                 ⌣                   . .
                                                                     0 ⌣                 f
                                                                                         .(x)




                                                                             .       .    .        .     .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching                        June 10, 2010   40 / 45
Step 2: Concavity


 We have
                                                2   6   2(x + 3)
                                    f′′ (x) =     +   =          .
                                                x3 x4      x4
 The critical points of f′ are −3 and 0. Sign chart:

                      −
                      .      0
                             ..                                          .       .
                                                                                 +
                                                                                         . x + 3)
                                                                                         (
                            −
                            . 3
                      .
                      +                                              .. .
                                                                     0 +
                                                                                         .4
                                                                                         x
                                                                     0
                                                                     .
                    −
                    . − ..
                         0                      . +
                                                +                    ∞ +
                                                                     .. . +              .′′ (x)
                                                                                         f
                     .
                     ⌢ . 3
                        −                        .
                                                 ⌣                   . .
                                                                     0 ⌣                 f
                                                                                         .(x)
                        I
                        .P



                                                                             .       .    .        .     .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching                        June 10, 2010   40 / 45
Step 2: Concavity


 We have
                                                2   6   2(x + 3)
                                    f′′ (x) =     +   =          .
                                                x3 x4      x4
 The critical points of f′ are −3 and 0. Sign chart:

                      −
                      .      0
                             ..                                          .       .
                                                                                 +
                                                                                         . x + 3)
                                                                                         (
                            −
                            . 3
                      .
                      +                                               .. .
                                                                      0 +
                                                                                         .4
                                                                                         x
                                                                      0
                                                                      .
                    −
                    . − ..
                         0                      . +
                                                +                    ∞ +
                                                                     .. . +              .′′ (x)
                                                                                         f
                     .
                     ⌢ . 3
                        −                        .
                                                 ⌣                    . .
                                                                      0 ⌣                f
                                                                                         .(x)
                        I
                        .P                                           V
                                                                     .A



                                                                             .       .    .        .     .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.4 Curve Sketching                        June 10, 2010   40 / 45
Step 3: Synthesis

                                                                      .

                                 − ..
                                 .  0                 .
                                                      +             ∞ −
                                                                    .. .          .′
                                                                                  f
                                 ↘ . 2
                                 . −                  ↗
                                                      .             0 ↘
                                                                    . .           m
                                                                                  . onotonicity
                  −
                  . − ..
                      0                         . +
                                                +                   ∞ +
                                                                    .. . +        .′′
                                                                                  f
                   .
                   ⌢ . 3
                      −                          .
                                                 ⌣                  . .
                                                                    0 ⌣           c
                                                                                  . oncavity

            0
            .   −
                . 2/9                   −
                                        . 1/4          0
                                                       ..           ∞
                                                                    ..         0f
                                                                               ..
                   .                       .
          −
          . ∞ . . 3
              − −                        −
                                         . 2          − +
                                                      . 1 .         0
                                                                    .     .
                                                                          +   ∞s
                                                                              . . hape of f




                                                                          .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                      .

                                 − ..
                                 .  0                 .
                                                      +             ∞ −
                                                                    .. .          .′
                                                                                  f
                                 ↘ . 2
                                 . −                  ↗
                                                      .             0 ↘
                                                                    . .           m
                                                                                  . onotonicity
                  −
                  . − ..
                      0                         . +
                                                +                   ∞ +
                                                                    .. . +        .′′
                                                                                  f
                   .
                   ⌢ . 3
                      −                          .
                                                 ⌣                  . .
                                                                    0 ⌣           c
                                                                                  . oncavity

            0
            .    −
                 . 2/9                  −
                                        . 1/4          0
                                                       ..           ∞
                                                                    ..         0f
                                                                               ..
                    .                      .
          −
          . ∞ . . 3
               − −                       −
                                         . 2          − +
                                                      . 1 .         0
                                                                    .     .
                                                                          +   ∞s
                                                                              . . hape of f
           H
           . A




                                                                          .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                      .

                                 − ..
                                 .  0                 .
                                                      +             ∞ −
                                                                    .. .          .′
                                                                                  f
                                 ↘ . 2
                                 . −                  ↗
                                                      .             0 ↘
                                                                    . .           m
                                                                                  . onotonicity
                  −
                  . − ..
                      0                         . +
                                                +                   ∞ +
                                                                    .. . +        .′′
                                                                                  f
                   .
                   ⌢ . 3
                      −                          .
                                                 ⌣                  . .
                                                                    0 ⌣           c
                                                                                  . oncavity

            0
            .    −
                 . 2/9                  −
                                        . 1/4          0
                                                       ..           ∞
                                                                    ..         0f
                                                                               ..
                    .                      .
          −
          . ∞ . . 3
               − −                       −
                                         . 2          − +
                                                      . 1 .         0
                                                                    .     .
                                                                          +   ∞s
                                                                              . . hape of f
           . A .
           H




                                                                          .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                      .

                                 − ..
                                 .  0                 .
                                                      +             ∞ −
                                                                    .. .          .′
                                                                                  f
                                 ↘ . 2
                                 . −                  ↗
                                                      .             0 ↘
                                                                    . .           m
                                                                                  . onotonicity
                  −
                  . − ..
                      0                         . +
                                                +                   ∞ +
                                                                    .. . +        .′′
                                                                                  f
                   .
                   ⌢ . 3
                      −                          .
                                                 ⌣                  . .
                                                                    0 ⌣           c
                                                                                  . oncavity

            0
            .    −
                 . 2/9                  −
                                        . 1/4          0
                                                       ..           ∞
                                                                    ..         0f
                                                                               ..
                    .                      .
          −
          . ∞ . . 3
               − −                       −
                                         . 2          − +
                                                      . 1 .         0
                                                                    .     .
                                                                          +   ∞s
                                                                              . . hape of f
           . A . .P
           H      I




                                                                          .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                   .

                                 − ..
                                 .  0             .
                                                  +              ∞ −
                                                                 .. .          .′
                                                                               f
                                 ↘ . 2
                                 . −              ↗
                                                  .              0 ↘
                                                                 . .           m
                                                                               . onotonicity
                  −
                  . − ..
                      0                  . +
                                         +                       ∞ +
                                                                 .. . +        .′′
                                                                               f
                   .
                   ⌢ . 3
                      −                   .
                                          ⌣                      . .
                                                                 0 ⌣           c
                                                                               . oncavity

            0
            .    −
                 . 2/9 −
                       . 1/4                      0
                                                  ..             ∞
                                                                 ..         0f
                                                                            ..
                    .     .
          −
          . ∞ . . 3
               − −      −
                        . 2                      − +
                                                 . 1 .           0
                                                                 .     .
                                                                       +   ∞s
                                                                           . . hape of f
           . A . .P .
           H      I




                                                                       .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)    Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                   .

                                 − ..
                                 .  0             .
                                                  +              ∞ −
                                                                 .. .          .′
                                                                               f
                                 ↘ . 2
                                 . −              ↗
                                                  .              0 ↘
                                                                 . .           m
                                                                               . onotonicity
                  −
                  . − ..
                      0                  . +
                                         +                       ∞ +
                                                                 .. . +        .′′
                                                                               f
                   .
                   ⌢ . 3
                      −                   .
                                          ⌣                      . .
                                                                 0 ⌣           c
                                                                               . oncavity

            0
            .    −
                 . 2/9 −
                       . 1/4                      0
                                                  ..             ∞
                                                                 ..         0f
                                                                            ..
                    .     .
          −
          . ∞ . . 3
               − −      −
                        . 2                      − +
                                                 . 1 .           0
                                                                 .     .
                                                                       +   ∞s
                                                                           . . hape of f
           . A . .P . . in
           H      I     m




                                                                       .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)    Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                   .

                                 − ..
                                 .  0             .
                                                  +              ∞ −
                                                                 .. .          .′
                                                                               f
                                 ↘ . 2
                                 . −              ↗
                                                  .              0 ↘
                                                                 . .           m
                                                                               . onotonicity
                  −
                  . − ..
                      0                  . +
                                         +                       ∞ +
                                                                 .. . +        .′′
                                                                               f
                   .
                   ⌢ . 3
                      −                   .
                                          ⌣                      . .
                                                                 0 ⌣           c
                                                                               . oncavity

            0
            .    −
                 . 2/9 −
                       . 1/4                      0
                                                  ..             ∞
                                                                 ..         0f
                                                                            ..
                    .     .
          −
          . ∞ . . 3
               − −      −
                        . 2                      − +
                                                 . 1 .           0
                                                                 .     .
                                                                       +   ∞s
                                                                           . . hape of f
           . A . .P . . in .
           H      I     m




                                                                       .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)    Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                   .

                                 − ..
                                 .  0             .
                                                  +              ∞ −
                                                                 .. .          .′
                                                                               f
                                 ↘ . 2
                                 . −              ↗
                                                  .              0 ↘
                                                                 . .           m
                                                                               . onotonicity
                  −
                  . − ..
                      0                  . +
                                         +                       ∞ +
                                                                 .. . +        .′′
                                                                               f
                   .
                   ⌢ . 3
                      −                   .
                                          ⌣                      . .
                                                                 0 ⌣           c
                                                                               . oncavity

            0
            .    −
                 . 2/9 −
                       . 1/4                      0
                                                  ..             ∞
                                                                 ..         0f
                                                                            ..
                    .     .
          −
          . ∞ . . 3
               − −      −
                        . 2                      − +
                                                 . 1 .           0
                                                                 .     .
                                                                       +   ∞s
                                                                           . . hape of f
           . A . .P . . in .
           H      I     m                         0
                                                  .




                                                                       .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)    Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                   .

                                 − ..
                                 .  0             .
                                                  +              ∞ −
                                                                 .. .          .′
                                                                               f
                                 ↘ . 2
                                 . −              ↗
                                                  .              0 ↘
                                                                 . .           m
                                                                               . onotonicity
                  −
                  . − ..
                      0                  . +
                                         +                       ∞ +
                                                                 .. . +        .′′
                                                                               f
                   .
                   ⌢ . 3
                      −                   .
                                          ⌣                      . .
                                                                 0 ⌣           c
                                                                               . oncavity

            0
            .    −
                 . 2/9 −
                       . 1/4                      0
                                                  ..             ∞
                                                                 ..         0f
                                                                            ..
                    .     .
          −
          . ∞ . . 3
               − −      −
                        . 2                      − +
                                                 . 1 .           0
                                                                 .     .
                                                                       +   ∞s
                                                                           . . hape of f
           . A . .P . . in .
           H      I     m                         0 .
                                                  .




                                                                       .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)    Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                   .

                                 − ..
                                 .  0             .
                                                  +              ∞ −
                                                                 .. .          .′
                                                                               f
                                 ↘ . 2
                                 . −              ↗
                                                  .              0 ↘
                                                                 . .           m
                                                                               . onotonicity
                  −
                  . − ..
                      0                  . +
                                         +                       ∞ +
                                                                 .. . +        .′′
                                                                               f
                   .
                   ⌢ . 3
                      −                   .
                                          ⌣                      . .
                                                                 0 ⌣           c
                                                                               . oncavity

            0
            .    −
                 . 2/9 −
                       . 1/4                      0
                                                  ..   ∞
                                                       ..                   0f
                                                                            ..
                    .     .
          −
          . ∞ . . 3
               − −      −
                        . 2                      −
                                                 . 1 .
                                                     + .0 .
                                                          +                ∞s
                                                                           . . hape of f
           . A . .P . . in .
           H      I     m                         0 . .A
                                                  .    V




                                                                       .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)    Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                   .

                                 − ..
                                 .  0             .
                                                  +              ∞ −
                                                                 .. .          .′
                                                                               f
                                 ↘ . 2
                                 . −              ↗
                                                  .              0 ↘
                                                                 . .           m
                                                                               . onotonicity
                  −
                  . − ..
                      0                  . +
                                         +                       ∞ +
                                                                 .. . +        .′′
                                                                               f
                   .
                   ⌢ . 3
                      −                   .
                                          ⌣                      . .
                                                                 0 ⌣           c
                                                                               . oncavity

            0
            .    −
                 . 2/9 −
                       . 1/4                      0
                                                  ..   ∞
                                                       ..                   0f
                                                                            ..
                    .     .
          −
          . ∞ . . 3
               − −      −
                        . 2                      −
                                                 . 1 .
                                                     + .0 .
                                                          +                ∞s
                                                                           . . hape of f
           . A . .P . . in .
           H      I     m                         0 . .A .
                                                  .    V




                                                                       .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)    Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 3: Synthesis

                                                                   .

                                 − ..
                                 .  0             .
                                                  +              ∞ −
                                                                 .. .          .′
                                                                               f
                                 ↘ . 2
                                 . −              ↗
                                                  .              0 ↘
                                                                 . .           m
                                                                               . onotonicity
                  −
                  . − ..
                      0                  . +
                                         +                       ∞ +
                                                                 .. . +        .′′
                                                                               f
                   .
                   ⌢ . 3
                      −                   .
                                          ⌣                      . .
                                                                 0 ⌣           c
                                                                               . oncavity

            0
            .    −
                 . 2/9 −
                       . 1/4                      0
                                                  ..   ∞
                                                       ..    0f
                                                             ..
                    .     .
          −
          . ∞ . . 3
               − −      −
                        . 2                      −
                                                 . 1 .
                                                     + .0 . ∞s
                                                          + . . hape of f
           . A . .P . . in .
           H      I     m                         0 . .A . . A
                                                  .    V    H




                                                                       .   .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)    Section 4.4 Curve Sketching                 June 10, 2010   41 / 45
Step 4: Graph


                                               y
                                               .




                                                .                               x
                                                                                .
                       .    .
                 . −3, −2/9) . −2, −1/4)
                 (            (

              .   −     −
              0 . 2/9 . 1/4 .. 0   ∞
                                   ..                                           0f
                                                                                ..
                     .    .
            − −−
            . ∞. . 3 . 2 . 1 . . .
                        −      − + 0 +                                         ∞s
                                                                               . . hape of f
             . A . .P . . in . . . . A .
             H     I    m      0   V                                          H
                                                                              . A



                                                                      .   .         .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                     June 10, 2010   42 / 45
Problem
 Graph f(x) = cos x − x




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   43 / 45
Problem
 Graph f(x) = cos x − x



                                                  y
                                                  .




                                                      .                                                 x
                                                                                                        .




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   43 / 45
Problem
 Graph f(x) = x ln x2




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   44 / 45
Problem
 Graph f(x) = x ln x2

                                                y
                                                .




                                                    .                         x
                                                                              .




                                                                      .   .       .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching                   June 10, 2010   44 / 45
Summary




         Graphing is a procedure that gets easier with practice.
         Remember to follow the checklist.
         Graphing is like dissection—or is it vivisection?




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.4 Curve Sketching               June 10, 2010   45 / 45

More Related Content

PDF
Lesson 19: Curve Sketching
PDF
Lesson 8: Basic Differentiation Rules
PDF
Lesson 21: Curve Sketching (Section 041 slides)
PDF
Lesson 3: Limit Laws
PDF
Lesson 22: Graphing
PDF
Lesson 22: Graphing
PDF
Lesson 27: The Fundamental Theorem of Calculus
PDF
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 19: Curve Sketching
Lesson 8: Basic Differentiation Rules
Lesson 21: Curve Sketching (Section 041 slides)
Lesson 3: Limit Laws
Lesson 22: Graphing
Lesson 22: Graphing
Lesson 27: The Fundamental Theorem of Calculus
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...

What's hot (17)

PDF
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
PPTX
Função quadrática
PDF
Lesson 21: Curve Sketching (Section 4 version)
PDF
A basic introduction to learning
PDF
Lesson 23: Antiderivatives
PPTX
April 3, 2014
PDF
Lesson 1: Functions
PDF
Lesson 7: The Derivative as a Function
PDF
Lesson 23: The Definite Integral (slides)
PDF
Module 11 graph of functions PMR
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Nonlinear Manifolds in Computer Vision
PDF
Module 10 Graphs Of Functions
PDF
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
PDF
Form 4 formulae and note
PDF
P2 Graphs Function
PDF
Image Processing 3
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Função quadrática
Lesson 21: Curve Sketching (Section 4 version)
A basic introduction to learning
Lesson 23: Antiderivatives
April 3, 2014
Lesson 1: Functions
Lesson 7: The Derivative as a Function
Lesson 23: The Definite Integral (slides)
Module 11 graph of functions PMR
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Nonlinear Manifolds in Computer Vision
Module 10 Graphs Of Functions
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
Form 4 formulae and note
P2 Graphs Function
Image Processing 3
Ad

Viewers also liked (20)

PPT
Introduction
PDF
Lesson 6: The Derivative
PDF
Lesson 23: Antiderivatives (slides)
PDF
Lesson 10: The Chain Rule
PDF
Lesson 22: Optimization Problems (slides)
PDF
Lesson 9: The Product and Quotient Rules
PDF
Lesson 4: Continuity
PDF
Lesson18 -maximum_and_minimum_values_slides
PDF
Lesson 19: The Mean Value Theorem
PDF
Introduction
PDF
Lesson 28: Integration by Subsitution
PDF
Lesson 20: Derivatives and the shapes of curves
PDF
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
PDF
Lesson 5: Limits Involving Infinity
PDF
Lesson 16: Inverse Trigonometric Functions
PDF
Lesson 2: The Concept of Limit
PDF
Lesson 13: Related Rates Problems
PDF
Lesson 25: Evaluating Definite Integrals (slides)
PDF
Lesson 24: Areas and Distances, The Definite Integral (slides)
PDF
Lesson 24: Area and Distances
Introduction
Lesson 6: The Derivative
Lesson 23: Antiderivatives (slides)
Lesson 10: The Chain Rule
Lesson 22: Optimization Problems (slides)
Lesson 9: The Product and Quotient Rules
Lesson 4: Continuity
Lesson18 -maximum_and_minimum_values_slides
Lesson 19: The Mean Value Theorem
Introduction
Lesson 28: Integration by Subsitution
Lesson 20: Derivatives and the shapes of curves
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 5: Limits Involving Infinity
Lesson 16: Inverse Trigonometric Functions
Lesson 2: The Concept of Limit
Lesson 13: Related Rates Problems
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Area and Distances
Ad

Similar to Lesson 21: Curve Sketching (20)

PDF
Lesson 21: Curve Sketching (Section 041 slides)
PDF
Lesson 21: Curve Sketching (Section 041 handout)
PDF
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
PDF
Lesson 21: Curve Sketching (Section 021 handout)
PDF
Lesson 18: Derivatives and the Shapes of Curves
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
PDF
Lesson 21: Curve Sketching (Section 021 handout)
PDF
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
PDF
Lesson 23: Antiderivatives
PDF
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
PDF
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
PDF
Lesson 20: Derivatives and the Shape of Curves (Section 021 handout)
PDF
Lesson 20: Derivatives and the Shape of Curves (Section 041 handout)
PDF
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
PDF
Lesson 27: The Fundamental Theorem of Calculus
PDF
Lesson 26: Evaluating Definite Integrals
PDF
Lesson 26: Evaluating Definite Integrals
Lesson 21: Curve Sketching (Section 041 slides)
Lesson 21: Curve Sketching (Section 041 handout)
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson 21: Curve Sketching (Section 021 handout)
Lesson 18: Derivatives and the Shapes of Curves
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 21: Curve Sketching (Section 021 handout)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 23: Antiderivatives
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 021 handout)
Lesson 20: Derivatives and the Shape of Curves (Section 041 handout)
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson 27: The Fundamental Theorem of Calculus
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite Integrals

More from Matthew Leingang (20)

PPT
Making Lesson Plans
PPT
Streamlining assessment, feedback, and archival with auto-multiple-choice
PDF
Electronic Grading of Paper Assessments
PDF
Lesson 27: Integration by Substitution (slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
Lesson 27: Integration by Substitution (handout)
PDF
Lesson 26: The Fundamental Theorem of Calculus (handout)
PDF
Lesson 25: Evaluating Definite Integrals (handout)
PDF
Lesson 24: Areas and Distances, The Definite Integral (handout)
PDF
Lesson 23: Antiderivatives (slides)
PDF
Lesson 22: Optimization Problems (handout)
PDF
Lesson 21: Curve Sketching (slides)
PDF
Lesson 21: Curve Sketching (handout)
PDF
Lesson 20: Derivatives and the Shapes of Curves (slides)
PDF
Lesson 20: Derivatives and the Shapes of Curves (handout)
PDF
Lesson 19: The Mean Value Theorem (slides)
PDF
Lesson 18: Maximum and Minimum Values (slides)
PDF
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
PDF
Lesson 18: Maximum and Minimum Values (handout)
Making Lesson Plans
Streamlining assessment, feedback, and archival with auto-multiple-choice
Electronic Grading of Paper Assessments
Lesson 27: Integration by Substitution (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 27: Integration by Substitution (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 23: Antiderivatives (slides)
Lesson 22: Optimization Problems (handout)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (handout)
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 19: The Mean Value Theorem (slides)
Lesson 18: Maximum and Minimum Values (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 18: Maximum and Minimum Values (handout)

Recently uploaded (20)

PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Encapsulation theory and applications.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PPTX
Spectroscopy.pptx food analysis technology
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Electronic commerce courselecture one. Pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Approach and Philosophy of On baking technology
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPT
Teaching material agriculture food technology
DOCX
The AUB Centre for AI in Media Proposal.docx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Network Security Unit 5.pdf for BCA BBA.
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Encapsulation theory and applications.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Spectroscopy.pptx food analysis technology
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Chapter 3 Spatial Domain Image Processing.pdf
Electronic commerce courselecture one. Pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
MIND Revenue Release Quarter 2 2025 Press Release
Approach and Philosophy of On baking technology
sap open course for s4hana steps from ECC to s4
Building Integrated photovoltaic BIPV_UPV.pdf
Teaching material agriculture food technology
The AUB Centre for AI in Media Proposal.docx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Network Security Unit 5.pdf for BCA BBA.

Lesson 21: Curve Sketching

  • 1. Section 4.4 Curve Sketching V63.0121.002.2010Su, Calculus I New York University June 10, 2010 Announcements Homework 4 due Tuesday . . . . . .
  • 2. Announcements Homework 4 due Tuesday . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 2 / 45
  • 3. Objectives given a function, graph it completely, indicating zeroes (if easy) asymptotes if applicable critical points local/global max/min inflection points . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 3 / 45
  • 4. Why? Graphing functions is like dissection . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 4 / 45
  • 5. Why? Graphing functions is like dissection … or diagramming sentences . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 4 / 45
  • 6. Why? Graphing functions is like dissection … or diagramming sentences You can really know a lot about a function when you know all of its anatomy. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 4 / 45
  • 7. The Increasing/Decreasing Test Theorem (The Increasing/Decreasing Test) If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b), then f is decreasing on (a, b). Example Here f(x) = x3 + x2 , and f′ (x) = 3x2 + 2x. f .(x) .′ (x) f . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 5 / 45
  • 8. Testing for Concavity Theorem (Concavity Test) If f′′ (x) > 0 for all x in (a, b), then the graph of f is concave upward on (a, b) If f′′ (x) < 0 for all x in (a, b), then the graph of f is concave downward on (a, b). Example Here f(x) = x3 + x2 , f′ (x) = 3x2 + 2x, and f′′ (x) = 6x + 2. .′′ (x) f f .(x) .′ (x) f . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 6 / 45
  • 9. Graphing Checklist To graph a function f, follow this plan: 0. Find when f is positive, negative, zero, not defined. 1. Find f′ and form its sign chart. Conclude information about increasing/decreasing and local max/min. 2. Find f′′ and form its sign chart. Conclude concave up/concave down and inflection. 3. Put together a big chart to assemble monotonicity and concavity data 4. Graph! . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 7 / 45
  • 10. Outline Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 8 / 45
  • 11. Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 9 / 45
  • 12. Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. (Step 0) First, let’s find the zeros. We can at least factor out one power of x: f(x) = x(2x2 − 3x − 12) so f(0) = 0. The other factor is a quadratic, so we the other two roots are √ √ 3 ± 32 − 4(2)(−12) 3 ± 105 x= = 4 4 It’s OK to skip this step for now since the roots are so complicated. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 9 / 45
  • 13. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 14. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . −2 x 2 . . x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 15. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . . x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 16. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 17. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + .′ (x) f . − . 1 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 18. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . .′ (x) f . − . 1 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 19. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . − . 1 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 20. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 21. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 22. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 23. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) m . ax . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 24. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) m . ax m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 10 / 45
  • 25. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 11 / 45
  • 26. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f . ./2 1 f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 11 / 45
  • 27. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − .′′ (x) f . ./2 1 f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 11 / 45
  • 28. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . ./2 1 f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 11 / 45
  • 29. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ ./2 1 f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 11 / 45
  • 30. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ ./2 1 . ⌣ f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 11 / 45
  • 31. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ ./2 1 . ⌣ f .(x) I .P . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 11 / 45
  • 32. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 12 / 45
  • 33. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. − . . . . + − . . + .′ (x) f . ↗− ↘ . . 1 . ↘ . 2 . ↗ . m . onotonicity . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 12 / 45
  • 34. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ . ⌢ 1/2 . . ⌣ . ⌣ c . oncavity . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 12 / 45
  • 35. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . − . 1 . 1/2 2 . s . hape of f m . ax I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 12 / 45
  • 36. Combinations of monotonicity and concavity I .I I . . I .II I .V . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 13 / 45
  • 37. Combinations of monotonicity and concavity . decreasing, concave down I .I I . . I .II I .V . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 13 / 45
  • 38. Combinations of monotonicity and concavity . . increasing, decreasing, concave concave down down I .I I . . I .II I .V . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 13 / 45
  • 39. Combinations of monotonicity and concavity . . increasing, decreasing, concave concave down down I .I I . . I .II I .V . decreasing, concave up . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 13 / 45
  • 40. Combinations of monotonicity and concavity . . increasing, decreasing, concave concave down down I .I I . . I .II I .V . . decreasing, increasing, concave up concave up . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 13 / 45
  • 41. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 − . 1/2 2 . s . hape of f m . ax I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 14 / 45
  • 42. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 − 1 2 . s . hape of f m . ax I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 14 / 45
  • 43. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . s . hape of f m . ax I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 14 / 45
  • 44. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 14 / 45
  • 45. Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0) ( . . . . 1/2, −61/2) ( ( . x √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 15 / 45
  • 46. Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0) ( . . . . 1/2, −61/2) ( ( . x √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 15 / 45
  • 47. Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0) ( . . . . 1/2, −61/2) ( ( . x √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 15 / 45
  • 48. Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0) ( . . . . 1/2, −61/2) ( ( . x √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 15 / 45
  • 49. Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0) ( . . . . 1/2, −61/2) ( ( . x √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 15 / 45
  • 50. Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 16 / 45
  • 51. Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 (Step 0) We know f(0) = 10 and lim f(x) = +∞. Not too many other x→±∞ points on the graph are evident. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 16 / 45
  • 52. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 53. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 54. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. 0 .. . x2 4 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 55. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . x2 4 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 56. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . x2 4 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 57. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 58. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . 0 .. . x − 3) ( 3 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 59. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . 0 .. . x − 3) ( 3 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 60. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . 0 .. . x − 3) ( 3 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 61. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 62. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . 0 .. 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 63. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 64. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 65. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f 0 . 3 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 66. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . 3 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 67. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 68. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 ↗ . . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 69. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 ↗ . . f .(x) m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 17 / 45
  • 70. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 71. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 72. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: 0 .. 1 . 2x 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 73. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. 1 . 2x 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 74. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + 1 . 2x 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 75. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 76. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . 0 .. . −2 x 2 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 77. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . 0 .. . −2 x 2 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 78. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . −2 x 2 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 79. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 80. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . 0 .. 0 .. .′′ (x) f 0 . 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 81. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 0 .. .′′ (x) f 0 . 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 82. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. .′′ (x) f 0 . 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 83. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f 0 . 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 84. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 85. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 86. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 87. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f .(x) I .P . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 88. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f .(x) I .P I .P . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 18 / 45
  • 89. Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) 0 . 2 . 3 . s . hape I .P I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 19 / 45
  • 90. Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 2 . 3 . s . hape I .P I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 19 / 45
  • 91. Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . 3 . s . hape I .P I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 19 / 45
  • 92. Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . 3 s . hape I .P I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 19 / 45
  • 93. Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 19 / 45
  • 94. Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 20 / 45
  • 95. Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 20 / 45
  • 96. Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 20 / 45
  • 97. Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 20 / 45
  • 98. Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 20 / 45
  • 99. Outline Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 21 / 45
  • 100. Graphing a function with a cusp Example √ Graph f(x) = x + |x| . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 22 / 45
  • 101. Graphing a function with a cusp Example √ Graph f(x) = x + |x| This function looks strange because of the absolute value. But whenever we become nervous, we can just take cases. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 22 / 45
  • 102. Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 23 / 45
  • 103. Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. Are there negative numbers which are zeroes for f? . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 23 / 45
  • 104. Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. Are there negative numbers which are zeroes for f? √ x + −x = 0 √ −x = −x −x = x2 x2 + x = 0 The only solutions are x = 0 and x = −1. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 23 / 45
  • 105. Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 24 / 45
  • 106. Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ lim f(x) is indeterminate of the form −∞ + ∞. It’s the same as x→−∞ √ lim (−y + y) y→+∞ . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 24 / 45
  • 107. Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ lim f(x) is indeterminate of the form −∞ + ∞. It’s the same as x→−∞ √ lim (−y + y) y→+∞ √ √ √ y+y lim (−y + y) = lim ( y − y) · √ y→+∞ y→∞ y+y y − y2 = lim √ = −∞ y→∞ y+y . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 24 / 45
  • 108. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 25 / 45
  • 109. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 (so no critical points here) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 25 / 45
  • 110. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 (so no critical points here) lim f′ (x) = ∞ (so 0 is a critical point) x→0+ . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 25 / 45
  • 111. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 (so no critical points here) lim f′ (x) = ∞ (so 0 is a critical point) x→0+ lim f′ (x) = 1 (so the graph is asymptotic to a line of slope 1) x→∞ . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 25 / 45
  • 112. Step 1: The derivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x Notice lim f′ (x) = −∞ (other side of the critical point) x→0− . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 26 / 45
  • 113. Step 1: The derivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x Notice lim f′ (x) = −∞ (other side of the critical point) x→0− lim f′ (x) = 1 (asymptotic to a line of slope 1) x→−∞ . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 26 / 45
  • 114. Step 1: The derivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x Notice lim f′ (x) = −∞ (other side of the critical point) x→0− lim f′ (x) = 1 (asymptotic to a line of slope 1) x→−∞ ′ f (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 26 / 45
  • 115. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. .′ (x) f . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 116. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. 0 .. .′ (x) f . −4 . 1 f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 117. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. 0 .. ∓. . ∞ .′ (x) f −4 . 1 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 118. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 .. ∓. . ∞ .′ (x) f −4 . 1 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 119. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ .′ (x) f −4 . 1 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 120. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f −4 . 1 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 121. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 . 1 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 122. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 ↘ 0 . 1. . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 123. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 ↘ 0 . 1. . ↗ . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 124. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 ↘ 0 . 1. . ↗ . f .(x) . max . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 125. Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 ↘ 0 . .1 . . ↗ . f .(x) . max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 27 / 45
  • 126. Step 2: Concavity If x > 0, then ( ) d 1 1 f′′ (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 28 / 45
  • 127. Step 2: Concavity If x > 0, then ( ) d 1 1 f′′ (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 28 / 45
  • 128. Step 2: Concavity If x > 0, then ( ) d 1 1 f′′ (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. 1 In other words, f′′ (x) = − |x|−3/2 . 4 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 28 / 45
  • 129. Step 2: Concavity If x > 0, then ( ) d 1 1 f′′ (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. 1 In other words, f′′ (x) = − |x|−3/2 . 4 Here is the sign chart: ′′ − . − −. . ∞ − . − . . (x) f . ⌢ . ⌢ . 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 28 / 45
  • 130. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . − . 1 −1 . .4 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 29 / 45
  • 131. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . . . 1 − −1 . .4 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 29 / 45
  • 132. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . . . 1 − . −1 . .4 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 29 / 45
  • 133. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . . . 1 − . −1 . .4 . . 0 s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 29 / 45
  • 134. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . . . 1 − . −1 . .4 . . 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 29 / 45
  • 135. Graph √ f(x) = x + |x| f .(x) . x . − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 30 / 45
  • 136. Graph √ f(x) = x + |x| f .(x) . −1, 0) ( . . x . − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 30 / 45
  • 137. Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 30 / 45
  • 138. Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 30 / 45
  • 139. Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 30 / 45
  • 140. Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 30 / 45
  • 141. Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 30 / 45
  • 142. Example with Horizontal Asymptotes Example Graph f(x) = xe−x 2 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 31 / 45
  • 143. Example with Horizontal Asymptotes Example Graph f(x) = xe−x 2 Before taking derivatives, we notice that f is odd, that f(0) = 0, and lim f(x) = 0 x→∞ . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 31 / 45
  • 144. Step 1: Monotonicity If f(x) = xe−x , then 2 ( ) f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 2 ( √ )( √ ) = 1 − 2x 1 + 2x e−x 2 The factor e−x is always positive so it doesn’t figure into the sign of 2 f′ (x). So our sign chart looks like this: . + .. + 0 . − . √ √. . − 1 2x . 1/2 − . 0 .. . + . + √ √ 1 . + 2x − . 1/2 − . 0 .. . + 0 . − . .′ (x) f √ √. ↘ . − 1/2 ↗ . ↘ . f .(x) . . . . 1/2 min max . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 32 / 45
  • 145. Step 2: Concavity If f′ (x) = (1 − 2x2 )e−x , we know 2 ( ) f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 2 = 2x(2x2 − 3)e−x 2 − . − . 0 .. . + . + 2 .x 0 . − . − . − . 0 . . + √ √ √. . 2x − 3 . 3/2 − . 0 .. . + . + . + √ √ √ . 2x + 3 − . 3/2 − . − .. . + 0 + 0 .. − . − .. 0 . + + .′′ (x) f . ⌢ √ . ⌣ ⌢ √3 . . ⌣ − 3/2 . 0 . f .(x) . . . . /2 IP IP IP . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 33 / 45
  • 146. Step 3: Synthesis f(x) = xe−x 2 − . − 0 + . .. . + . − − .′ (x) f √ . . √. . 0 . ↘ . ↘ ↗ . . 1/2 . − ↗ ↘ . . 1/2. ↘ . m . onotonicity − . − .. . + 0+ + 0 − . + .. . − − 0 . − .. . + + .′′ (x) f . ⌢ √. ⌣ ⌣ . . . . √3 . − . 3/2 0 ⌢ ⌢ . /2 ⌣ c . oncavity √ √ − . 3 2e3 − . √1 .√1 . 33 f .(x) . . 2e 0 .. . √2e 2e . √ . √ √ . . − . . . . − 1/2 . 3/2 . . . 0 . . 1/2 . 3/2 . . s . hape IP min IP max IP . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 34 / 45
  • 147. Step 4: Graph f .(x) (√ )( . 1/2, √1 √ √ ) 2e . 3 .(x) = xe−x 2 3/2, f . 2e3 . . x . . 0, 0) ( ( . √ √ ) . . − 3/2, − 2e3 ( √ 3 ) . − 1/2, − √1 2e √ √ − 2e3 √1 . 3 − . .√1 . 2e33 f .(x) . √2e 0 . 2e . √ . . . . . √ . . √. . − 3 . 1/2 . . − . 0 s . hape . . . /2 . .1/2 . 3/2 IP min IP max IP . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 35 / 45
  • 148. Example with Vertical Asymptotes Example 1 1 Graph f(x) = + 2 x x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 36 / 45
  • 149. Step 0 Find when f is positive, negative, zero, not defined. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 37 / 45
  • 150. Step 0 Find when f is positive, negative, zero, not defined. We need to factor f: 1 1 x+1 f(x) = + = . x x2 x2 This means f is 0 at −1 and has trouble at 0. In fact, x+1 lim = ∞, x→0 x2 so x = 0 is a vertical asymptote of the graph. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 37 / 45
  • 151. Step 0 Find when f is positive, negative, zero, not defined. We need to factor f: 1 1 x+1 f(x) = + = . x x2 x2 This means f is 0 at −1 and has trouble at 0. In fact, x+1 lim = ∞, x→0 x2 so x = 0 is a vertical asymptote of the graph. We can make a sign chart as follows: − . 0 .. . . + x . +1 − . 1 . + 0 .. . + .2 x 0 . − . .. . 0 + ∞ .. . + f .(x) − . 1 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 37 / 45
  • 152. Step 0, continued For horizontal asymptotes, notice that x+1 lim = 0, x→∞ x2 so y = 0 is a horizontal asymptote of the graph. The same is true at −∞. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 38 / 45
  • 153. Step 1: Monotonicity We have 1 2 x+2 −f′ (x) = − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 39 / 45
  • 154. Step 1: Monotonicity We have 1 2 x+2 −f′ (x) = − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − . 0 .. . + ∞ .. − . .′ (x) f − . 2 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 39 / 45
  • 155. Step 1: Monotonicity We have 1 2 x+2 −f′ (x) = − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − .. . 0 . + ∞ .. − . .′ (x) f ↘ . 2 . − 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 39 / 45
  • 156. Step 1: Monotonicity We have 1 2 x+2 −f′ (x) = − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − .. . 0 . + ∞ .. − . .′ (x) f ↘ . 2 . − ↗ . 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 39 / 45
  • 157. Step 1: Monotonicity We have 1 2 x+2 −f′ (x) = − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . .′ (x) f ↘ . 2 . − ↗ . 0 ↘ . . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 39 / 45
  • 158. Step 1: Monotonicity We have 1 2 x+2 −f′ (x) = − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . .′ (x) f ↘ . 2 . − ↗ . 0 ↘ . . f .(x) m . in . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 39 / 45
  • 159. Step 1: Monotonicity We have 1 2 x+2 −f′ (x) = − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . .′ (x) f ↘ . 2 . − ↗ . 0 ↘ . . f .(x) m . in V .A . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 39 / 45
  • 160. Step 2: Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . 0 .. ∞ .. .′′ (x) f − . 3 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 40 / 45
  • 161. Step 2: Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . − . − .. 0 ∞ .. .′′ (x) f − . 3 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 40 / 45
  • 162. Step 2: Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . − . − .. 0 . + + ∞ .. .′′ (x) f − . 3 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 40 / 45
  • 163. Step 2: Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f − . 3 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 40 / 45
  • 164. Step 2: Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f . ⌢ . 3 − 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 40 / 45
  • 165. Step 2: Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f . ⌢ . 3 − . ⌣ 0 . f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 40 / 45
  • 166. Step 2: Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 40 / 45
  • 167. Step 2: Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) I .P . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 40 / 45
  • 168. Step 2: Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) I .P V .A . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 40 / 45
  • 169. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 170. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f H . A . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 171. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . H . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 172. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P H I . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 173. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P . H I . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 174. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P . . in H I m . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 175. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P . . in . H I m . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 176. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P . . in . H I m 0 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 177. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P . . in . H I m 0 . . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 178. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − . 1 . + .0 . + ∞s . . hape of f . A . .P . . in . H I m 0 . .A . V . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 179. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − . 1 . + .0 . + ∞s . . hape of f . A . .P . . in . H I m 0 . .A . . V . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 180. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − . 1 . + .0 . ∞s + . . hape of f . A . .P . . in . H I m 0 . .A . . A . V H . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 41 / 45
  • 181. Step 4: Graph y . . x . . . . −3, −2/9) . −2, −1/4) ( ( . − − 0 . 2/9 . 1/4 .. 0 ∞ .. 0f .. . . − −− . ∞. . 3 . 2 . 1 . . . − − + 0 + ∞s . . hape of f . A . .P . . in . . . . A . H I m 0 V H . A . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 42 / 45
  • 182. Problem Graph f(x) = cos x − x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 43 / 45
  • 183. Problem Graph f(x) = cos x − x y . . x . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 43 / 45
  • 184. Problem Graph f(x) = x ln x2 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 44 / 45
  • 185. Problem Graph f(x) = x ln x2 y . . x . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 44 / 45
  • 186. Summary Graphing is a procedure that gets easier with practice. Remember to follow the checklist. Graphing is like dissection—or is it vivisection? . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.4 Curve Sketching June 10, 2010 45 / 45