SlideShare a Scribd company logo
Section	5.5
         Integration	by	Substitution

                  V63.0121.034, Calculus	I



                     December	9, 2009



Announcements
   Final	Exam: Friday	12/18, 2:00-3:50pm, Tisch	UC50
   Practice	finals	on	the	website. Solutions	Friday

                                          .    .     .   .   .   .
Schedule	for	next	week



      Monday, class: review, evaluations, movie!
      Tuesday, 8:00am: Review	session	for	all	students	with	8:00
      recitations	(Tuesday	or	Thursday)	in	CIWW 109
      Tuesday, 9:30am: Review	session	for	all	students	with	9:30
      recitations	(Tuesday	or	Thursday)	in	CIWW 109
      Office	Hours	continue
      Friday, 2:00pm: final	in	Tisch	UC50




                                            .      .   .   .   .   .
Resurrection	Policy
        If	your	final	score	beats	your	midterm	score, we	will	add	10%	to
        its	weight, and	subtract	10%	from	the	midterm	weight.




                                                                          .
.
Image	credit: Scott	Beale	/	Laughing	Squid
                                                   .   .   .    .   .         .
Outline


  Last	Time: The	Fundamental	Theorem(s)	of	Calculus


  Substitution	for	Indefinite	Integrals
     Theory
     Examples


  Substitution	for	Definite	Integrals
     Theory
     Examples




                                           .   .      .   .   .   .
Differentiation	and	Integration	as	reverse	processes


   Theorem	(The	Fundamental	Theorem	of	Calculus)
    1. Let f be	continuous	on [a, b]. Then
                               ∫ x
                            d
                                    f(t) dt = f(x)
                            dx a

    2. Let f be	continuous	on [a, b] and f = F′ for	some	other
       function F. Then
                         ∫ b
                             f(x) dx = F(b) − F(a).
                           a




                                                 .   .   .   .   .   .
Techniques	of	antidifferentiation?


   So	far	we	know	only	a	few	rules	for	antidifferentiation. Some	are
   general, like
                ∫                   ∫           ∫
                  [f(x) + g(x)] dx = f(x) dx + g(x) dx




                                               .   .    .   .    .     .
Techniques	of	antidifferentiation?


   So	far	we	know	only	a	few	rules	for	antidifferentiation. Some	are
   general, like
                ∫                   ∫           ∫
                  [f(x) + g(x)] dx = f(x) dx + g(x) dx

   Some	are	pretty	particular, like
                    ∫
                           1
                        √         dx = arcsec x + C.
                       x x2 − 1




                                               .       .   .   .   .   .
Techniques	of	antidifferentiation?


   So	far	we	know	only	a	few	rules	for	antidifferentiation. Some	are
   general, like
                ∫                   ∫           ∫
                  [f(x) + g(x)] dx = f(x) dx + g(x) dx

   Some	are	pretty	particular, like
                    ∫
                           1
                        √         dx = arcsec x + C.
                       x x2 − 1
   What	are	we	supposed	to	do	with	that?




                                               .       .   .   .   .   .
So	far	we	don’t	have	any	way	to	find
                         ∫
                               2x
                           √         dx
                              x2 + 1
or                        ∫
                              tan x dx.




                                          .   .   .   .   .   .
So	far	we	don’t	have	any	way	to	find
                         ∫
                               2x
                           √         dx
                              x2 + 1
or                         ∫
                               tan x dx.

Luckily, we	can	be	smart	and	use	the	“anti”	version	of	one	of	the
most	important	rules	of	differentiation: the	chain	rule.




                                            .   .    .   .    .     .
Outline


  Last	Time: The	Fundamental	Theorem(s)	of	Calculus


  Substitution	for	Indefinite	Integrals
     Theory
     Examples


  Substitution	for	Definite	Integrals
     Theory
     Examples




                                           .   .      .   .   .   .
Substitution	for	Indefinite	Integrals



   Example
   Find                ∫
                              x
                           √      dx.
                            x 2+1




                                        .   .   .   .   .   .
Substitution	for	Indefinite	Integrals



   Example
   Find                     ∫
                                   x
                                √      dx.
                                 x 2+1



   Solution
   Stare	at	this	long	enough	and	you	notice	the	the	integrand	is	the
                               √
   derivative	of	the	expression 1 + x2 .




                                               .    .    .   .    .    .
Say	what?


  Solution	(More	slowly, now)
  Let g(x) = x2 + 1.




                                .   .   .   .   .   .
Say	what?


  Solution	(More	slowly, now)
  Let g(x) = x2 + 1. Then g′ (x) = 2x and	so

                d√         1                x
                   g(x) = √     g′ (x) = √
                dx       2 g(x)           x2 + 1




                                               .   .   .   .   .   .
Say	what?


  Solution	(More	slowly, now)
  Let g(x) = x2 + 1. Then g′ (x) = 2x and	so

                 d√         1                x
                    g(x) = √     g′ (x) = √
                 dx       2 g(x)           x2 + 1

  Thus
            ∫                 ∫ (       )
                   x            d√
                √       dx =        g(x) dx
                 x2 + 1        dx
                             √          √
                           = g(x) + C = 1 + x2 + C.




                                               .   .   .   .   .   .
Leibnizian	notation	FTW



  Solution	(Same	technique, new	notation)
  Let u = x2 + 1.




                                        .   .   .   .   .   .
Leibnizian	notation	FTW



  Solution	(Same	technique, new	notation)
                                  √                    √
  Let u = x2 + 1. Then du = 2x dx and   1 + x2 =        u.




                                            .      .         .   .   .   .
Leibnizian	notation	FTW



  Solution	(Same	technique, new	notation)
                                  √                       √
  Let u = x2 + 1. Then du = 2x dx and 1 + x2 =             u. So	the
  integrand	becomes	completely	transformed	into
              ∫               ∫   1          ∫
                  √
                   x dx           2 du
                                  √
                                                  1
                                                  √ du
                          =              =
                   x2 + 1           u            2 u




                                                  .   .      .   .     .   .
Leibnizian	notation	FTW



  Solution	(Same	technique, new	notation)
                                  √                    √
  Let u = x2 + 1. Then du = 2x dx and 1 + x2 =          u. So	the
  integrand	becomes	completely	transformed	into
              ∫            ∫   1          ∫
                  √
                   x dx        2 du
                               √
                                               1
                                               √ du
                         =            =
                   x2 + 1 ∫      u            2 u
                               1 −1/2
                         =     2u     du




                                               .   .      .   .     .   .
Leibnizian	notation	FTW



  Solution	(Same	technique, new	notation)
                                  √                       √
  Let u = x2 + 1. Then du = 2x dx and 1 + x2 =             u. So	the
  integrand	becomes	completely	transformed	into
              ∫               ∫   1          ∫
                  √
                   x dx           2 du
                                  √
                                                  1
                                                  √ du
                         =               =
                   x2 + 1 ∫         u            2 u
                                  1 −1/2
                         =        2u     du
                              √              √
                          =       u+C=        1 + x2 + C.




                                                  .   .      .   .     .   .
Useful	but	unsavory	variation

   Solution	(Same	technique, new	notation, more	idiot-proof)
                                   √             √
   Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve	for
   dx:”
                                     du
                                dx =
                                      2x
   So	the	integrand	becomes	completely	transformed	into
               ∫                ∫            ∫
                      x             x du        1
                  √        dx =    √ ·     =    √ du
                    x2 + 1           u 2x      2 u
                                ∫
                                   1 −1/2
                              =    2u     du
                                √         √
                              = u + C = 1 + x2 + C .

   Mathematicians	have	serious	issues	with	mixing	the x and u like
   this. However, I can’t	deny	that	it	works.
                                              .   .    .   .    .    .
Theorem	of	the	Day

  Theorem	(The	Substitution	Rule)
  If u = g(x) is	a	differentiable	function	whose	range	is	an	interval I
  and f is	continuous	on I, then
                       ∫                    ∫
                          f(g(x))g′ (x) dx = f(u) du

  That	is, if F is	an	antiderivative	for f, then
                        ∫
                           f(g(x))g′ (x) dx = F(g(x))

  In	Leibniz	notation:
                         ∫                  ∫
                                  du
                             f(u)    dx =       f(u) du
                                  dx


                                                     .    .   .   .   .   .
A polynomial	example


  Example                                  ∫
  Use	the	substitution u = x2 + 3 to	find       (x2 + 3)3 4x dx.




                                                  .   .    .      .   .   .
A polynomial	example


  Example                                  ∫
  Use	the	substitution u = x2 + 3 to	find       (x2 + 3)3 4x dx.

  Solution
  If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So
              ∫                   ∫             ∫
                 (x + 3) 4x dx = u 2du = 2 u3 du
                   2     3            3


                                  1 4 1 2
                              =     u = (x + 3)4
                                  2    2




                                                  .   .    .      .   .   .
A polynomial	example, by	brute	force


   Compare	this	to	multiplying	it	out:
      ∫                    ∫
          2       3
                              ( 6                 )
        (x + 3) 4x dx =        x + 9x4 + 27x2 + 27 4x dx
                           ∫
                              ( 7                       )
                        =      4x + 36x5 + 108x3 + 108x dx
                           1 8
                       =     x + 6x6 + 27x4 + 54x2
                           2




                                            .   .    .   .   .   .
A polynomial	example, by	brute	force


   Compare	this	to	multiplying	it	out:
      ∫                    ∫
          2       3
                              ( 6                 )
        (x + 3) 4x dx =        x + 9x4 + 27x2 + 27 4x dx
                           ∫
                              ( 7                       )
                        =      4x + 36x5 + 108x3 + 108x dx
                           1 8
                       =     x + 6x6 + 27x4 + 54x2
                           2
   Which	would	you	rather	do?




                                            .   .    .   .   .   .
A polynomial	example, by	brute	force


   Compare	this	to	multiplying	it	out:
      ∫                    ∫
          2       3
                              ( 6                 )
        (x + 3) 4x dx =        x + 9x4 + 27x2 + 27 4x dx
                           ∫
                              ( 7                       )
                        =      4x + 36x5 + 108x3 + 108x dx
                             1 8
                         =     x + 6x6 + 27x4 + 54x2
                             2
   Which	would	you	rather	do?
       It’s	a	wash	for	low	powers
       But	for	higher	powers, it’s	much	easier	to	do	substitution.



                                               .    .    .   .       .   .
Compare

  We	have	the	substitution	method, which, when	multiplied	out,
  gives
     ∫
                         1
       (x2 + 3)3 4x dx = (x2 + 3)4
                         2
                         1( 8                           )
                       =   x + 12x6 + 54x4 + 108x2 + 81
                         2
                         1                        81
                       = x8 + 6x6 + 27x4 + 54x2 +
                         2                        2

  and	the	brute	force	method
    ∫
                        1
       (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2
                        2

  Is	this	a	problem?

                                            .     .   .   .   .   .
Compare

  We	have	the	substitution	method, which, when	multiplied	out,
  gives
     ∫
                         1
       (x2 + 3)3 4x dx = (x2 + 3)4 + C
                         2
                         1( 8                           )
                       =   x + 12x6 + 54x4 + 108x2 + 81 + C
                         2
                         1                        81
                       = x8 + 6x6 + 27x4 + 54x2 +    +C
                         2                        2

  and	the	brute	force	method
    ∫
                        1
       (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2 + C
                        2

  Is	this	a	problem? No, that’s	what +C means!

                                            .    .    .   .   .   .
A slick	example


   Example
       ∫
   Find   tan x dx.




                      .   .   .   .   .   .
A slick	example


   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x




                                               .   .   .   .   .   .
A slick	example


   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x
   Solution
   Let u = cos x. Then du = − sin x dx.




                                               .   .   .   .   .   .
A slick	example


   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x
   Solution
   Let u = cos x. Then du = − sin x dx. So
             ∫              ∫              ∫
                              sin x          1
                 tan x dx =         dx = −     du
                              cos x          u




                                               .    .   .   .   .   .
A slick	example


   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x
   Solution
   Let u = cos x. Then du = − sin x dx. So
             ∫              ∫               ∫
                               sin x          1
                 tan x dx =          dx = −     du
                               cos x          u
                          = − ln |u| + C




                                               .     .   .   .   .   .
A slick	example


   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x
   Solution
   Let u = cos x. Then du = − sin x dx. So
             ∫              ∫               ∫
                               sin x          1
                 tan x dx =          dx = −     du
                               cos x          u
                          = − ln |u| + C
                        = − ln | cos x| + C = ln | sec x| + C




                                                 .    .   .     .   .   .
Can	you	do	it	another	way?

   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x




                                               .   .   .   .   .   .
Can	you	do	it	another	way?

   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x
   Solution
                                                    du
   Let u = sin x. Then du = cos x dx and	so dx =         .
                                                   cos x




                                               .     .       .   .   .   .
Can	you	do	it	another	way?

   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x
   Solution
                                                    du
   Let u = sin x. Then du = cos x dx and	so dx =         .
                                                   cos x
          ∫                ∫         ∫
                          sin x           u     du
              tan x dx =        dx =
                          cos x         cos x cos x
                        ∫          ∫                ∫
                           u du          u du          u du
                      =          =            2
                                                 =
                          cos2 x      1 − sin x       1 − u2

   At	this	point, although	it’s	possible	to	proceed, we	should
   probably	back	up	and	see	if	the	other	way	works	quicker	(it
   does).

                                               .     .       .   .   .   .
For	those	who	really	must	know	all


   Solution	(Continued, with	algebra	help)

       ∫             ∫              ∫    (                )
                           u du        1     1        1
           tan x dx =             =               −         du
                          1 − u2       2 1−u 1+u
                         1             1
                    = − ln |1 − u| − ln |1 + u| + C
                         2             2
                                  1                      1
                    = ln √                  + C = ln √        +C
                            (1 − u)(1 + u)             1 − u2
                            1
                    = ln         + C = ln |sec x| + C
                         |cos x|




                                               .   .    .   .      .   .
Outline


  Last	Time: The	Fundamental	Theorem(s)	of	Calculus


  Substitution	for	Indefinite	Integrals
     Theory
     Examples


  Substitution	for	Definite	Integrals
     Theory
     Examples




                                           .   .      .   .   .   .
Theorem	(The	Substitution	Rule	for	Definite	Integrals)
If g′ is	continuous	and f is	continuous	on	the	range	of u = g(x),
then             ∫                    ∫
                     b                         g(b)
                         f(g(x))g′ (x) dx =            f(u) du.
                 a                            g (a )




                                                        .    .    .   .   .   .
Theorem	(The	Substitution	Rule	for	Definite	Integrals)
If g′ is	continuous	and f is	continuous	on	the	range	of u = g(x),
then             ∫                    ∫
                     b                         g(b)
                         f(g(x))g′ (x) dx =            f(u) du.
                 a                            g (a )


Why	the	change	in	the	limits?
    The	integral	on	the	left	happens	in	“x-land”
    The	integral	on	the	right	happens	in	“u-land”, so	the	limits
    need	to	be u-values
    To	get	from x to u, apply g




                                                        .    .    .   .   .   .
Example ∫
              π
Compute           cos2 x sin x dx.
          0




                                     .   .   .   .   .   .
Example ∫
                π
Compute             cos2 x sin x dx.
            0

Solution	(Slow	Way)                    ∫
First	compute	the	indefinite	integral       cos2 x sin x dx and	then
evaluate.




                                                .    .    .   .       .   .
Example ∫
               π
Compute            cos2 x sin x dx.
           0

Solution	(Slow	Way)                          ∫
First	compute	the	indefinite	integral             cos2 x sin x dx and	then
evaluate. Let u = cos x. Then du = − sin x dx and
         ∫                     ∫
            cos x sin x dx = − u2 du
                2


                                 = − 1 u3 + C = − 1 cos3 x + C.
                                     3            3

Therefore
   ∫ π
                          1              π
                                                   1(           ) 2
       cos2 x sin x dx = − cos3 x            =−       (−1)3 − 13 = .
    0                     3              0         3              3


                                                      .    .    .   .       .   .
Solution	(Fast	Way)
Do	both	the	substitution	and	the	evaluation	at	the	same	time.




                                           .    .   .    .      .   .
Solution	(Fast	Way)
Do	both	the	substitution	and	the	evaluation	at	the	same	time. Let
u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1.




                                            .   .    .   .    .     .
Solution	(Fast	Way)
Do	both	the	substitution	and	the	evaluation	at	the	same	time. Let
u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So
        ∫    π                       ∫   −1
                 cos2 x sin x dx =            −u2 du
         0                           1
                                     ∫   1
                                =            u2 du
                                     −1
                                              1
                                 1                     1(         ) 2
                                = u3               =      1 − (−1) =
                                 3            −1       3             3




                                                          .   .   .      .   .   .
Solution	(Fast	Way)
Do	both	the	substitution	and	the	evaluation	at	the	same	time. Let
u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So
        ∫    π                       ∫   −1
                 cos2 x sin x dx =            −u2 du
         0                           1
                                     ∫   1
                                =            u2 du
                                     −1
                                              1
                                 1                     1(         ) 2
                                = u3               =      1 − (−1) =
                                 3            −1       3             3


    The	advantage	to	the	“fast	way”	is	that	you	completely
    transform	the	integral	into	something	simpler	and	don’t	have
    to	go	back	to	the	original x variable.
    But	the	slow	way	is	just	as	reliable.

                                                          .   .   .      .   .   .
An	exponential	example
  Example√
         ∫   ln       8         √
  Find        √           e2x       e2x + 1 dx
         ln       3




                                                 .   .   .   .   .   .
An	exponential	example
  Example√
         ∫   ln       8         √
  Find        √           e2x       e2x + 1 dx
         ln       3

  Solution
  Let u = e2x , so du = 2e2x dx. We	have
                          ∫        √                                     ∫
                              ln        8         √                  1       8√
                                √           e2x       e2x + 1 dx =                u + 1 du
                           ln       3                                2   3




                                                                              .      .   .   .   .   .
An	exponential	example
  Example√
         ∫   ln       8         √
  Find        √           e2x       e2x + 1 dx
         ln       3

  Solution
  Let u = e2x , so du = 2e2x dx. We	have
                          ∫        √                                       ∫
                              ln        8         √                    1        8√
                                √           e2x       e2x + 1 dx =                   u + 1 du
                           ln       3                                  2    3

  Now	let y = u + 1, dy = du. So
                  ∫       8√                              ∫    9                 ∫       9
             1                             1                       √       1
                                u + 1 du =                          y dy =                   y1/2 dy
             2        3                    2               4               2         4
                                                                      9
                                                       1 2                  1           19
                                                      = · y3/2             = (27 − 8) =
                                                       2 3            4     3           3

                                                                                 .           .    .    .   .   .
About	those	limits




                        √                √       2
                e2(ln       3)
                                 = eln       3
                                                     = eln 3 = 3




                                                            .      .   .   .   .   .
About	those	fractional	powers




                 93/2 = (91/2 )3 = 33 = 27
                 43/2 = (41/2 )3 = 23 = 8




                                        .    .   .   .   .   .
Another	way	to	skin	that	cat

   Example√
          ∫   ln       8         √
   Find        √           e2x       e2x + 1 dx
          ln       3

   Solution
   Let u = e2x + 1




                                                  .   .   .   .   .   .
Another	way	to	skin	that	cat

   Example√
          ∫   ln       8         √
   Find        √           e2x       e2x + 1 dx
          ln       3

   Solution
   Let u = e2x + 1, so	that du = 2e2x dx.




                                                  .   .   .   .   .   .
Another	way	to	skin	that	cat

   Example√
          ∫   ln       8         √
   Find        √           e2x          e2x + 1 dx
          ln       3

   Solution
   Let u = e2x + 1, so	that du = 2e2x dx. Then
                           ∫        √                                       ∫
                               ln       8            √                  1       9√
                                                2x
                                √           e            e2x   + 1 dx =              u du
                           ln       3                                   2   4




                                                                                 .      .   .   .   .   .
Another	way	to	skin	that	cat

   Example√
          ∫   ln       8         √
   Find        √           e2x          e2x + 1 dx
          ln       3

   Solution
   Let u = e2x + 1, so	that du = 2e2x dx. Then
                           ∫        √                                       ∫
                               ln       8            √                  1       9√
                                                2x
                                √           e            e2x   + 1 dx =              u du
                           ln       3                                   2   4
                                                                                 9
                                                                         1 3/2
                                                                     =     u
                                                                         3       4




                                                                                 .      .   .   .   .   .
Another	way	to	skin	that	cat

   Example√
          ∫   ln       8         √
   Find        √           e2x          e2x + 1 dx
          ln       3

   Solution
   Let u = e2x + 1, so	that du = 2e2x dx. Then
                           ∫        √                                       ∫
                               ln       8            √                  1       9√
                                                2x
                                √           e            e2x   + 1 dx =              u du
                           ln       3                                   2   4
                                                                      1 3/2 9
                                                                     =  u
                                                                      3     4
                                                                      1           19
                                                                     = (27 − 8) =
                                                                      3            3


                                                                                 .      .   .   .   .   .
A third	skinned	cat


   Example√
          ∫   ln       8         √
   Find        √           e2x       e2x + 1 dx
          ln       3

   Solution
          √
   Let u =         e2x + 1, so	that

                                 u2 = e2x + 1




                                                  .   .   .   .   .   .
A third	skinned	cat


   Example√
          ∫   ln       8         √
   Find        √           e2x       e2x + 1 dx
          ln       3

   Solution
          √
   Let u =         e2x + 1, so	that

                                 u2 = e2x + 1 =⇒ 2u du = 2e2x dx




                                                          .   .    .   .   .   .
A third	skinned	cat


   Example√
          ∫   ln       8         √
   Find        √           e2x        e2x + 1 dx
          ln       3

   Solution
          √
   Let u =         e2x + 1, so	that

                                 u2 = e2x + 1 =⇒ 2u du = 2e2x dx

   Thus                      ∫         √          ∫
                                  ln    8             3                      3
                                                                       1 3           19
                                      √       =           u · u du =     u       =
                                 ln       3       2                    3     2       3




                                                                             .       .    .   .   .   .
Example
Find      ∫              ( )      ( )
              3π/2
                       5  θ      2 θ
                     cot     sec      dθ.
          π               6        6




                                     .      .   .   .   .   .
Example
Find                ∫              ( )      ( )
                        3π/2
                                 5  θ      2 θ
                               cot     sec      dθ.
                     π              6        6

Before	we	dive	in, think	about:
       What	“easy”	substitutions	might	help?
       Which	of	the	trig	functions	suggests	a	substitution?




                                               .      .   .   .   .   .
Solution
        θ              1
Let φ =   . Then dφ = dθ.
        6              6
    ∫ 3π/2       ( )      ( )        ∫ π/4
                5 θ      2 θ
            cot      sec      dθ = 6       cot5 φ sec2 φ dφ
     π            6        6          π/6
                                     ∫ π/4
                                           sec2 φ dφ
                                 =6
                                      π/6    tan5 φ




                                          .   .    .   .      .   .
Solution
        θ              1
Let φ =   . Then dφ = dθ.
        6              6
    ∫ 3π/2       ( )      ( )        ∫ π/4
                5 θ      2 θ
            cot      sec      dθ = 6       cot5 φ sec2 φ dφ
     π            6        6          π/6
                                     ∫ π/4
                                           sec2 φ dφ
                                 =6
                                      π/6    tan5 φ

Now	let u = tan φ. So du = sec2 φ dφ, and
        ∫   π/4                  ∫   1
                  sec2 φ dφ              −5
    6                       =6     √ u        du
        π/6         tan5 φ       1/ 3
                                 (      )      1
                                   1                      3
                          =6      − u−4          √
                                                      =     [9 − 1] = 12.
                                   4           1/ 3       2


                                                      .     .    .   .      .   .
The	limits	explained

                              √
                  π  sin π/4   2 /2
               tan =         =√     =1
                  4  cos π/4   2 /2
                  π  sin π/6  1/2     1
               tan =         =√     =√
                  6  cos π/6   3 /2    3




                                    .   .   .   .   .   .
The	limits	explained

                              √
                  π  sin π/4   2 /2
               tan =         =√     =1
                  4  cos π/4   2 /2
                  π  sin π/6  1/2     1
               tan =         =√     =√
                  6  cos π/6   3 /2    3

         (      )   1                                 √
           1 −4              3 [ −4 ]1 √    3 [ −4 ]1/ 3
        6 − u         √
                           =    −u 1 / 3 =     u 1
           4        1/ 3     2              2
                             3 [ −1/2 −4             ]
                           =    (3   ) − (1−1/2 )−4
                             2
                             3           3
                           = [32 − 12 ] = (9 − 1) = 12
                             2           2


                                           .   .   .   .   .   .
Graphs

        ∫   3π/2       ( )      ( )            ∫   π/4
                        θ      2 θ
        .            5
                   cot     sec      dθ         .         6 cot5 φ sec2 φ dφ
        π               6        6             π/6

    y
    .                                      y
                                           .




    .                       .        . .
                                       θ           . .          .
                                                                φ
                           .
                           π      3π               ππ
                                  .                . .
                                    2              64

  The	areas	of	these	two	regions	are	the	same.       .      .   .    .   .    .
Graphs

        ∫   π/4                                   ∫   1
        .         6 cot5 φ sec2 φ dφ              .   √       6u−5 du
        π/6                                       1/ 3

   y
   .                                          y
                                              .




    .       . .         .
                        φ                             . ..
                                                         u
            ππ                                     1 .1
            . .                                   .√
            64                                      3                   The	areas
                        of	these	two	regions	are	the	same.
                                                          .     .   .     .   .     .
Final	Thoughts




      Antidifferentiation	is	a	“nonlinear”	problem	that	needs
      practice, intuition, and	perserverance
      Worksheet	in	recitation	(also	to	be	posted)
      The	whole	antidifferentiation	story	is	in	Chapter 6




                                              .     .   .   .   .   .

More Related Content

PDF
Lesson 27: Integration by Substitution, part II (Section 10 version)
PDF
Lesson 27: Integration by Substitution (slides)
PDF
Lesson 27: Integration by Substitution (Section 4 version)
PDF
Lesson 27: Integration by Substitution (Section 10 version)
PDF
Lesson 16: Derivatives of Logarithmic and Exponential Functions
PDF
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
PDF
Lesson 15: Exponential Growth and Decay (slides)
PDF
Math refresher
Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 10 version)
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 15: Exponential Growth and Decay (slides)
Math refresher

What's hot (19)

PDF
Sect1 2
PDF
Discrete Models in Computer Vision
PDF
Stuff You Must Know Cold for the AP Calculus BC Exam!
PDF
Lesson 8: Basic Differentation Rules (slides)
PDF
Introduction to inverse problems
PDF
Andreas Eberle
PDF
Caims 2009
PDF
Lesson 27: Evaluating Definite Integrals
PDF
Learning Sparse Representation
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Common derivatives integrals_reduced
PDF
Lecture 1: linear SVM in the primal
PDF
Numerical solution of spatiotemporal models from ecology
PDF
The multilayer perceptron
PDF
Lesson 8: Basic Differentiation Rules
PDF
Lesson 9: The Product and Quotient Rules (slides)
PDF
CVPR2010: higher order models in computer vision: Part 1, 2
DOC
Chapter 5 (maths 3)
PPT
16 fft
Sect1 2
Discrete Models in Computer Vision
Stuff You Must Know Cold for the AP Calculus BC Exam!
Lesson 8: Basic Differentation Rules (slides)
Introduction to inverse problems
Andreas Eberle
Caims 2009
Lesson 27: Evaluating Definite Integrals
Learning Sparse Representation
Lesson 28: The Fundamental Theorem of Calculus
Common derivatives integrals_reduced
Lecture 1: linear SVM in the primal
Numerical solution of spatiotemporal models from ecology
The multilayer perceptron
Lesson 8: Basic Differentiation Rules
Lesson 9: The Product and Quotient Rules (slides)
CVPR2010: higher order models in computer vision: Part 1, 2
Chapter 5 (maths 3)
16 fft
Ad

Viewers also liked (20)

PDF
Lesson 24: Optimization
PDF
Lesson 23: Antiderivatives
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Lesson 21: Derivatives and the Shapes of Curves
PDF
Lesson 22: Graphing
PDF
Lesson 29: Integration by Substition
PDF
Lesson 25: Areas and Distances; The Definite Integral
PDF
Lesson 22: Graphing
PDF
Lesson 24: Optimization II
PDF
Lesson 20: The Mean Value Theorem
PDF
Lesson19 Maximum And Minimum Values 034 Slides
PDF
A Multiformat Document Workflow With Docutils
PDF
Lesson 1: Functions and their Representations
PDF
Lesson 21: Derivatives and the Shapes of Curves
PDF
Lesson 27: Evaluating Definite Integrals
PDF
Lesson 23: Antiderivatives
PDF
Lesson 20: The Mean Value Theorem
PDF
Lesson 3: The Concept of Limit
PDF
Lesson 24: Optimization
PDF
Lesson 25: Areas and Distances; The Definite Integral
Lesson 24: Optimization
Lesson 23: Antiderivatives
Lesson 28: The Fundamental Theorem of Calculus
Lesson 21: Derivatives and the Shapes of Curves
Lesson 22: Graphing
Lesson 29: Integration by Substition
Lesson 25: Areas and Distances; The Definite Integral
Lesson 22: Graphing
Lesson 24: Optimization II
Lesson 20: The Mean Value Theorem
Lesson19 Maximum And Minimum Values 034 Slides
A Multiformat Document Workflow With Docutils
Lesson 1: Functions and their Representations
Lesson 21: Derivatives and the Shapes of Curves
Lesson 27: Evaluating Definite Integrals
Lesson 23: Antiderivatives
Lesson 20: The Mean Value Theorem
Lesson 3: The Concept of Limit
Lesson 24: Optimization
Lesson 25: Areas and Distances; The Definite Integral
Ad

Similar to Lesson 29: Integration by Substition (worksheet solutions) (20)

PDF
Lesson 27: Integration by Substitution (slides)
PDF
Lesson 27: Integration by Substitution (Section 041 slides)
PDF
Lesson 27: Integration by Substitution (Section 041 slides)
PDF
Lesson 16: Derivatives of Logarithmic and Exponential Functions
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PPTX
Anti derivatives
PPT
125 5.3
PPT
125 4.1 through 4.5
PPT
125 5.1
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
PDF
Lesson 31: Evaluating Definite Integrals
PPT
125 11.1
PDF
intro to Implicit differentiation
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
PPT
6.2 the indefinite integral
PPT
6.2 the indefinite integral
PDF
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
PPTX
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Anti derivatives
125 5.3
125 4.1 through 4.5
125 5.1
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 31: Evaluating Definite Integrals
125 11.1
intro to Implicit differentiation
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
6.2 the indefinite integral
6.2 the indefinite integral
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
lesson10-thechainrule034slides-091006133832-phpapp01.pptx

More from Matthew Leingang (20)

PPT
Making Lesson Plans
PPT
Streamlining assessment, feedback, and archival with auto-multiple-choice
PDF
Electronic Grading of Paper Assessments
PDF
Lesson 27: Integration by Substitution (handout)
PDF
Lesson 26: The Fundamental Theorem of Calculus (handout)
PDF
Lesson 25: Evaluating Definite Integrals (slides)
PDF
Lesson 25: Evaluating Definite Integrals (handout)
PDF
Lesson 24: Areas and Distances, The Definite Integral (handout)
PDF
Lesson 24: Areas and Distances, The Definite Integral (slides)
PDF
Lesson 23: Antiderivatives (slides)
PDF
Lesson 23: Antiderivatives (slides)
PDF
Lesson 22: Optimization Problems (slides)
PDF
Lesson 22: Optimization Problems (handout)
PDF
Lesson 21: Curve Sketching (slides)
PDF
Lesson 21: Curve Sketching (handout)
PDF
Lesson 20: Derivatives and the Shapes of Curves (slides)
PDF
Lesson 20: Derivatives and the Shapes of Curves (handout)
PDF
Lesson 19: The Mean Value Theorem (slides)
PDF
Lesson 18: Maximum and Minimum Values (slides)
PDF
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Making Lesson Plans
Streamlining assessment, feedback, and archival with auto-multiple-choice
Electronic Grading of Paper Assessments
Lesson 27: Integration by Substitution (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (handout)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (handout)
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 19: The Mean Value Theorem (slides)
Lesson 18: Maximum and Minimum Values (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)

Recently uploaded (20)

PDF
Electronic commerce courselecture one. Pdf
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
Spectroscopy.pptx food analysis technology
PPT
Teaching material agriculture food technology
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Encapsulation_ Review paper, used for researhc scholars
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
Cloud computing and distributed systems.
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Empathic Computing: Creating Shared Understanding
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
KodekX | Application Modernization Development
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
NewMind AI Weekly Chronicles - August'25 Week I
Electronic commerce courselecture one. Pdf
MIND Revenue Release Quarter 2 2025 Press Release
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Spectroscopy.pptx food analysis technology
Teaching material agriculture food technology
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Encapsulation_ Review paper, used for researhc scholars
“AI and Expert System Decision Support & Business Intelligence Systems”
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
Network Security Unit 5.pdf for BCA BBA.
Cloud computing and distributed systems.
The AUB Centre for AI in Media Proposal.docx
Empathic Computing: Creating Shared Understanding
Building Integrated photovoltaic BIPV_UPV.pdf
KodekX | Application Modernization Development
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
NewMind AI Weekly Chronicles - August'25 Week I

Lesson 29: Integration by Substition (worksheet solutions)

  • 1. Section 5.5 Integration by Substitution V63.0121.034, Calculus I December 9, 2009 Announcements Final Exam: Friday 12/18, 2:00-3:50pm, Tisch UC50 Practice finals on the website. Solutions Friday . . . . . .
  • 2. Schedule for next week Monday, class: review, evaluations, movie! Tuesday, 8:00am: Review session for all students with 8:00 recitations (Tuesday or Thursday) in CIWW 109 Tuesday, 9:30am: Review session for all students with 9:30 recitations (Tuesday or Thursday) in CIWW 109 Office Hours continue Friday, 2:00pm: final in Tisch UC50 . . . . . .
  • 3. Resurrection Policy If your final score beats your midterm score, we will add 10% to its weight, and subtract 10% from the midterm weight. . . Image credit: Scott Beale / Laughing Squid . . . . . .
  • 4. Outline Last Time: The Fundamental Theorem(s) of Calculus Substitution for Indefinite Integrals Theory Examples Substitution for Definite Integrals Theory Examples . . . . . .
  • 5. Differentiation and Integration as reverse processes Theorem (The Fundamental Theorem of Calculus) 1. Let f be continuous on [a, b]. Then ∫ x d f(t) dt = f(x) dx a 2. Let f be continuous on [a, b] and f = F′ for some other function F. Then ∫ b f(x) dx = F(b) − F(a). a . . . . . .
  • 6. Techniques of antidifferentiation? So far we know only a few rules for antidifferentiation. Some are general, like ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx . . . . . .
  • 7. Techniques of antidifferentiation? So far we know only a few rules for antidifferentiation. Some are general, like ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx Some are pretty particular, like ∫ 1 √ dx = arcsec x + C. x x2 − 1 . . . . . .
  • 8. Techniques of antidifferentiation? So far we know only a few rules for antidifferentiation. Some are general, like ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx Some are pretty particular, like ∫ 1 √ dx = arcsec x + C. x x2 − 1 What are we supposed to do with that? . . . . . .
  • 9. So far we don’t have any way to find ∫ 2x √ dx x2 + 1 or ∫ tan x dx. . . . . . .
  • 10. So far we don’t have any way to find ∫ 2x √ dx x2 + 1 or ∫ tan x dx. Luckily, we can be smart and use the “anti” version of one of the most important rules of differentiation: the chain rule. . . . . . .
  • 11. Outline Last Time: The Fundamental Theorem(s) of Calculus Substitution for Indefinite Integrals Theory Examples Substitution for Definite Integrals Theory Examples . . . . . .
  • 12. Substitution for Indefinite Integrals Example Find ∫ x √ dx. x 2+1 . . . . . .
  • 13. Substitution for Indefinite Integrals Example Find ∫ x √ dx. x 2+1 Solution Stare at this long enough and you notice the the integrand is the √ derivative of the expression 1 + x2 . . . . . . .
  • 14. Say what? Solution (More slowly, now) Let g(x) = x2 + 1. . . . . . .
  • 15. Say what? Solution (More slowly, now) Let g(x) = x2 + 1. Then g′ (x) = 2x and so d√ 1 x g(x) = √ g′ (x) = √ dx 2 g(x) x2 + 1 . . . . . .
  • 16. Say what? Solution (More slowly, now) Let g(x) = x2 + 1. Then g′ (x) = 2x and so d√ 1 x g(x) = √ g′ (x) = √ dx 2 g(x) x2 + 1 Thus ∫ ∫ ( ) x d√ √ dx = g(x) dx x2 + 1 dx √ √ = g(x) + C = 1 + x2 + C. . . . . . .
  • 17. Leibnizian notation FTW Solution (Same technique, new notation) Let u = x2 + 1. . . . . . .
  • 18. Leibnizian notation FTW Solution (Same technique, new notation) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. . . . . . .
  • 19. Leibnizian notation FTW Solution (Same technique, new notation) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the integrand becomes completely transformed into ∫ ∫ 1 ∫ √ x dx 2 du √ 1 √ du = = x2 + 1 u 2 u . . . . . .
  • 20. Leibnizian notation FTW Solution (Same technique, new notation) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the integrand becomes completely transformed into ∫ ∫ 1 ∫ √ x dx 2 du √ 1 √ du = = x2 + 1 ∫ u 2 u 1 −1/2 = 2u du . . . . . .
  • 21. Leibnizian notation FTW Solution (Same technique, new notation) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the integrand becomes completely transformed into ∫ ∫ 1 ∫ √ x dx 2 du √ 1 √ du = = x2 + 1 ∫ u 2 u 1 −1/2 = 2u du √ √ = u+C= 1 + x2 + C. . . . . . .
  • 22. Useful but unsavory variation Solution (Same technique, new notation, more idiot-proof) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:” du dx = 2x So the integrand becomes completely transformed into ∫ ∫ ∫ x x du 1 √ dx = √ · = √ du x2 + 1 u 2x 2 u ∫ 1 −1/2 = 2u du √ √ = u + C = 1 + x2 + C . Mathematicians have serious issues with mixing the x and u like this. However, I can’t deny that it works. . . . . . .
  • 23. Theorem of the Day Theorem (The Substitution Rule) If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then ∫ ∫ f(g(x))g′ (x) dx = f(u) du That is, if F is an antiderivative for f, then ∫ f(g(x))g′ (x) dx = F(g(x)) In Leibniz notation: ∫ ∫ du f(u) dx = f(u) du dx . . . . . .
  • 24. A polynomial example Example ∫ Use the substitution u = x2 + 3 to find (x2 + 3)3 4x dx. . . . . . .
  • 25. A polynomial example Example ∫ Use the substitution u = x2 + 3 to find (x2 + 3)3 4x dx. Solution If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So ∫ ∫ ∫ (x + 3) 4x dx = u 2du = 2 u3 du 2 3 3 1 4 1 2 = u = (x + 3)4 2 2 . . . . . .
  • 26. A polynomial example, by brute force Compare this to multiplying it out: ∫ ∫ 2 3 ( 6 ) (x + 3) 4x dx = x + 9x4 + 27x2 + 27 4x dx ∫ ( 7 ) = 4x + 36x5 + 108x3 + 108x dx 1 8 = x + 6x6 + 27x4 + 54x2 2 . . . . . .
  • 27. A polynomial example, by brute force Compare this to multiplying it out: ∫ ∫ 2 3 ( 6 ) (x + 3) 4x dx = x + 9x4 + 27x2 + 27 4x dx ∫ ( 7 ) = 4x + 36x5 + 108x3 + 108x dx 1 8 = x + 6x6 + 27x4 + 54x2 2 Which would you rather do? . . . . . .
  • 28. A polynomial example, by brute force Compare this to multiplying it out: ∫ ∫ 2 3 ( 6 ) (x + 3) 4x dx = x + 9x4 + 27x2 + 27 4x dx ∫ ( 7 ) = 4x + 36x5 + 108x3 + 108x dx 1 8 = x + 6x6 + 27x4 + 54x2 2 Which would you rather do? It’s a wash for low powers But for higher powers, it’s much easier to do substitution. . . . . . .
  • 29. Compare We have the substitution method, which, when multiplied out, gives ∫ 1 (x2 + 3)3 4x dx = (x2 + 3)4 2 1( 8 ) = x + 12x6 + 54x4 + 108x2 + 81 2 1 81 = x8 + 6x6 + 27x4 + 54x2 + 2 2 and the brute force method ∫ 1 (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2 2 Is this a problem? . . . . . .
  • 30. Compare We have the substitution method, which, when multiplied out, gives ∫ 1 (x2 + 3)3 4x dx = (x2 + 3)4 + C 2 1( 8 ) = x + 12x6 + 54x4 + 108x2 + 81 + C 2 1 81 = x8 + 6x6 + 27x4 + 54x2 + +C 2 2 and the brute force method ∫ 1 (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2 + C 2 Is this a problem? No, that’s what +C means! . . . . . .
  • 31. A slick example Example ∫ Find tan x dx. . . . . . .
  • 32. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x . . . . . .
  • 33. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solution Let u = cos x. Then du = − sin x dx. . . . . . .
  • 34. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solution Let u = cos x. Then du = − sin x dx. So ∫ ∫ ∫ sin x 1 tan x dx = dx = − du cos x u . . . . . .
  • 35. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solution Let u = cos x. Then du = − sin x dx. So ∫ ∫ ∫ sin x 1 tan x dx = dx = − du cos x u = − ln |u| + C . . . . . .
  • 36. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solution Let u = cos x. Then du = − sin x dx. So ∫ ∫ ∫ sin x 1 tan x dx = dx = − du cos x u = − ln |u| + C = − ln | cos x| + C = ln | sec x| + C . . . . . .
  • 37. Can you do it another way? Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x . . . . . .
  • 38. Can you do it another way? Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solution du Let u = sin x. Then du = cos x dx and so dx = . cos x . . . . . .
  • 39. Can you do it another way? Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solution du Let u = sin x. Then du = cos x dx and so dx = . cos x ∫ ∫ ∫ sin x u du tan x dx = dx = cos x cos x cos x ∫ ∫ ∫ u du u du u du = = 2 = cos2 x 1 − sin x 1 − u2 At this point, although it’s possible to proceed, we should probably back up and see if the other way works quicker (it does). . . . . . .
  • 40. For those who really must know all Solution (Continued, with algebra help) ∫ ∫ ∫ ( ) u du 1 1 1 tan x dx = = − du 1 − u2 2 1−u 1+u 1 1 = − ln |1 − u| − ln |1 + u| + C 2 2 1 1 = ln √ + C = ln √ +C (1 − u)(1 + u) 1 − u2 1 = ln + C = ln |sec x| + C |cos x| . . . . . .
  • 41. Outline Last Time: The Fundamental Theorem(s) of Calculus Substitution for Indefinite Integrals Theory Examples Substitution for Definite Integrals Theory Examples . . . . . .
  • 42. Theorem (The Substitution Rule for Definite Integrals) If g′ is continuous and f is continuous on the range of u = g(x), then ∫ ∫ b g(b) f(g(x))g′ (x) dx = f(u) du. a g (a ) . . . . . .
  • 43. Theorem (The Substitution Rule for Definite Integrals) If g′ is continuous and f is continuous on the range of u = g(x), then ∫ ∫ b g(b) f(g(x))g′ (x) dx = f(u) du. a g (a ) Why the change in the limits? The integral on the left happens in “x-land” The integral on the right happens in “u-land”, so the limits need to be u-values To get from x to u, apply g . . . . . .
  • 44. Example ∫ π Compute cos2 x sin x dx. 0 . . . . . .
  • 45. Example ∫ π Compute cos2 x sin x dx. 0 Solution (Slow Way) ∫ First compute the indefinite integral cos2 x sin x dx and then evaluate. . . . . . .
  • 46. Example ∫ π Compute cos2 x sin x dx. 0 Solution (Slow Way) ∫ First compute the indefinite integral cos2 x sin x dx and then evaluate. Let u = cos x. Then du = − sin x dx and ∫ ∫ cos x sin x dx = − u2 du 2 = − 1 u3 + C = − 1 cos3 x + C. 3 3 Therefore ∫ π 1 π 1( ) 2 cos2 x sin x dx = − cos3 x =− (−1)3 − 13 = . 0 3 0 3 3 . . . . . .
  • 48. Solution (Fast Way) Do both the substitution and the evaluation at the same time. Let u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. . . . . . .
  • 49. Solution (Fast Way) Do both the substitution and the evaluation at the same time. Let u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So ∫ π ∫ −1 cos2 x sin x dx = −u2 du 0 1 ∫ 1 = u2 du −1 1 1 1( ) 2 = u3 = 1 − (−1) = 3 −1 3 3 . . . . . .
  • 50. Solution (Fast Way) Do both the substitution and the evaluation at the same time. Let u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So ∫ π ∫ −1 cos2 x sin x dx = −u2 du 0 1 ∫ 1 = u2 du −1 1 1 1( ) 2 = u3 = 1 − (−1) = 3 −1 3 3 The advantage to the “fast way” is that you completely transform the integral into something simpler and don’t have to go back to the original x variable. But the slow way is just as reliable. . . . . . .
  • 51. An exponential example Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 . . . . . .
  • 52. An exponential example Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x , so du = 2e2x dx. We have ∫ √ ∫ ln 8 √ 1 8√ √ e2x e2x + 1 dx = u + 1 du ln 3 2 3 . . . . . .
  • 53. An exponential example Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x , so du = 2e2x dx. We have ∫ √ ∫ ln 8 √ 1 8√ √ e2x e2x + 1 dx = u + 1 du ln 3 2 3 Now let y = u + 1, dy = du. So ∫ 8√ ∫ 9 ∫ 9 1 1 √ 1 u + 1 du = y dy = y1/2 dy 2 3 2 4 2 4 9 1 2 1 19 = · y3/2 = (27 − 8) = 2 3 4 3 3 . . . . . .
  • 54. About those limits √ √ 2 e2(ln 3) = eln 3 = eln 3 = 3 . . . . . .
  • 55. About those fractional powers 93/2 = (91/2 )3 = 33 = 27 43/2 = (41/2 )3 = 23 = 8 . . . . . .
  • 56. Another way to skin that cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x + 1 . . . . . .
  • 57. Another way to skin that cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x + 1, so that du = 2e2x dx. . . . . . .
  • 58. Another way to skin that cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x + 1, so that du = 2e2x dx. Then ∫ √ ∫ ln 8 √ 1 9√ 2x √ e e2x + 1 dx = u du ln 3 2 4 . . . . . .
  • 59. Another way to skin that cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x + 1, so that du = 2e2x dx. Then ∫ √ ∫ ln 8 √ 1 9√ 2x √ e e2x + 1 dx = u du ln 3 2 4 9 1 3/2 = u 3 4 . . . . . .
  • 60. Another way to skin that cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x + 1, so that du = 2e2x dx. Then ∫ √ ∫ ln 8 √ 1 9√ 2x √ e e2x + 1 dx = u du ln 3 2 4 1 3/2 9 = u 3 4 1 19 = (27 − 8) = 3 3 . . . . . .
  • 61. A third skinned cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution √ Let u = e2x + 1, so that u2 = e2x + 1 . . . . . .
  • 62. A third skinned cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution √ Let u = e2x + 1, so that u2 = e2x + 1 =⇒ 2u du = 2e2x dx . . . . . .
  • 63. A third skinned cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution √ Let u = e2x + 1, so that u2 = e2x + 1 =⇒ 2u du = 2e2x dx Thus ∫ √ ∫ ln 8 3 3 1 3 19 √ = u · u du = u = ln 3 2 3 2 3 . . . . . .
  • 64. Example Find ∫ ( ) ( ) 3π/2 5 θ 2 θ cot sec dθ. π 6 6 . . . . . .
  • 65. Example Find ∫ ( ) ( ) 3π/2 5 θ 2 θ cot sec dθ. π 6 6 Before we dive in, think about: What “easy” substitutions might help? Which of the trig functions suggests a substitution? . . . . . .
  • 66. Solution θ 1 Let φ = . Then dφ = dθ. 6 6 ∫ 3π/2 ( ) ( ) ∫ π/4 5 θ 2 θ cot sec dθ = 6 cot5 φ sec2 φ dφ π 6 6 π/6 ∫ π/4 sec2 φ dφ =6 π/6 tan5 φ . . . . . .
  • 67. Solution θ 1 Let φ = . Then dφ = dθ. 6 6 ∫ 3π/2 ( ) ( ) ∫ π/4 5 θ 2 θ cot sec dθ = 6 cot5 φ sec2 φ dφ π 6 6 π/6 ∫ π/4 sec2 φ dφ =6 π/6 tan5 φ Now let u = tan φ. So du = sec2 φ dφ, and ∫ π/4 ∫ 1 sec2 φ dφ −5 6 =6 √ u du π/6 tan5 φ 1/ 3 ( ) 1 1 3 =6 − u−4 √ = [9 − 1] = 12. 4 1/ 3 2 . . . . . .
  • 68. The limits explained √ π sin π/4 2 /2 tan = =√ =1 4 cos π/4 2 /2 π sin π/6 1/2 1 tan = =√ =√ 6 cos π/6 3 /2 3 . . . . . .
  • 69. The limits explained √ π sin π/4 2 /2 tan = =√ =1 4 cos π/4 2 /2 π sin π/6 1/2 1 tan = =√ =√ 6 cos π/6 3 /2 3 ( ) 1 √ 1 −4 3 [ −4 ]1 √ 3 [ −4 ]1/ 3 6 − u √ = −u 1 / 3 = u 1 4 1/ 3 2 2 3 [ −1/2 −4 ] = (3 ) − (1−1/2 )−4 2 3 3 = [32 − 12 ] = (9 − 1) = 12 2 2 . . . . . .
  • 70. Graphs ∫ 3π/2 ( ) ( ) ∫ π/4 θ 2 θ . 5 cot sec dθ . 6 cot5 φ sec2 φ dφ π 6 6 π/6 y . y . . . . . θ . . . φ . π 3π ππ . . . 2 64 The areas of these two regions are the same. . . . . . .
  • 71. Graphs ∫ π/4 ∫ 1 . 6 cot5 φ sec2 φ dφ . √ 6u−5 du π/6 1/ 3 y . y . . . . . φ . .. u ππ 1 .1 . . .√ 64 3 The areas of these two regions are the same. . . . . . .
  • 72. Final Thoughts Antidifferentiation is a “nonlinear” problem that needs practice, intuition, and perserverance Worksheet in recitation (also to be posted) The whole antidifferentiation story is in Chapter 6 . . . . . .