SlideShare a Scribd company logo
Joint Math-Bridge Training
Program
Michael Dietrich (DFKI)
Source Based Authoring Basics
10.07.2015 Saarbrücken
Learning Objects
• In Math-Bridge: Atomic units of knowledge
• Reusable
– Adressable
– Authors have to keep reusablity in mind
• Can be structured
– Table Of Contents (Authors/Users)
– Theories and Collections (Authors)
• Are typed
Different Learning Objects (i)
• Axiom: statement on elements of a theory
• Definition: A statement, defining the meaning
of some elements of a theory
• Assertion: A statement on elements of a
theory. Different types available “theorem”,
“lemma”, etc.
• Proof: Proof of an assertion
Different Learning Objects (ii)
• Example: an Example
• Exercise: an exercise training some
competencies of a LO
• Omtext: different types of text elements i.e.
“introduction”, “conclusion”, “motivation” …
• Ppmethod: Special type for mathematical
methods . Rarely used
Hands-On
• Example content on straight lines
• Annotate example content
– Decompose in learning objects
– Specify type of learning objects
• Types:
– Axiom, Definition, Assertion, Proof, Example,
Exercise, Omtext
Relations between learning Objects
• Obviously there are relations between
learning objects like example for an axiom.
• Modelling by relations.
• The for-relation is an important one.
• It represents that one LO is supporting
another
Example 1+1 Definition TermFOR
Differentiation Of Learning Objects
• For-relation partitions learning objects
– Learning objects, which can occur “standalone”
• Axiom, Definition, …
• Terminology: Concepts
– Learning objects, which support other LOs:
• Example, Exercise, …
• Terminology: Satellites
• Often we have:
Satellite ConceptFOR
Hands-On
• Identify for-relations in example content
• Content is separated in two layers
Content layer
Satellite layer
Definition Axiom Assertion Proof
OmtextExerciseExample
FOR
Problem: Abstract Concepts
• Some (mathematical) concepts can be defined
in different ways
• Logarithm ln(x)…
– …as primitive of x-1
– …as Inverse of ex
• Solution: Symbol Learning Object
• Symbols represents abstract concepts.
Symbols
• Symbol learning object that represents an
atomic (mathematical) concept being part of a
formal theory
• Example:
• New layer of learning objects
Ln(x)
Defined using x-1 Defined using ex
Layers of Learning Objects
Concept Layer
Satellite Layer
Definition Axiom Assertion Proof
OmtextExerciseExample
FOR
Abstract Layer Symbol
FOR
Pyramid of Learning Objects
Symbols
Concepts
Satellites
Hands-On
• Find symbols and corresponding for-relations
One More Relation
• We cannot say currently:
– Addition is prerequisite for multiplication
• Solution: New relation domain-prerequisite
• Used to specify prerequisites
• Used in MathBridge:
– Search
– Tutorial Component (Course Generation)
– User model
Hands-On
• Find all domain-prerequisite relations in
example content
Summary (i)
• Saw learning objects:
Content Layer
Satellite Layer
Definition Axiom Assertion Proof
OmtextExerciseExample
Abstract Layer Symbol
Summary (ii)
• Saw two most important Math-Bridge
relations:
– For
• Learning object is supporting another
– domain-prerequisite
• Learning object is prerequisite of another
Representation of Learning Objects
• Knowledge Representation – Discipline of AI
• In our case – a lot of markup
• Format must be reuseable
• Format should separate content from
presentation
• Different output formats should be possible
– XML is very suitable here
Using XML for Representation
• Can store and annotate data in a structured
way
– <adresse art=“postanschrift”>
• <strasse>Stuhlsatzenhausweg</strasse>
• <hausnummer>3</hausnummer>
• <plz>66123</plz>
• <ort>Saarbrücken</ort>
– </adresse>
XML language Elements
• Tags
– ‘Markup’
– Provide structure to documents
– <adresse> … </adresse>
• Attributes
– Used inside tags
– <adresse art=‘…’>…
• Disadvantage : is unreadable fast
Hands-On
• Write as XML
Differences
• Hands-on shows: Rules are needed
• Can define language using DTD, RNG, XSD
• Many projects for mathematical markup
• Have different goals
• Use different technologies
Representation of Mathematics
• Syntactic:
– LaTeX, MathML Presentation
• Semantic:
– OpenMath, MathML Content
• Formal:
– HELM, TPTP
• OMDoc is a language basing on OpenMath
• Extended for Math-Bridge
OMDoc – Learning objects
• Representing Learning Objects using OMDoc:
<definition id="def_interval”>
<CMP>Eine Teilmenge der reellen Zahlen heißt
Intervall.</CMP>
</definition>
• All learning object types have a similar
structure in OMDoc
OMDoc: for
• For-relation can be given as an attribute:
<definition id="def_interval”
for=“sym_interval”>
<CMP>Eine Teilmenge der reellen Zahlen heißt
Intervall.</CMP>
</definition>
OMDoc: domain-prerequisite
<definition id="def_interval” for=“sym_interval”>
<metadata>
<extradata>
<relation type=“domain-prerequisite”>
<ref xref=“sym_reals”/>
</relation>
</extradata>
</metadata>
<CMP>Eine Teilmenge der reellen Zahlen heißt Intervall.</CMP>
</definition>
Formulæ in OMDoc (forecast)
• OMDoc: Extension of OpenMath
• Formulæ coded using OMDoc
• 1+1 in OpenMath:
<OMOBJ>
<OMA>
<OMS cd="arith1" name="plus”/>
<OMI>1</OMI>
<OMI>1</OMI>
</OMA>
</OMOBJ>
Polynomial in OMDoc
<OMOBJ>
<OMA>
<OMS cd="relation1" name="eq" />
<OMA>
<OMS name="plus" cd="arith1" />
<OMA>
<OMS name="power" cd="arith1" /><OMV name="X" /><OMI>2</OMI>
</OMA>
<OMA>
<OMS cd="arith1" name="power" /><OMV name="Y" /><OMI>3</OMI>
</OMA>
</OMA>
<OMI>0</OMI>
</OMA>
</OMOBJ>
QMath
• Produces OMDoc from text files
• Instead
– <OMOBJ><OMA><OMS cd="arith1”
name="plus”/><OMI>1</OMI><OMI>1</OMI></OMA></OMOBJ>
– 1+1
• Polynomial from previous slide is: X^2+Y^3=0
• Formulæ in text:
– Find solutions of $X^2+Y^3=0$.
Structuring Of Learning Objects
• Constructs for structuring LOs:
– Theory
• Set of strongly related learning objects
• Like ‘Add fraction’, ‘Multiply fractions’
– Collection
• Set of Theories, with strong relations
• Example: ‘Fractions Arithmetics’
• OMGroup used to present Los in a structured
way.
Tools for Omdoc+QMath
• Main Development-tool: JEditOQMath
– Basing on Jedit an open source editor by Slava
Pestov
• Contains many useful plugins
• Controls QMath functionalities
– Templates for learning objects
– Communikation with Math-Bridge-server
– Integrates Qmath
– Direct feedback on errors
Get jEdit
• Copy jEdit.zip to HDD
• Unpack
• Start by
– java –Xmx512M –jar jedit.jar& (*nix, Mac)
– Doubleclick jedit.jar
jEdit Config
• Configure OQMath Plugin
• Set Math-Bridge URL
– Plugins – Plugin Options...
– OQMath Jedit
– Enter URL
• Specify Math-Bridge location
– analogue
jEdit Test
• OQMath – Start a collection
• Provide a name
• Let the magic happen
• Restart Math-Bridge
• Visit new collection with browser

More Related Content

PPTX
Math-Bridge Architecture
PPTX
Math-Bridge Installation
PDF
Bn1038 demo pega
PPT
Objectifying drupal
PPTX
Java architecture for xml binding
PPTX
Languages and tools for web programming
PPTX
Object Oriented Programming C#
PPTX
[OOP - Lec 01] Introduction to OOP
Math-Bridge Architecture
Math-Bridge Installation
Bn1038 demo pega
Objectifying drupal
Java architecture for xml binding
Languages and tools for web programming
Object Oriented Programming C#
[OOP - Lec 01] Introduction to OOP

Viewers also liked (20)

PPTX
Math-Bridge Student Interface
PPTX
Math-Bridge Teacher Tools
PDF
Erasmus+: Capacity Building in Higher Education
PPTX
Math-Bridge Trouble shooting
PPTX
Math-Birdge Author BasicEx
PPTX
Math-Bridge Author Staticl-os
PDF
Authoring Workflow
PDF
Assessment in Math-Bridge
PPTX
Math-Bridge Additional Interactivity
PPTX
Math-Bridge Author AdvdEx
PPTX
Math-Bridge Event Systems
PPTX
Math-Bridge Author DREx
PDF
MetaMath: Evaluation Methodology
PPTX
Math-Bridge Translate UI
PPTX
Math-Bridge Exercise System
PPTX
Math-Bridge Content Collections
PDF
Intelligent Adaptive Services for Workplace-Integrated Learning on Shop Floors
PPTX
An approach towards assessing subject and meta subject achievement in school ...
PDF
Introduction to the e-Learning networ in mathematics in Saxony - E-Assessment...
PPT
TSU overview
Math-Bridge Student Interface
Math-Bridge Teacher Tools
Erasmus+: Capacity Building in Higher Education
Math-Bridge Trouble shooting
Math-Birdge Author BasicEx
Math-Bridge Author Staticl-os
Authoring Workflow
Assessment in Math-Bridge
Math-Bridge Additional Interactivity
Math-Bridge Author AdvdEx
Math-Bridge Event Systems
Math-Bridge Author DREx
MetaMath: Evaluation Methodology
Math-Bridge Translate UI
Math-Bridge Exercise System
Math-Bridge Content Collections
Intelligent Adaptive Services for Workplace-Integrated Learning on Shop Floors
An approach towards assessing subject and meta subject achievement in school ...
Introduction to the e-Learning networ in mathematics in Saxony - E-Assessment...
TSU overview
Ad

Similar to Math-Bridge Edit Authoring (17)

PPTX
Math-Bridge Authoring
PDF
Math bridge Usage Scenarios
PDF
OntoMаthPro Ontology: A Linked Data Hub for Mathematics
PDF
Algebraic Property Graphs
PDF
The OMDoc Import/Export of Hets
PDF
A Mathematical Approach to Ontology Authoring and Documentation
PPTX
Unified modeling language
PDF
Domain Modeling in a Functional World
PDF
Yoshiwara-AMATYC2018
PPT
Helping Students to Learn Matehmatics Beyond LMS
PDF
Formal methods 4 - Z notation
PPTX
Application of discrete mathematics in IT
PDF
Publishing Math Lecture Notes as Linked Data
ODP
Introduction To Algebird: Abstract algebra for analytics
PDF
SMIU Lecture #1 & 2 Introduction to Discrete Structure and Truth Table.pdf
PDF
Learner Modelling and Adaptation in Math-Bridge
PDF
Learner Modelling and Adaptation in Math-Bridge
Math-Bridge Authoring
Math bridge Usage Scenarios
OntoMаthPro Ontology: A Linked Data Hub for Mathematics
Algebraic Property Graphs
The OMDoc Import/Export of Hets
A Mathematical Approach to Ontology Authoring and Documentation
Unified modeling language
Domain Modeling in a Functional World
Yoshiwara-AMATYC2018
Helping Students to Learn Matehmatics Beyond LMS
Formal methods 4 - Z notation
Application of discrete mathematics in IT
Publishing Math Lecture Notes as Linked Data
Introduction To Algebird: Abstract algebra for analytics
SMIU Lecture #1 & 2 Introduction to Discrete Structure and Truth Table.pdf
Learner Modelling and Adaptation in Math-Bridge
Learner Modelling and Adaptation in Math-Bridge
Ad

More from metamath (20)

PPTX
Probability Theory and Mathematical Statistics in Tver State University
PPTX
OMSU vs. EU comparative curricula study
PPT
A Course of Calculus for IT-Students
PDF
Discrete Mathematics
PPT
Probability Theory and Mathematical Statistics
PPT
Optimization Methods
PPTX
Course - Discrete Mathematics
PPTX
SEFI comparative study: Course - Algebra and Geometry
PPTX
о лаб мод и упр 2014
PPTX
Mathematical foundations of fuzzy systems
PPTX
Probability Theory and Mathematical Statistics in Tver State University
PPTX
Calculus - St. Petersburg Electrotechnical University "LETI"
PDF
Discrete Mathematics
PPT
стратегия развития книту каи
PPT
Probability Theory and Mathematical Statistics
PPT
Optimization Methods
PDF
Math Education for STEM disciplines in the EU
PPT
International Activities of the University in academic field
PDF
How to design a miniature train set that always loops back well? Two question...
PPT
UNN - Mr. Shvetsov
Probability Theory and Mathematical Statistics in Tver State University
OMSU vs. EU comparative curricula study
A Course of Calculus for IT-Students
Discrete Mathematics
Probability Theory and Mathematical Statistics
Optimization Methods
Course - Discrete Mathematics
SEFI comparative study: Course - Algebra and Geometry
о лаб мод и упр 2014
Mathematical foundations of fuzzy systems
Probability Theory and Mathematical Statistics in Tver State University
Calculus - St. Petersburg Electrotechnical University "LETI"
Discrete Mathematics
стратегия развития книту каи
Probability Theory and Mathematical Statistics
Optimization Methods
Math Education for STEM disciplines in the EU
International Activities of the University in academic field
How to design a miniature train set that always loops back well? Two question...
UNN - Mr. Shvetsov

Recently uploaded (20)

PPTX
Cell Structure & Organelles in detailed.
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Computing-Curriculum for Schools in Ghana
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Classroom Observation Tools for Teachers
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Institutional Correction lecture only . . .
Cell Structure & Organelles in detailed.
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
VCE English Exam - Section C Student Revision Booklet
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
FourierSeries-QuestionsWithAnswers(Part-A).pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
Computing-Curriculum for Schools in Ghana
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Classroom Observation Tools for Teachers
Module 4: Burden of Disease Tutorial Slides S2 2025
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
202450812 BayCHI UCSC-SV 20250812 v17.pptx
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Chinmaya Tiranga quiz Grand Finale.pdf
Microbial diseases, their pathogenesis and prophylaxis
Final Presentation General Medicine 03-08-2024.pptx
Pharma ospi slides which help in ospi learning
Institutional Correction lecture only . . .

Math-Bridge Edit Authoring

  • 1. Joint Math-Bridge Training Program Michael Dietrich (DFKI) Source Based Authoring Basics 10.07.2015 Saarbrücken
  • 2. Learning Objects • In Math-Bridge: Atomic units of knowledge • Reusable – Adressable – Authors have to keep reusablity in mind • Can be structured – Table Of Contents (Authors/Users) – Theories and Collections (Authors) • Are typed
  • 3. Different Learning Objects (i) • Axiom: statement on elements of a theory • Definition: A statement, defining the meaning of some elements of a theory • Assertion: A statement on elements of a theory. Different types available “theorem”, “lemma”, etc. • Proof: Proof of an assertion
  • 4. Different Learning Objects (ii) • Example: an Example • Exercise: an exercise training some competencies of a LO • Omtext: different types of text elements i.e. “introduction”, “conclusion”, “motivation” … • Ppmethod: Special type for mathematical methods . Rarely used
  • 5. Hands-On • Example content on straight lines • Annotate example content – Decompose in learning objects – Specify type of learning objects • Types: – Axiom, Definition, Assertion, Proof, Example, Exercise, Omtext
  • 6. Relations between learning Objects • Obviously there are relations between learning objects like example for an axiom. • Modelling by relations. • The for-relation is an important one. • It represents that one LO is supporting another Example 1+1 Definition TermFOR
  • 7. Differentiation Of Learning Objects • For-relation partitions learning objects – Learning objects, which can occur “standalone” • Axiom, Definition, … • Terminology: Concepts – Learning objects, which support other LOs: • Example, Exercise, … • Terminology: Satellites • Often we have: Satellite ConceptFOR
  • 8. Hands-On • Identify for-relations in example content • Content is separated in two layers Content layer Satellite layer Definition Axiom Assertion Proof OmtextExerciseExample FOR
  • 9. Problem: Abstract Concepts • Some (mathematical) concepts can be defined in different ways • Logarithm ln(x)… – …as primitive of x-1 – …as Inverse of ex • Solution: Symbol Learning Object • Symbols represents abstract concepts.
  • 10. Symbols • Symbol learning object that represents an atomic (mathematical) concept being part of a formal theory • Example: • New layer of learning objects Ln(x) Defined using x-1 Defined using ex
  • 11. Layers of Learning Objects Concept Layer Satellite Layer Definition Axiom Assertion Proof OmtextExerciseExample FOR Abstract Layer Symbol FOR
  • 12. Pyramid of Learning Objects Symbols Concepts Satellites
  • 13. Hands-On • Find symbols and corresponding for-relations
  • 14. One More Relation • We cannot say currently: – Addition is prerequisite for multiplication • Solution: New relation domain-prerequisite • Used to specify prerequisites • Used in MathBridge: – Search – Tutorial Component (Course Generation) – User model
  • 15. Hands-On • Find all domain-prerequisite relations in example content
  • 16. Summary (i) • Saw learning objects: Content Layer Satellite Layer Definition Axiom Assertion Proof OmtextExerciseExample Abstract Layer Symbol
  • 17. Summary (ii) • Saw two most important Math-Bridge relations: – For • Learning object is supporting another – domain-prerequisite • Learning object is prerequisite of another
  • 18. Representation of Learning Objects • Knowledge Representation – Discipline of AI • In our case – a lot of markup • Format must be reuseable • Format should separate content from presentation • Different output formats should be possible – XML is very suitable here
  • 19. Using XML for Representation • Can store and annotate data in a structured way – <adresse art=“postanschrift”> • <strasse>Stuhlsatzenhausweg</strasse> • <hausnummer>3</hausnummer> • <plz>66123</plz> • <ort>Saarbrücken</ort> – </adresse>
  • 20. XML language Elements • Tags – ‘Markup’ – Provide structure to documents – <adresse> … </adresse> • Attributes – Used inside tags – <adresse art=‘…’>… • Disadvantage : is unreadable fast
  • 22. Differences • Hands-on shows: Rules are needed • Can define language using DTD, RNG, XSD • Many projects for mathematical markup • Have different goals • Use different technologies
  • 23. Representation of Mathematics • Syntactic: – LaTeX, MathML Presentation • Semantic: – OpenMath, MathML Content • Formal: – HELM, TPTP • OMDoc is a language basing on OpenMath • Extended for Math-Bridge
  • 24. OMDoc – Learning objects • Representing Learning Objects using OMDoc: <definition id="def_interval”> <CMP>Eine Teilmenge der reellen Zahlen heißt Intervall.</CMP> </definition> • All learning object types have a similar structure in OMDoc
  • 25. OMDoc: for • For-relation can be given as an attribute: <definition id="def_interval” for=“sym_interval”> <CMP>Eine Teilmenge der reellen Zahlen heißt Intervall.</CMP> </definition>
  • 26. OMDoc: domain-prerequisite <definition id="def_interval” for=“sym_interval”> <metadata> <extradata> <relation type=“domain-prerequisite”> <ref xref=“sym_reals”/> </relation> </extradata> </metadata> <CMP>Eine Teilmenge der reellen Zahlen heißt Intervall.</CMP> </definition>
  • 27. Formulæ in OMDoc (forecast) • OMDoc: Extension of OpenMath • Formulæ coded using OMDoc • 1+1 in OpenMath: <OMOBJ> <OMA> <OMS cd="arith1" name="plus”/> <OMI>1</OMI> <OMI>1</OMI> </OMA> </OMOBJ>
  • 28. Polynomial in OMDoc <OMOBJ> <OMA> <OMS cd="relation1" name="eq" /> <OMA> <OMS name="plus" cd="arith1" /> <OMA> <OMS name="power" cd="arith1" /><OMV name="X" /><OMI>2</OMI> </OMA> <OMA> <OMS cd="arith1" name="power" /><OMV name="Y" /><OMI>3</OMI> </OMA> </OMA> <OMI>0</OMI> </OMA> </OMOBJ>
  • 29. QMath • Produces OMDoc from text files • Instead – <OMOBJ><OMA><OMS cd="arith1” name="plus”/><OMI>1</OMI><OMI>1</OMI></OMA></OMOBJ> – 1+1 • Polynomial from previous slide is: X^2+Y^3=0 • Formulæ in text: – Find solutions of $X^2+Y^3=0$.
  • 30. Structuring Of Learning Objects • Constructs for structuring LOs: – Theory • Set of strongly related learning objects • Like ‘Add fraction’, ‘Multiply fractions’ – Collection • Set of Theories, with strong relations • Example: ‘Fractions Arithmetics’ • OMGroup used to present Los in a structured way.
  • 31. Tools for Omdoc+QMath • Main Development-tool: JEditOQMath – Basing on Jedit an open source editor by Slava Pestov • Contains many useful plugins • Controls QMath functionalities – Templates for learning objects – Communikation with Math-Bridge-server – Integrates Qmath – Direct feedback on errors
  • 32. Get jEdit • Copy jEdit.zip to HDD • Unpack • Start by – java –Xmx512M –jar jedit.jar& (*nix, Mac) – Doubleclick jedit.jar
  • 33. jEdit Config • Configure OQMath Plugin • Set Math-Bridge URL – Plugins – Plugin Options... – OQMath Jedit – Enter URL • Specify Math-Bridge location – analogue
  • 34. jEdit Test • OQMath – Start a collection • Provide a name • Let the magic happen • Restart Math-Bridge • Visit new collection with browser

Editor's Notes

  • #5: PPMethod == proof planning mehod, ilo legacy (wegen Omega)
  • #11: Symbole sind quasi die Sprachelemente der definierten Ontologie
  • #15: Evtl. kurze demo
  • #23: Relax NG
  • #24: | a | b | c | Helm, Tptp: Axiomatik 1/x mit x != 0 (ausser für Chuck Norris) Geschichtlich: Aus Omega entstanden, dessen Strukturierungsprinzipien übernommen
  • #25: CMP erklären
  • #27: Extradata für pedagogische Erweiterungen.
  • #28: +(1,1)
  • #30: Polynom statt 1+1
  • #31: Abhängigkeiten zwischen Collections Adressierung von LO’s aus anderen Theorien/Collections