SlideShare a Scribd company logo
Mechanism Design Theory:
How to Implement Social Goals
Examples and Algorithmic Design

Stathis Grigoropoulos
Ioannis Katsikarelis

Multi-Agent Systems Utrecht University 2012
Contents
•
•
•
•
•

Introduction
Context
Examples
Algorithmic Design
Conclusion
Introduction

Game Theory : A Normal Game Form[1]
– A Set of Players: Who is involved?
– A Set of Rules (Institutions): What can the players do?
– A Set of Outcomes: What will happen when players perform a certain
action?
– A Set of Preferences: What players want the most of the possible outcomes?
The importance of Game Theory is established in numerous fields:
– Economic Phenomena
– Auctions, Bargains, Fair Division

– Social Phenomena
– Social Network Formation, Social Choice

– Political Sciences
– Election outcome, Political choices
Introduction

A closer look at a “real” case[2]:
• You are selling a rare painting for which you want to raise the
maximum revenue.
– Tyler, who values the painting at $100,000
– Alex who values it at $20,000

• You do not know their valuation, how to get max revenue?
– Auction!
– If you knew, you would set the price at $99,999 and be fine!

• Standard English open-cry Auction  $20,001 (not max!)
• + Reserve Price say at $50,000  $50,001 (close, but..lucky!)
• But why stop at a reserve price? How about a reserve price
and an entry fee? But why stop at reserve prices and entry
fees?....
Context

The design of the institutions (Rules) through which individuals
(Players) interact can have a profound impact on the results
(Outcomes) of that interaction[3].
We saw:
• Auction is conducted with sealed bids versus oral ascending bids can have
an impact on what bidders learn about each other's valuations and
ultimately how they bid.

• Wanted: forecast the economic or social outcomes that these
institutions generate
Context

Theory of Mechanism Design[4]
“engineering” part of economic theory
• much of economic theory devoted to:
– understanding existing economic institutions
– explaining/predicting outcomes that institutions generate
– positive, predictive

• mechanism design – reverses the direction
– begins by identifying desired outcomes (goals)
– asks whether institutions (mechanisms) could be designed to achieve
goals
– if so, what forms would institutions take?
– normative, prescriptive - - i.e., part of welfare economics
Examples

Simple example[5], suppose
• mother wants to divide cake between 2 children, Alice and
Bob
• goal: divide so that each child is happy with his/her portion
– Bob thinks he has got at least half
– Alice thinks she has got at least half
call this fair division

• If mother knows that the kids see the cake in same way she
does, simple solution:
– she divides equally (in her view)
– gives each kid a portion
Examples

• But what if, say, Bob sees cake differently from
mother?
– she thinks she’s divided it equally
– but he thinks piece he’s received is smaller than Alice’s

• difficulty: mother wants to achieve fair division
– but does not have enough information to do this on her own
– in effect, does not know which division is fair
Examples

• Can she design a mechanism (procedure) for which
outcome will be a fair division?
(even though she does not know what is fair herself ?)

• Age-old problem
– Lot and Abraham dividing grazing land
Examples

Age-old solution:
– have Bob divide the cake in two
– have Alice choose one of the pieces

Why does this work?
• Bob will divide so that pieces are equal in his eyes
– if one of the pieces were bigger, then Alice would take that one

• So whichever piece Alice takes, Bob will be happy with other
• And Alice will be happy with her own choice because if she
thinks pieces unequal, can take bigger one
Examples

Example illustrates key features of mechanism design:
• mechanism designer herself doesn’t know in advance what
outcomes are optimal
• so must proceed indirectly through a mechanism
– have participants themselves generate information needed to identify
optimal outcome

• complication: participants don’t care about mechanism
designer’s goals
– have their own objectives

• so mechanism must be incentive compatible
– must reconcile social and individual goals
Examples

Example from the paper
Consider society with
• 2 consumers of energy – Alice and Bob
• Energy authority – must choose public energy source





gas
oil
nuclear power
coal
Examples

Two states of world
State 1 consumers weight future lightly (future relatively unimportant)
state 2 consumers weight future heavily (future relatively important)
Alice – cares mainly about convenience
In state 1: favors gas over oil, oil over coal, and coal over nuclear
In state 2: favors nuclear over gas, gas over coal, and coal over oil
− technical advances expected to make gas, coal, and
especially
nuclear easier to use in future compared with oil
Bob – cares more about safety
In state 1: favors nuclear over oil, oil over coal, and coal over gas
In state 2: favors oil over gas, gas over coal, and coal over nuclear
− disposal of nuclear waste will loom large
− gas will become safer
Examples
State 1
Alice
gas
oil
coal
nuclear

Bob
nuclear
oil
coal
gas

State 2
Alice
nuclear
gas
coal
oil

Bob
oil
gas
coal
nuclear

− energy authority
 wants source that makes good compromise between consumers’
views
 so, oil is social optimum in state 1
 gas is social optimum in state 2

− but suppose authority does not know state
 then does not know whether oil or gas better
Examples

State 1

State 2

Alice
Bob
gas
nuclear
oil
oil
coal
coal
nuclear
gas
oil optimal

Alice
Bob
nuclear
oil
gas
gas
coal
coal
oil
nuclear
gas optimal

− authority could ask Alice or Bob about state
• but Alice has incentive to say “state 2” regardless of truth
always prefers gas to oil
gas optimal in state 2
• Bob always has incentive to say “state 1”
always prefers oil to gas
oil optimal state 1
So, simply asking consumers to reveal actual state too naive a mechanism
Examples
State 1

State 2

Alice
Bob
gas
nuclear
oil
oil
coal
coal
nuclear
gas
social optimum: oil

Alice
Bob
nuclear
oil
gas
gas
coal
coal
oil
nuclear
social optimum: gas

Authority can have consumers participate in the mechanism given by table

Bob
Alice

oil

coal

nuclear

gas

• Alice – can choose top row or bottom row
• Bob – can choose left column or right column
• outcomes given by table entries
• If state 1 holds
Alice will prefer top row if Bob plays left column
Bob will always prefer left column
so (Alice plays top, Bob plays left) is Nash equilibrium
neither participant has incentive to change unilaterally to another strategy
− so good prediction of what Alice and Bob will do
Examples
State 1

State 2

Alice
Bob
gas
nuclear
oil
oil
coal
coal
nuclear
gas
social optimum: oil

Alice
Bob
nuclear
oil
gas
gas
coal
coal
oil
nuclear
social optimum: gas

Bob
Alice

So, in state 1:
expect that
Alice will play top strategy
Bob will play left strategy
outcome is oil
oil is social optimum

Similarly, in state 2: gas is social optimum

oil

coal

nuclear

gas
Examples
State 1

State 2

Alice
Bob
gas
nuclear
oil
oil
coal
coal
nuclear
gas
social optimum: oil

Alice
Bob
nuclear
oil
gas
gas
coal
coal
oil
nuclear
social optimum: gas

Bob
Alice

oil

coal

nuclear

gas

• Thus, in either state, mechanism achieves social optimum, even though
− mechanism designer does not know the state herself
− Alice and Bob interested in own ends (not social goal)
• We say that mechanism implements the designer’s goals (oil in state 1,
gas in state 2)
Examples
State 1

State 2

Alice
Bob
gas
nuclear
oil
oil
coal
coal
nuclear
gas
optimum: oil

Alice
Bob
gas
nuclear
oil
oil
nuclear
coal
coal
gas
optimum: nuclear

Let us change the example a bit:
• Wrongly set nuclear as social optimum, observe that although oil is optimal
in state 1, it is not optimal in state 2, despite the fact that it falls in neither
Alice’s nor Bob’s rankings between states 1 and 2
• monotonicity is a property ensuring that the oil remain optimal in state 2
Theorem 1 (Maskin 1977): If a social choice rule is implementable, then it
must be monotonic.
Theorem 2 (Maskin 1977): Suppose that there are at least three individuals.
If the social choice rule satisfies monotonicity and no veto power, then it is
implementable.
Algorithmic Design

• Have shown you mechanisms in the cake, and
energy examples
• What about that auction?
• Examples raise questions (among others):
− How can we implement such a mechanism?
− How does Computer Science come into play?
Algorithmic Settings
●

●

●

●

An important part of Computer Science
research deals with distributed settings
These mainly focus on the connection of
several computers and the computations these
perform to achieve a common outcome
according to some protocol (algorithm)
It is generally assumed that the participants
follow the instructions of the protocol
This is obviously not always the case
(e.g. the Internet)
Two example applications
●

Load Balancing:
–

–

●

In a “perfect” world, the aggregate computational power of all
computers on the Internet would be optimally allocated online
among connected processors, which is in itself a difficult problem
In reality, all resources belong to individual entities that act in a
rationally selfish way, which implies the necessity of some form of
motivation for participation

Routing:
–

Information passes through several intermediate routers before
reaching its intended destination

–

Since routers are considered self-interested entities, this implies
that the protocols employed should take the router's potential
interests into consideration
Algorithmic Mechanism Design
●

●

●

●

Nisan and Ronen [6] used notions of mechanism
design to introduce a new framework for the
study of such problems
Theirs was not the first use of such notions in
Computer Science studies, but arguably one of the
most relevant and influential
This marriage of concepts has even more
interesting implications (e.g. complexity)
We only briefly mention the first steps of what is
now recognized as an important research direction
The model: Problems
●

Output specifications, defined algorithmically
–

–

●

Input is information about the setting (common) and the
participating agents (their types – private)
Output is the specific computed outcome, based on the
information above

Descriptions of agents' desires (preferences)
–

–

●

A valuation function for every agent, based on its type and
outcome
A payment from the mechanism to every agent for
participating, based on its type

The optimization version has an objective
function as an outcome
The model: Solutions
●

●

●

●

A problem is solved when the required output
is obtained, while agents try to achieve their
goals (maximize their utilities)
Agents have a specified family of strategies
and the outcome depends on all these choices
Depending on its strategy, the mechanism
provides a payment to each agent, which can
be used to make the agents' desires compatible
with the required outcome
Complexity matters
Desired characteristics of Mechanisms
●

Implementations with dominant strategies
–
–

●

Every agent has some dominant strategy
Every set of dominant strategies yields a desired outcome

Truthful Implementation
–
–

●

All agents want to report their type (no manipulation)
Correctly reporting one's type is a dominant strategy

The revelation principle states that given a
mechanism that implements a problem with
dominant strategies, there exists a truthful
implementation as well
Vickrey-Groves-Clarke Mechanisms
●

●

●

●

●

Originally defined for auctions (second-price)
VGC is a very useful type of mechanism,
applied to maximization problems, where the
objective is the sum of all agents' valuations
Intuitively, the payment defined by VGC for
an agent is its contribution to social welfare
VGC mechanisms have been famously proven
to be truthful (may even be the only truthful
implementations)
Complexity matters a lot
Shortest Paths Example
●

●

●

●

●

Consider a communication network, modeled
by a directed graph
There is one source and one sink node
Every edge is an agent, whose type (private
information) is te, the cost for sending a single
message across this edge
The goal is to find the cheapest path from the
source to the sink (single message)
Agent's valuation is 0 if its edge is not part of
e
the chosen path and -t otherwise
A Truthful Implementation
●

●

When all agents honestly report their types
(costs), the cheapest path can be calculated
The following mechanism ensures the above
is a dominant strategy for each agent:
Set the payment for each agent to be pe=0 if
its edge is not in the shortest path and
pe=dG-e-dG|e=0 otherwise (according to inputs)

●

●

This is a VGC mechanism, the computed
paths are the shortest paths and truth-telling is
a dominant strategy
Similar ideas are being used in today's Internet
Conclusion

•

Have seen some implemetations of the theory of
Mechanism Design
Many other potential applications

•
–
–
–

•

•

Policies to prevent financial crises
Sustainable gas emission policies
Elections Design

Combining Mechanism Design and Algorithmics is
very natural and yields interesting and useful
results
Although we merely mentioned a small part of
some introductory notions, the underlying theory is
itself plentiful and well-founded
●

•

Thank you!

Questions?
References

1.
2.
3.

4.
5.

6.

Yoav Shoham, Kevin Leyton-Brown Multiagent Systems Algorithmic,
Game-Theoretic, and Logical Foundations, 2009
http://marginalrevolution.com/marginalrevolution/2007/10/mechanism-desig.html
, Mechanism Design for Grandma by Alex Tabarrok on October 15, 2007
Matthew O. Jackson, Mechanism Theory ,
https://www2.bc.edu/~unver/teaching/gradmicro/mechtheo.pdf revised
December 8 2003
Mechanism Design:How to Implement Social Goals (Eric S. Maskin)
Mechanism Design:How to Implement Social Goals , presentation by Eric S.
Maskin, Mechanism Design Theory(Harvard, Frankfurt, Shanghai, Prato,
Berlin).pdf, stifterverband.info/.../maskin_mechanism_design_theory.pdf,
visited 22-11-2012
Algorithmic Mechanism Design, Noam Nisan, Amir Ronen, Games and
Economic Behavior, Volume 35, Issues 1-2, April 2001, Pages 166-196

More Related Content

PPT
Text Message Marketing for Car Washes
PDF
How Airbnb disrupts the lodging industry and what you can do about it
PPTX
Fundamental of Digital marketing- Basic Of Digital Marketing
PDF
Digital Marketing Plan Template Smart Insights
PDF
SaaS Business & Marketing & Strategy
PDF
Airbnb
PPSX
Storytelling-case-study-PPT.ppsx
PDF
Aatif Awan, Head of Growth LinkedIn - Growth Hacking is Dead. Long Live Growth.
Text Message Marketing for Car Washes
How Airbnb disrupts the lodging industry and what you can do about it
Fundamental of Digital marketing- Basic Of Digital Marketing
Digital Marketing Plan Template Smart Insights
SaaS Business & Marketing & Strategy
Airbnb
Storytelling-case-study-PPT.ppsx
Aatif Awan, Head of Growth LinkedIn - Growth Hacking is Dead. Long Live Growth.

What's hot (20)

PDF
Pirate metrics AARRR-Profit and key metrics to track
PPTX
Digital Marketing Plan Template
PPTX
3 Pillars of Content Marketing: Strategy, Creativity & Promotion
PDF
Shopper Journey Mapping PowerPoint Presentation Slides
PPTX
The Science behind Viral marketing
PPTX
Airbnb Pitch Deck redesigned by Zlides
PDF
How to Make a Killer Landing Page #INBOUND13
PDF
An Introduction to Conversion Rate Optimization, Landing Pages & A/B Testing
PDF
Hellofresh_BiTS-2013
PPTX
Google analytics
PDF
2015 Travel Trends
PDF
Pitch Deck Teardown: Super.com's $60M Series C deck
PPTX
The SaaS business model and metrics
PPTX
Content Marketing Strategy Workshop
PDF
Growth Hacking
PDF
Emerging Technologies
PPTX
Conversion Rate Optimisation: Making The Most of Your Website (Service Networ...
PDF
Writing a Business Plan
PDF
Basic Social Media Ads & Email Marketing
PDF
Snapchat Visual Marketing Strategy
Pirate metrics AARRR-Profit and key metrics to track
Digital Marketing Plan Template
3 Pillars of Content Marketing: Strategy, Creativity & Promotion
Shopper Journey Mapping PowerPoint Presentation Slides
The Science behind Viral marketing
Airbnb Pitch Deck redesigned by Zlides
How to Make a Killer Landing Page #INBOUND13
An Introduction to Conversion Rate Optimization, Landing Pages & A/B Testing
Hellofresh_BiTS-2013
Google analytics
2015 Travel Trends
Pitch Deck Teardown: Super.com's $60M Series C deck
The SaaS business model and metrics
Content Marketing Strategy Workshop
Growth Hacking
Emerging Technologies
Conversion Rate Optimisation: Making The Most of Your Website (Service Networ...
Writing a Business Plan
Basic Social Media Ads & Email Marketing
Snapchat Visual Marketing Strategy
Ad

Viewers also liked (20)

PDF
Introduction to Mechanism Design
PDF
Theory of machines by rs. khurmi_ solution manual _ chapter 11
PDF
Mechanism Design Theory
PDF
PPTX
Adept Double Rotary Centre Drive
PPTX
mechanism
PDF
Q1 position_analysis
PDF
Kinematic diagram assignment 02
PDF
[10] degrees of freedom assignment
PDF
Tom[unit 1]
PPTX
KInematic of Machine(Mechanical Engineering)
PPTX
Theory of mechanisms & machines final
PPTX
Single punch tablet press PPT
PPTX
DYNAMIC FORCE ANALYSIS BEST PPT
PPTX
Velocity of mechasnism_by_graphical
PDF
THEORY OF MACHINES I QUESTION BANK
PPTX
Theory of machines_static and dynamic force analysis
PPT
Manual transmission system in automobiles
PDF
Velocity & acceleration diagrams
Introduction to Mechanism Design
Theory of machines by rs. khurmi_ solution manual _ chapter 11
Mechanism Design Theory
Adept Double Rotary Centre Drive
mechanism
Q1 position_analysis
Kinematic diagram assignment 02
[10] degrees of freedom assignment
Tom[unit 1]
KInematic of Machine(Mechanical Engineering)
Theory of mechanisms & machines final
Single punch tablet press PPT
DYNAMIC FORCE ANALYSIS BEST PPT
Velocity of mechasnism_by_graphical
THEORY OF MACHINES I QUESTION BANK
Theory of machines_static and dynamic force analysis
Manual transmission system in automobiles
Velocity & acceleration diagrams
Ad

Similar to Mechanism design theory examples and complexity (20)

PDF
Essay Questions Z For Zachariah. Online assignment writing service.
PPTX
QUINN Edition 6 Chapter 2.pptx
PPT
Chapter 2 - Introduction to Ethics 610.ppt
DOCX
-What goods should or should not be publicly provided -What eff
DOCX
-What goods should or should not be publicly provided -What eff
PPT
CSC_402_Social_and_Professional_Issues_i.ppt
PPT
Computer Simulation and Economics
PPTX
Basic Economic Questions
PPTX
Economics unit 1 notes 2017
PDF
Future of AI-powered automation in business
PPT
Introduction to Ethics Professional Practices
PPTX
PPIT Lecture 06
PDF
[HCMC STC Jan 2015] Choosing The Best Of The Plan-Driven And Agile Developmen...
PPT
Computer Simulation and Economics
PPTX
Professional ethical issue
PPTX
Fiveqs
PDF
Evolutionary architecture: What can we learn from Nature?
PPT
Prinecomi lectureppt ch01
PPTX
Lecture 1 Syllabus and Introduction to Optimization and Linear Programming.pptx
PDF
Prompt Engineering - an Art, a Science, or your next Job Title?
Essay Questions Z For Zachariah. Online assignment writing service.
QUINN Edition 6 Chapter 2.pptx
Chapter 2 - Introduction to Ethics 610.ppt
-What goods should or should not be publicly provided -What eff
-What goods should or should not be publicly provided -What eff
CSC_402_Social_and_Professional_Issues_i.ppt
Computer Simulation and Economics
Basic Economic Questions
Economics unit 1 notes 2017
Future of AI-powered automation in business
Introduction to Ethics Professional Practices
PPIT Lecture 06
[HCMC STC Jan 2015] Choosing The Best Of The Plan-Driven And Agile Developmen...
Computer Simulation and Economics
Professional ethical issue
Fiveqs
Evolutionary architecture: What can we learn from Nature?
Prinecomi lectureppt ch01
Lecture 1 Syllabus and Introduction to Optimization and Linear Programming.pptx
Prompt Engineering - an Art, a Science, or your next Job Title?

More from Stathis Grigoropoulos (8)

PPTX
Agent Based Modeling and Simulation - Overview and Tools
PDF
The Minority Game: Individual and Social Learning
PPTX
Social cognitive factors of unfair ratings in reputation
PPT
Chess Segmentation
PPTX
PDF
PPTX
Agent Based Modeling and Simulation - Overview and Tools
The Minority Game: Individual and Social Learning
Social cognitive factors of unfair ratings in reputation
Chess Segmentation

Recently uploaded (20)

PDF
Machine learning based COVID-19 study performance prediction
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Spectroscopy.pptx food analysis technology
PDF
KodekX | Application Modernization Development
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Empathic Computing: Creating Shared Understanding
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
cuic standard and advanced reporting.pdf
PDF
Approach and Philosophy of On baking technology
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Electronic commerce courselecture one. Pdf
Machine learning based COVID-19 study performance prediction
NewMind AI Weekly Chronicles - August'25 Week I
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Spectroscopy.pptx food analysis technology
KodekX | Application Modernization Development
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Understanding_Digital_Forensics_Presentation.pptx
Building Integrated photovoltaic BIPV_UPV.pdf
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
The Rise and Fall of 3GPP – Time for a Sabbatical?
sap open course for s4hana steps from ECC to s4
Dropbox Q2 2025 Financial Results & Investor Presentation
Chapter 3 Spatial Domain Image Processing.pdf
Empathic Computing: Creating Shared Understanding
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Programs and apps: productivity, graphics, security and other tools
cuic standard and advanced reporting.pdf
Approach and Philosophy of On baking technology
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Electronic commerce courselecture one. Pdf

Mechanism design theory examples and complexity

  • 1. Mechanism Design Theory: How to Implement Social Goals Examples and Algorithmic Design Stathis Grigoropoulos Ioannis Katsikarelis Multi-Agent Systems Utrecht University 2012
  • 3. Introduction Game Theory : A Normal Game Form[1] – A Set of Players: Who is involved? – A Set of Rules (Institutions): What can the players do? – A Set of Outcomes: What will happen when players perform a certain action? – A Set of Preferences: What players want the most of the possible outcomes? The importance of Game Theory is established in numerous fields: – Economic Phenomena – Auctions, Bargains, Fair Division – Social Phenomena – Social Network Formation, Social Choice – Political Sciences – Election outcome, Political choices
  • 4. Introduction A closer look at a “real” case[2]: • You are selling a rare painting for which you want to raise the maximum revenue. – Tyler, who values the painting at $100,000 – Alex who values it at $20,000 • You do not know their valuation, how to get max revenue? – Auction! – If you knew, you would set the price at $99,999 and be fine! • Standard English open-cry Auction  $20,001 (not max!) • + Reserve Price say at $50,000  $50,001 (close, but..lucky!) • But why stop at a reserve price? How about a reserve price and an entry fee? But why stop at reserve prices and entry fees?....
  • 5. Context The design of the institutions (Rules) through which individuals (Players) interact can have a profound impact on the results (Outcomes) of that interaction[3]. We saw: • Auction is conducted with sealed bids versus oral ascending bids can have an impact on what bidders learn about each other's valuations and ultimately how they bid. • Wanted: forecast the economic or social outcomes that these institutions generate
  • 6. Context Theory of Mechanism Design[4] “engineering” part of economic theory • much of economic theory devoted to: – understanding existing economic institutions – explaining/predicting outcomes that institutions generate – positive, predictive • mechanism design – reverses the direction – begins by identifying desired outcomes (goals) – asks whether institutions (mechanisms) could be designed to achieve goals – if so, what forms would institutions take? – normative, prescriptive - - i.e., part of welfare economics
  • 7. Examples Simple example[5], suppose • mother wants to divide cake between 2 children, Alice and Bob • goal: divide so that each child is happy with his/her portion – Bob thinks he has got at least half – Alice thinks she has got at least half call this fair division • If mother knows that the kids see the cake in same way she does, simple solution: – she divides equally (in her view) – gives each kid a portion
  • 8. Examples • But what if, say, Bob sees cake differently from mother? – she thinks she’s divided it equally – but he thinks piece he’s received is smaller than Alice’s • difficulty: mother wants to achieve fair division – but does not have enough information to do this on her own – in effect, does not know which division is fair
  • 9. Examples • Can she design a mechanism (procedure) for which outcome will be a fair division? (even though she does not know what is fair herself ?) • Age-old problem – Lot and Abraham dividing grazing land
  • 10. Examples Age-old solution: – have Bob divide the cake in two – have Alice choose one of the pieces Why does this work? • Bob will divide so that pieces are equal in his eyes – if one of the pieces were bigger, then Alice would take that one • So whichever piece Alice takes, Bob will be happy with other • And Alice will be happy with her own choice because if she thinks pieces unequal, can take bigger one
  • 11. Examples Example illustrates key features of mechanism design: • mechanism designer herself doesn’t know in advance what outcomes are optimal • so must proceed indirectly through a mechanism – have participants themselves generate information needed to identify optimal outcome • complication: participants don’t care about mechanism designer’s goals – have their own objectives • so mechanism must be incentive compatible – must reconcile social and individual goals
  • 12. Examples Example from the paper Consider society with • 2 consumers of energy – Alice and Bob • Energy authority – must choose public energy source     gas oil nuclear power coal
  • 13. Examples Two states of world State 1 consumers weight future lightly (future relatively unimportant) state 2 consumers weight future heavily (future relatively important) Alice – cares mainly about convenience In state 1: favors gas over oil, oil over coal, and coal over nuclear In state 2: favors nuclear over gas, gas over coal, and coal over oil − technical advances expected to make gas, coal, and especially nuclear easier to use in future compared with oil Bob – cares more about safety In state 1: favors nuclear over oil, oil over coal, and coal over gas In state 2: favors oil over gas, gas over coal, and coal over nuclear − disposal of nuclear waste will loom large − gas will become safer
  • 14. Examples State 1 Alice gas oil coal nuclear Bob nuclear oil coal gas State 2 Alice nuclear gas coal oil Bob oil gas coal nuclear − energy authority  wants source that makes good compromise between consumers’ views  so, oil is social optimum in state 1  gas is social optimum in state 2 − but suppose authority does not know state  then does not know whether oil or gas better
  • 15. Examples State 1 State 2 Alice Bob gas nuclear oil oil coal coal nuclear gas oil optimal Alice Bob nuclear oil gas gas coal coal oil nuclear gas optimal − authority could ask Alice or Bob about state • but Alice has incentive to say “state 2” regardless of truth always prefers gas to oil gas optimal in state 2 • Bob always has incentive to say “state 1” always prefers oil to gas oil optimal state 1 So, simply asking consumers to reveal actual state too naive a mechanism
  • 16. Examples State 1 State 2 Alice Bob gas nuclear oil oil coal coal nuclear gas social optimum: oil Alice Bob nuclear oil gas gas coal coal oil nuclear social optimum: gas Authority can have consumers participate in the mechanism given by table Bob Alice oil coal nuclear gas • Alice – can choose top row or bottom row • Bob – can choose left column or right column • outcomes given by table entries • If state 1 holds Alice will prefer top row if Bob plays left column Bob will always prefer left column so (Alice plays top, Bob plays left) is Nash equilibrium neither participant has incentive to change unilaterally to another strategy − so good prediction of what Alice and Bob will do
  • 17. Examples State 1 State 2 Alice Bob gas nuclear oil oil coal coal nuclear gas social optimum: oil Alice Bob nuclear oil gas gas coal coal oil nuclear social optimum: gas Bob Alice So, in state 1: expect that Alice will play top strategy Bob will play left strategy outcome is oil oil is social optimum Similarly, in state 2: gas is social optimum oil coal nuclear gas
  • 18. Examples State 1 State 2 Alice Bob gas nuclear oil oil coal coal nuclear gas social optimum: oil Alice Bob nuclear oil gas gas coal coal oil nuclear social optimum: gas Bob Alice oil coal nuclear gas • Thus, in either state, mechanism achieves social optimum, even though − mechanism designer does not know the state herself − Alice and Bob interested in own ends (not social goal) • We say that mechanism implements the designer’s goals (oil in state 1, gas in state 2)
  • 19. Examples State 1 State 2 Alice Bob gas nuclear oil oil coal coal nuclear gas optimum: oil Alice Bob gas nuclear oil oil nuclear coal coal gas optimum: nuclear Let us change the example a bit: • Wrongly set nuclear as social optimum, observe that although oil is optimal in state 1, it is not optimal in state 2, despite the fact that it falls in neither Alice’s nor Bob’s rankings between states 1 and 2 • monotonicity is a property ensuring that the oil remain optimal in state 2 Theorem 1 (Maskin 1977): If a social choice rule is implementable, then it must be monotonic. Theorem 2 (Maskin 1977): Suppose that there are at least three individuals. If the social choice rule satisfies monotonicity and no veto power, then it is implementable.
  • 20. Algorithmic Design • Have shown you mechanisms in the cake, and energy examples • What about that auction? • Examples raise questions (among others): − How can we implement such a mechanism? − How does Computer Science come into play?
  • 21. Algorithmic Settings ● ● ● ● An important part of Computer Science research deals with distributed settings These mainly focus on the connection of several computers and the computations these perform to achieve a common outcome according to some protocol (algorithm) It is generally assumed that the participants follow the instructions of the protocol This is obviously not always the case (e.g. the Internet)
  • 22. Two example applications ● Load Balancing: – – ● In a “perfect” world, the aggregate computational power of all computers on the Internet would be optimally allocated online among connected processors, which is in itself a difficult problem In reality, all resources belong to individual entities that act in a rationally selfish way, which implies the necessity of some form of motivation for participation Routing: – Information passes through several intermediate routers before reaching its intended destination – Since routers are considered self-interested entities, this implies that the protocols employed should take the router's potential interests into consideration
  • 23. Algorithmic Mechanism Design ● ● ● ● Nisan and Ronen [6] used notions of mechanism design to introduce a new framework for the study of such problems Theirs was not the first use of such notions in Computer Science studies, but arguably one of the most relevant and influential This marriage of concepts has even more interesting implications (e.g. complexity) We only briefly mention the first steps of what is now recognized as an important research direction
  • 24. The model: Problems ● Output specifications, defined algorithmically – – ● Input is information about the setting (common) and the participating agents (their types – private) Output is the specific computed outcome, based on the information above Descriptions of agents' desires (preferences) – – ● A valuation function for every agent, based on its type and outcome A payment from the mechanism to every agent for participating, based on its type The optimization version has an objective function as an outcome
  • 25. The model: Solutions ● ● ● ● A problem is solved when the required output is obtained, while agents try to achieve their goals (maximize their utilities) Agents have a specified family of strategies and the outcome depends on all these choices Depending on its strategy, the mechanism provides a payment to each agent, which can be used to make the agents' desires compatible with the required outcome Complexity matters
  • 26. Desired characteristics of Mechanisms ● Implementations with dominant strategies – – ● Every agent has some dominant strategy Every set of dominant strategies yields a desired outcome Truthful Implementation – – ● All agents want to report their type (no manipulation) Correctly reporting one's type is a dominant strategy The revelation principle states that given a mechanism that implements a problem with dominant strategies, there exists a truthful implementation as well
  • 27. Vickrey-Groves-Clarke Mechanisms ● ● ● ● ● Originally defined for auctions (second-price) VGC is a very useful type of mechanism, applied to maximization problems, where the objective is the sum of all agents' valuations Intuitively, the payment defined by VGC for an agent is its contribution to social welfare VGC mechanisms have been famously proven to be truthful (may even be the only truthful implementations) Complexity matters a lot
  • 28. Shortest Paths Example ● ● ● ● ● Consider a communication network, modeled by a directed graph There is one source and one sink node Every edge is an agent, whose type (private information) is te, the cost for sending a single message across this edge The goal is to find the cheapest path from the source to the sink (single message) Agent's valuation is 0 if its edge is not part of e the chosen path and -t otherwise
  • 29. A Truthful Implementation ● ● When all agents honestly report their types (costs), the cheapest path can be calculated The following mechanism ensures the above is a dominant strategy for each agent: Set the payment for each agent to be pe=0 if its edge is not in the shortest path and pe=dG-e-dG|e=0 otherwise (according to inputs) ● ● This is a VGC mechanism, the computed paths are the shortest paths and truth-telling is a dominant strategy Similar ideas are being used in today's Internet
  • 30. Conclusion • Have seen some implemetations of the theory of Mechanism Design Many other potential applications • – – – • • Policies to prevent financial crises Sustainable gas emission policies Elections Design Combining Mechanism Design and Algorithmics is very natural and yields interesting and useful results Although we merely mentioned a small part of some introductory notions, the underlying theory is itself plentiful and well-founded
  • 32. References 1. 2. 3. 4. 5. 6. Yoav Shoham, Kevin Leyton-Brown Multiagent Systems Algorithmic, Game-Theoretic, and Logical Foundations, 2009 http://marginalrevolution.com/marginalrevolution/2007/10/mechanism-desig.html , Mechanism Design for Grandma by Alex Tabarrok on October 15, 2007 Matthew O. Jackson, Mechanism Theory , https://www2.bc.edu/~unver/teaching/gradmicro/mechtheo.pdf revised December 8 2003 Mechanism Design:How to Implement Social Goals (Eric S. Maskin) Mechanism Design:How to Implement Social Goals , presentation by Eric S. Maskin, Mechanism Design Theory(Harvard, Frankfurt, Shanghai, Prato, Berlin).pdf, stifterverband.info/.../maskin_mechanism_design_theory.pdf, visited 22-11-2012 Algorithmic Mechanism Design, Noam Nisan, Amir Ronen, Games and Economic Behavior, Volume 35, Issues 1-2, April 2001, Pages 166-196