Iterative Techniques in Matrix Algebra 
Jacobi & Gauss-Seidel Iterative Techniques II 
Numerical Analysis (9th Edition) 
R L Burden & J D Faires 
Beamer Presentation Slides 
prepared by 
John Carroll 
Dublin City University 
c
 2011 Brooks/Cole, Cengage Learning
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
4 Application to the Jacobi & Gauss-Seidel Methods 
Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
4 Application to the Jacobi & Gauss-Seidel Methods 
Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 3 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Looking at the Jacobi Method 
A possible improvement to the Jacobi Algorithm can be seen by 
re-considering 
x(k) 
i = 
1 
aii 
2 
Xn 
664 
j=1 
j6=i 
 
−aijx(k−1) 
j 
 
+ bi 
3 
775 
, for i = 1, 2, . . . , n 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 4 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Looking at the Jacobi Method 
A possible improvement to the Jacobi Algorithm can be seen by 
re-considering 
x(k) 
i = 
1 
aii 
2 
Xn 
664 
j=1 
j6=i 
 
−aijx(k−1) 
j 
 
+ bi 
3 
775 
, for i = 1, 2, . . . , n 
The components of x(k−1) are used to compute all the 
components x(k) 
i of x(k). 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 4 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Looking at the Jacobi Method 
A possible improvement to the Jacobi Algorithm can be seen by 
re-considering 
x(k) 
i = 
1 
aii 
2 
Xn 
664 
j=1 
j6=i 
 
−aijx(k−1) 
j 
 
+ bi 
3 
775 
, for i = 1, 2, . . . , n 
The components of x(k−1) are used to compute all the 
components x(k) 
i of x(k). 
But, for i  1, the components x(k) 
1 , . . . , x(k) 
i−1 of x(k) have already 
been computed and are expected to be better approximations to 
the actual solutions x1, . . . , xi−1 than are x(k−1) 
1 , . . . , x(k−1) 
i−1 . 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 4 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Instead of using 
x(k) 
i = 
1 
aii 
2 
Xn 
664 
j=1 
j6=i 
 
−aijx(k−1) 
j 
 
+ bi 
3 
775 
, for i = 1, 2, . . . , n 
it seems reasonable, then, to compute x(k) 
i using these most recently 
calculated values. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 5 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Instead of using 
x(k) 
i = 
1 
aii 
2 
Xn 
664 
j=1 
j6=i 
 
−aijx(k−1) 
j 
 
+ bi 
3 
775 
, for i = 1, 2, . . . , n 
it seems reasonable, then, to compute x(k) 
i using these most recently 
calculated values. 
The Gauss-Seidel Iterative Technique 
x(k) 
i = 
1 
aii 
2 
4− 
Xi−1 
j=1 
(aijx(k) 
j ) − 
Xn 
j=i+1 
(aijx(k−1) 
j ) + bi 
3 
5 
for each i = 1, 2, . . . , n. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 5 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Example 
Use the Gauss-Seidel iterative technique to find approximate solutions 
to 
10x1 − x2 + 2x3 = 6 
−x1 + 11x2 − x3 + 3x4 = 25 
2x1 − x2 + 10x3 − x4 = −11 
3x2 − x3 + 8x4 = 15 
, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 6 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Example 
Use the Gauss-Seidel iterative technique to find approximate solutions 
to 
10x1 − x2 + 2x3 = 6 
−x1 + 11x2 − x3 + 3x4 = 25 
2x1 − x2 + 10x3 − x4 = −11 
3x2 − x3 + 8x4 = 15 
, 
starting with x = (0, 0, 0, 0)t 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 6 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Example 
Use the Gauss-Seidel iterative technique to find approximate solutions 
to 
10x1 − x2 + 2x3 = 6 
−x1 + 11x2 − x3 + 3x4 = 25 
2x1 − x2 + 10x3 − x4 = −11 
3x2 − x3 + 8x4 = 15 
, 
starting with x = (0, 0, 0, 0)t and iterating until 
kx(k) − x(k−1)k1 
kx(k)k1 
 10−3 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 6 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Example 
Use the Gauss-Seidel iterative technique to find approximate solutions 
to 
10x1 − x2 + 2x3 = 6 
−x1 + 11x2 − x3 + 3x4 = 25 
2x1 − x2 + 10x3 − x4 = −11 
3x2 − x3 + 8x4 = 15 
, 
starting with x = (0, 0, 0, 0)t and iterating until 
kx(k) − x(k−1)k1 
kx(k)k1 
 10−3 
Note: The solution x = (1, 2, −1, 1)t was approximated by Jacobi’s 
method in an earlier example. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 6 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Solution (1/3) 
For the Gauss-Seidel method we write the system, for each 
k = 1, 2, . . . as 
x(k) 
1 = 
1 
10 
x(k−1) 
2 − 
1 
5 
x(k−1) 
3 + 
3 
5 
x(k) 
2 = 
1 
11 
x(k) 
1 + 
1 
11 
x(k−1) 
3 − 
3 
11 
x(k−1) 
4 + 
25 
11 
x(k) 
3 = − 
1 
5 
x(k) 
1 + 
1 
10 
x(k) 
2 + 
1 
10 
x(k−1) 
4 − 
11 
10 
x(k) 
4 = − 
3 
8 
x(k) 
2 + 
1 
8 
x(k) 
3 + 
15 
8 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 7 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Solution (2/3) 
When x(0) = (0, 0, 0, 0)t , we have 
x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t . 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 8 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Solution (2/3) 
When x(0) = (0, 0, 0, 0)t , we have 
x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t . Subsequent iterations give 
the values in the following table: 
k 0 1 2 3 4 5 
x(k) 
1 0.0000 0.6000 1.030 1.0065 1.0009 1.0001 
x(k) 
2 0.0000 2.3272 2.037 2.0036 2.0003 2.0000 
x(k) 
3 0.0000 −0.9873 −1.014 −1.0025 −1.0003 −1.0000 
x(k) 
4 0.0000 0.8789 0.984 0.9983 0.9999 1.0000 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 8 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Solution (3/3) 
Because 
kx(5) − x(4)k1 
kx(5)k1 
= 
0.0008 
2.000 = 4 × 10−4 
x(5) is accepted as a reasonable approximation to the solution. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 9 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Solution (3/3) 
Because 
kx(5) − x(4)k1 
kx(5)k1 
= 
0.0008 
2.000 = 4 × 10−4 
x(5) is accepted as a reasonable approximation to the solution. 
Note that, in an earlier example, Jacobi’s method required twice as 
many iterations for the same accuracy. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 9 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
Re-Writing the Equations 
To write the Gauss-Seidel method in matrix form, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 10 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
Re-Writing the Equations 
To write the Gauss-Seidel method in matrix form, multiply both sides of 
x(k) 
i = 
1 
aii 
2 
4− 
Xi−1 
j=1 
(aijx(k) 
j ) − 
Xn 
j=i+1 
(aijx(k−1) 
j ) + bi 
3 
5 
by aii and collect all kth iterate terms, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 10 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
Re-Writing the Equations 
To write the Gauss-Seidel method in matrix form, multiply both sides of 
x(k) 
i = 
1 
aii 
2 
4− 
Xi−1 
j=1 
(aijx(k) 
j ) − 
Xn 
j=i+1 
(aijx(k−1) 
j ) + bi 
3 
5 
by aii and collect all kth iterate terms, to give 
ai1x(k) 
1 + ai2x(k) 
2 + · · · + aiix(k) 
i = −ai,i+1x(k−1) 
i+1 − · · · − ainx(k−1) 
n + bi 
for each i = 1, 2, . . . , n. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 10 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
Re-Writing the Equations (Cont’d) 
Writing all n equations gives 
(k) 
1 = −a12x 
a11x 
(k−1) 
2 − a13x 
(k−1) 
3 − · · · − a1nx 
(k−1) 
n + b1 
(k) 
1 + a22x 
a21x 
(k) 
2 = −a23x 
(k−1) 
3 − · · · − a2nx 
(k−1) 
n + b2 
... 
an1x(k) 
1 + an2x(k) 
2 + · · · + annx(k) 
n = bn 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 11 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
Re-Writing the Equations (Cont’d) 
Writing all n equations gives 
(k) 
1 = −a12x 
a11x 
(k−1) 
2 − a13x 
(k−1) 
3 − · · · − a1nx 
(k−1) 
n + b1 
(k) 
1 + a22x 
a21x 
(k) 
2 = −a23x 
(k−1) 
3 − · · · − a2nx 
(k−1) 
n + b2 
... 
an1x(k) 
1 + an2x(k) 
2 + · · · + annx(k) 
n = bn 
With the definitions of D, L, and U given previously, we have the 
Gauss-Seidel method represented by 
(D − L)x(k) = Ux(k−1) + b 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 11 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
(D − L)x(k) = Ux(k−1) + b 
Re-Writing the Equations (Cont’d) 
Solving for x(k) finally gives 
x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 12 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
(D − L)x(k) = Ux(k−1) + b 
Re-Writing the Equations (Cont’d) 
Solving for x(k) finally gives 
x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . 
Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel 
technique the form 
x(k) = Tgx(k−1) + cg 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 12 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
(D − L)x(k) = Ux(k−1) + b 
Re-Writing the Equations (Cont’d) 
Solving for x(k) finally gives 
x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . 
Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel 
technique the form 
x(k) = Tgx(k−1) + cg 
For the lower-triangular matrix D − L to be nonsingular, it is necessary 
and sufficient that aii6= 0, for each i = 1, 2, . . . , n. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 12 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
4 Application to the Jacobi  Gauss-Seidel Methods 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 13 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (1/2) 
To solve Ax = b given an initial approximation x(0): 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 14 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (1/2) 
To solve Ax = b given an initial approximation x(0): 
INPUT the number of equations and unknowns n; 
the entries aij , 1  i, j  n of the matrix A; 
the entries bi , 1  i  n of b; 
the entries XOi , 1  i  n of XO = x(0); 
tolerance TOL; 
maximum number of iterations N. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 14 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (1/2) 
To solve Ax = b given an initial approximation x(0): 
INPUT the number of equations and unknowns n; 
the entries aij , 1  i, j  n of the matrix A; 
the entries bi , 1  i  n of b; 
the entries XOi , 1  i  n of XO = x(0); 
tolerance TOL; 
maximum number of iterations N. 
OUTPUT the approximate solution x1, . . . , xn or a message 
that the number of iterations was exceeded. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 14 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Step 3 For i = 1, . . . , n 
set xi = 
1 
aii 
2 
4− 
Xi−1 
j=1 
aijxj − 
Xn 
j=i+1 
aijXOj + bi 
3 
5 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Step 3 For i = 1, . . . , n 
set xi = 
1 
aii 
2 
4− 
Xi−1 
j=1 
aijxj − 
Xn 
j=i+1 
aijXOj + bi 
3 
5 
Step 4 If ||x − XO||  TOL then OUTPUT (x1, . . . , xn) 
(The procedure was successful) 
STOP 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Step 3 For i = 1, . . . , n 
set xi = 
1 
aii 
2 
4− 
Xi−1 
j=1 
aijxj − 
Xn 
j=i+1 
aijXOj + bi 
3 
5 
Step 4 If ||x − XO||  TOL then OUTPUT (x1, . . . , xn) 
(The procedure was successful) 
STOP 
Step 5 Set k = k + 1 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Step 3 For i = 1, . . . , n 
set xi = 
1 
aii 
2 
4− 
Xi−1 
j=1 
aijxj − 
Xn 
j=i+1 
aijXOj + bi 
3 
5 
Step 4 If ||x − XO||  TOL then OUTPUT (x1, . . . , xn) 
(The procedure was successful) 
STOP 
Step 5 Set k = k + 1 
Step 6 For i = 1, . . . , n set XOi = xi 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Step 3 For i = 1, . . . , n 
set xi = 
1 
aii 
2 
4− 
Xi−1 
j=1 
aijxj − 
Xn 
j=i+1 
aijXOj + bi 
3 
5 
Step 4 If ||x − XO||  TOL then OUTPUT (x1, . . . , xn) 
(The procedure was successful) 
STOP 
Step 5 Set k = k + 1 
Step 6 For i = 1, . . . , n set XOi = xi 
Step 7 OUTPUT (‘Maximum number of iterations exceeded’) 
STOP (The procedure was unsuccessful) 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm 
Comments on the Algorithm 
Step 3 of the algorithm requires that aii6= 0, for each 
i = 1, 2, . . . , n. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 16 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm 
Comments on the Algorithm 
Step 3 of the algorithm requires that aii6= 0, for each 
i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is 
nonsingular, a reordering of the equations can be performed so 
that no aii = 0. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 16 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm 
Comments on the Algorithm 
Step 3 of the algorithm requires that aii6= 0, for each 
i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is 
nonsingular, a reordering of the equations can be performed so 
that no aii = 0. 
To speed convergence, the equations should be arranged so that 
aii is as large as possible. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 16 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm 
Comments on the Algorithm 
Step 3 of the algorithm requires that aii6= 0, for each 
i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is 
nonsingular, a reordering of the equations can be performed so 
that no aii = 0. 
To speed convergence, the equations should be arranged so that 
aii is as large as possible. 
Another possible stopping criterion in Step 4 is to iterate until 
kx(k) − x(k−1)k 
kx(k)k 
is smaller than some prescribed tolerance. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 16 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm 
Comments on the Algorithm 
Step 3 of the algorithm requires that aii6= 0, for each 
i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is 
nonsingular, a reordering of the equations can be performed so 
that no aii = 0. 
To speed convergence, the equations should be arranged so that 
aii is as large as possible. 
Another possible stopping criterion in Step 4 is to iterate until 
kx(k) − x(k−1)k 
kx(k)k 
is smaller than some prescribed tolerance. 
For this purpose, any convenient norm can be used, the usual 
being the l1 norm. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 16 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
4 Application to the Jacobi  Gauss-Seidel Methods 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 17 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Introduction 
To study the convergence of general iteration techniques, we need 
to analyze the formula 
x(k) = Tx(k−1) + c, for each k = 1, 2, . . . 
where x(0) is arbitrary. 
The following lemma and the earlier Theorem on convergent 
matrices provide the key for this study. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 18 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Lemma 
If the spectral radius satisfies (T)  1, then (I − T)−1 exists, and 
(I − T)−1 = I + T + T2 + · · · = 
1X 
j=0 
Tj 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 19 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Lemma 
If the spectral radius satisfies (T)  1, then (I − T)−1 exists, and 
(I − T)−1 = I + T + T2 + · · · = 
1X 
j=0 
Tj 
Proof (1/2) 
Because Tx = x is true precisely when (I − T)x = (1 − )x, we 
have  as an eigenvalue of T precisely when 1 −  is an 
eigenvalue of I − T. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 19 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Lemma 
If the spectral radius satisfies (T)  1, then (I − T)−1 exists, and 
(I − T)−1 = I + T + T2 + · · · = 
1X 
j=0 
Tj 
Proof (1/2) 
Because Tx = x is true precisely when (I − T)x = (1 − )x, we 
have  as an eigenvalue of T precisely when 1 −  is an 
eigenvalue of I − T. 
But ||  (T)  1, so  = 1 is not an eigenvalue of T, and 0 
cannot be an eigenvalue of I − T. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 19 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Lemma 
If the spectral radius satisfies (T)  1, then (I − T)−1 exists, and 
(I − T)−1 = I + T + T2 + · · · = 
1X 
j=0 
Tj 
Proof (1/2) 
Because Tx = x is true precisely when (I − T)x = (1 − )x, we 
have  as an eigenvalue of T precisely when 1 −  is an 
eigenvalue of I − T. 
But ||  (T)  1, so  = 1 is not an eigenvalue of T, and 0 
cannot be an eigenvalue of I − T. 
Hence, (I − T)−1 exists. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 19 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/2) 
Let 
Sm = I + T + T2 + · · · + Tm 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 20 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/2) 
Let 
Sm = I + T + T2 + · · · + Tm 
Then 
(I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 20 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/2) 
Let 
Sm = I + T + T2 + · · · + Tm 
Then 
(I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 
and, since T is convergent, the Theorem on convergent matrices 
implies that 
lim 
m!1 
(I − T)Sm = lim 
(I − Tm+1) = I 
m!1 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 20 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/2) 
Let 
Sm = I + T + T2 + · · · + Tm 
Then 
(I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 
and, since T is convergent, the Theorem on convergent matrices 
implies that 
lim 
m!1 
(I − T)Sm = lim 
(I − Tm+1) = I 
m!1 
Thus, (I − T)−1 = limm!1 Sm = I + T + T2 + · · · = 
P1j 
=0 Tj 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 20 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Theorem 
For any x(0) 2 IRn, the sequence {x(k)}1k 
=0 defined by 
x(k) = Tx(k−1) + c, for each k  1 
converges to the unique solution of 
x = Tx + c 
if and only if (T)  1. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 21 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. Then, 
x(k) = Tx(k−1) + c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. Then, 
x(k) = Tx(k−1) + c 
= T(Tx(k−2) + c) + c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. Then, 
x(k) = Tx(k−1) + c 
= T(Tx(k−2) + c) + c 
= T2x(k−2) + (T + I)c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. Then, 
x(k) = Tx(k−1) + c 
= T(Tx(k−2) + c) + c 
= T2x(k−2) + (T + I)c 
... 
= Tkx(0) + (Tk−1 + · · · + T + I)c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. Then, 
x(k) = Tx(k−1) + c 
= T(Tx(k−2) + c) + c 
= T2x(k−2) + (T + I)c 
... 
= Tkx(0) + (Tk−1 + · · · + T + I)c 
Because (T)  1, the Theorem on convergent matrices implies that T 
is convergent, and 
lim 
k!1 
Tkx(0) = 0 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/5) 
The previous lemma implies that 
lim 
k!1 
x(k) = lim 
k!1 
Tkx(0) + 
0 
@ 
1X 
j=0 
Tj 
1 
Ac 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 23 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/5) 
The previous lemma implies that 
lim 
k!1 
x(k) = lim 
k!1 
Tkx(0) + 
0 
@ 
1X 
j=0 
Tj 
1 
Ac 
= 0 + (I − T)−1c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 23 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/5) 
The previous lemma implies that 
lim 
k!1 
x(k) = lim 
k!1 
Tkx(0) + 
0 
@ 
1X 
j=0 
Tj 
1 
Ac 
= 0 + (I − T)−1c 
= (I − T)−1c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 23 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/5) 
The previous lemma implies that 
lim 
k!1 
x(k) = lim 
k!1 
Tkx(0) + 
0 
@ 
1X 
j=0 
Tj 
1 
Ac 
= 0 + (I − T)−1c 
= (I − T)−1c 
Hence, the sequence {x(k)} converges to the vector x  (I − T)−1c 
and x = Tx + c. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 23 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (3/5) 
To prove the converse, we will show that for any z 2 IRn, we have 
limk!1 Tkz = 0. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 24 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (3/5) 
To prove the converse, we will show that for any z 2 IRn, we have 
limk!1 Tkz = 0. 
Again, by the theorem on convergent matrices, this is equivalent 
to (T)  1. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 24 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (3/5) 
To prove the converse, we will show that for any z 2 IRn, we have 
limk!1 Tkz = 0. 
Again, by the theorem on convergent matrices, this is equivalent 
to (T)  1. 
Let z be an arbitrary vector, and x be the unique solution to 
x = Tx + c. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 24 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (3/5) 
To prove the converse, we will show that for any z 2 IRn, we have 
limk!1 Tkz = 0. 
Again, by the theorem on convergent matrices, this is equivalent 
to (T)  1. 
Let z be an arbitrary vector, and x be the unique solution to 
x = Tx + c. 
Define x(0) = x − z, and, for k  1, x(k) = Tx(k−1) + c. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 24 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (3/5) 
To prove the converse, we will show that for any z 2 IRn, we have 
limk!1 Tkz = 0. 
Again, by the theorem on convergent matrices, this is equivalent 
to (T)  1. 
Let z be an arbitrary vector, and x be the unique solution to 
x = Tx + c. 
Define x(0) = x − z, and, for k  1, x(k) = Tx(k−1) + c. 
Then {x(k)} converges to x. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 24 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
so 
x − x(k) = T 
 
x − x(k−1) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
so 
x − x(k) = T 
 
x − x(k−1) 
 
= T2 
 
x − x(k−2) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
so 
x − x(k) = T 
 
x − x(k−1) 
 
= T2 
 
x − x(k−2) 
 
= 
... 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
so 
x − x(k) = T 
 
x − x(k−1) 
 
= T2 
 
x − x(k−2) 
 
= 
... 
= Tk 
 
x − x(0) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
so 
x − x(k) = T 
 
x − x(k−1) 
 
= T2 
 
x − x(k−2) 
 
= 
... 
= Tk 
 
x − x(0) 
 
= Tkz 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (5/5) 
Hence 
lim 
k!1 
Tkz = lim 
k!1 
Tk 
 
x − x(0) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 26 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (5/5) 
Hence 
lim 
k!1 
Tkz = lim 
k!1 
Tk 
 
x − x(0) 
 
= lim 
k!1 
 
x − x(k) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 26 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (5/5) 
Hence 
lim 
k!1 
Tkz = lim 
k!1 
Tk 
 
x − x(0) 
 
= lim 
k!1 
 
x − x(k) 
 
= 0 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 26 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (5/5) 
Hence 
lim 
k!1 
Tkz = lim 
k!1 
Tk 
 
x − x(0) 
 
= lim 
k!1 
 
x − x(k) 
 
= 0 
But z 2 IRn was arbitrary, so by the theorem on convergent 
matrices, T is convergent and (T)  1. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 26 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Corollary 
kTk  1 for any natural matrix norm and c is a given vector, then the 
sequence {x(k)}1k 
=0 defined by 
x(k) = Tx(k−1) + c 
converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and 
the following error bounds hold: 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 27 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Corollary 
kTk  1 for any natural matrix norm and c is a given vector, then the 
sequence {x(k)}1k 
=0 defined by 
x(k) = Tx(k−1) + c 
converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and 
the following error bounds hold: 
(i) kx − x(k)k  kTkkkx(0) − xk 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 27 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Corollary 
kTk  1 for any natural matrix norm and c is a given vector, then the 
sequence {x(k)}1k 
=0 defined by 
x(k) = Tx(k−1) + c 
converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and 
the following error bounds hold: 
(i) kx − x(k)k  kTkkkx(0) − xk 
(ii) kx − x(k)k  kTkk 
1−kTkkx(1) − x(0)k 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 27 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Corollary 
kTk  1 for any natural matrix norm and c is a given vector, then the 
sequence {x(k)}1k 
=0 defined by 
x(k) = Tx(k−1) + c 
converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and 
the following error bounds hold: 
(i) kx − x(k)k  kTkkkx(0) − xk 
(ii) kx − x(k)k  kTkk 
1−kTkkx(1) − x(0)k 
The proof of the following corollary is similar to that for the Corollary to 
the Fixed-Point Theorem for a single nonlinear equation. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 27 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
4 Application to the Jacobi  Gauss-Seidel Methods 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 28 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Using the Matrix Formulations 
We have seen that the Jacobi and Gauss-Seidel iterative techniques 
can be written 
x(k) = Tjx(k−1) + cj and 
x(k) = Tgx(k−1) + cg 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 29 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Using the Matrix Formulations 
We have seen that the Jacobi and Gauss-Seidel iterative techniques 
can be written 
x(k) = Tjx(k−1) + cj and 
x(k) = Tgx(k−1) + cg 
using the matrices 
Tj = D−1(L + U) and Tg = (D − L)−1U 
respectively. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 29 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Using the Matrix Formulations 
We have seen that the Jacobi and Gauss-Seidel iterative techniques 
can be written 
x(k) = Tjx(k−1) + cj and 
x(k) = Tgx(k−1) + cg 
using the matrices 
Tj = D−1(L + U) and Tg = (D − L)−1U 
respectively. If (Tj ) or (Tg) is less than 1, then the corresponding 
sequence {x(k)}1k 
=0 will converge to the solution x of Ax = b. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 29 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Example 
For example, the Jacobi method has 
x(k) = D−1(L + U)x(k−1) + D−1b, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 30 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Example 
For example, the Jacobi method has 
x(k) = D−1(L + U)x(k−1) + D−1b, 
and, if {x(k)}1k 
=0 converges to x, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 30 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Example 
For example, the Jacobi method has 
x(k) = D−1(L + U)x(k−1) + D−1b, 
and, if {x(k)}1k 
=0 converges to x, then 
x = D−1(L + U)x + D−1b 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 30 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Example 
For example, the Jacobi method has 
x(k) = D−1(L + U)x(k−1) + D−1b, 
and, if {x(k)}1k 
=0 converges to x, then 
x = D−1(L + U)x + D−1b 
This implies that 
Dx = (L + U)x + b and (D − L − U)x = b 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 30 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Example 
For example, the Jacobi method has 
x(k) = D−1(L + U)x(k−1) + D−1b, 
and, if {x(k)}1k 
=0 converges to x, then 
x = D−1(L + U)x + D−1b 
This implies that 
Dx = (L + U)x + b and (D − L − U)x = b 
Since D − L − U = A, the solution x satisfies Ax = b. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 30 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
The following are easily verified sufficiency conditions for convergence 
of the Jacobi and Gauss-Seidel methods. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 31 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
The following are easily verified sufficiency conditions for convergence 
of the Jacobi and Gauss-Seidel methods. 
Theorem 
If A is strictly diagonally dominant, then for any choice of x(0), both the 
Jacobi and Gauss-Seidel methods give sequences {x(k)}1k 
=0 that 
converge to the unique solution of Ax = b. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 31 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Is Gauss-Seidel better than Jacobi? 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 32 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Is Gauss-Seidel better than Jacobi? 
No general results exist to tell which of the two techniques, Jacobi 
or Gauss-Seidel, will be most successful for an arbitrary linear 
system. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 32 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Is Gauss-Seidel better than Jacobi? 
No general results exist to tell which of the two techniques, Jacobi 
or Gauss-Seidel, will be most successful for an arbitrary linear 
system. 
In special cases, however, the answer is known, as is 
demonstrated in the following theorem. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 32 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
(Stein-Rosenberg) Theorem 
If aij  0, for each i6= j and aii  0, for each i = 1, 2, . . . , n, then one 
and only one of the following statements holds: 
(i) 0  (Tg)  (Tj )  1 
(ii) 1  (Tj )  (Tg) 
(iii) (Tj ) = (Tg) = 0 
(iv) (Tj ) = (Tg) = 1 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 33 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
(Stein-Rosenberg) Theorem 
If aij  0, for each i6= j and aii  0, for each i = 1, 2, . . . , n, then one 
and only one of the following statements holds: 
(i) 0  (Tg)  (Tj )  1 
(ii) 1  (Tj )  (Tg) 
(iii) (Tj ) = (Tg) = 0 
(iv) (Tj ) = (Tg) = 1 
For the proof of this result, see pp. 120–127. of 
Young, D. M., Iterative solution of large linear systems, Academic 
Press, New York, 1971, 570 pp. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 33 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Two Comments on the Thoerem 
For the special case described in the theorem, we see from part 
(i), namely 
0  (Tg)  (Tj )  1 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 34 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Two Comments on the Thoerem 
For the special case described in the theorem, we see from part 
(i), namely 
0  (Tg)  (Tj )  1 
that when one method gives convergence, then both give 
convergence, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 34 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Two Comments on the Thoerem 
For the special case described in the theorem, we see from part 
(i), namely 
0  (Tg)  (Tj )  1 
that when one method gives convergence, then both give 
convergence, and the Gauss-Seidel method converges faster than 
the Jacobi method. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 34 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Two Comments on the Thoerem 
For the special case described in the theorem, we see from part 
(i), namely 
0  (Tg)  (Tj )  1 
that when one method gives convergence, then both give 
convergence, and the Gauss-Seidel method converges faster than 
the Jacobi method. 
Part (ii), namely 
1  (Tj )  (Tg) 
indicates that when one method diverges then both diverge, and 
the divergence is more pronounced for the Gauss-Seidel method. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 34 / 38
Questions?
Eigenvalues  Eigenvectors: Convergent Matrices 
Theorem 
The following statements are equivalent. 
(i) A is a convergent matrix. 
(ii) limn!1 kAnk = 0, for some natural norm. 
(iii) limn!1 kAnk = 0, for all natural norms. 
(iv) (A)  1. 
(v) limn!1 Anx = 0, for every x. 
The proof of this theorem can be found on p. 14 of Issacson, E. and H. 
B. Keller, Analysis of Numerical Methods, John Wiley  Sons, New 
York, 1966, 541 pp. 
Return to General Iteration Methods — Introduction 
Return to General Iteration Methods — Lemma 
Return to General Iteration Methods — Theorem
Fixed-Point Theorem 
Let g 2 C[a, b] be such that g(x) 2 [a, b], for all x in [a, b]. Suppose, in 
addition, that g0 exists on (a, b) and that a constant 0  k  1 exists 
with 
|g0(x)|  k, for all x 2 (a, b). 
Then for any number p0 in [a, b], the sequence defined by 
pn = g(pn−1), n  1 
converges to the unique fixed point p in [a, b]. 
Return to the Corrollary to the Fixed-Point Theorem
Functional (Fixed-Point) Iteration 
Corrollary to the Fixed-Point Convergence Result 
If g satisfies the hypothesis of the Fixed-Point Theorem then 
|pn − p|  
kn 
1 − k 
|p1 − p0| 
Return to the Corollary to the Convergence Theorem for General Iterative Methods

More Related Content

PPTX
Deret Taylor dan McLaurin
PPT
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)
DOCX
DERET PANGKAT & METODE DERET PANGKAT
DOCX
Penyelesaian sistem persamaan linear dengan
PPTX
Penerapan Integral Tentu
PPTX
Contoh soal dan penyelesaian metode biseksi
PPTX
Sistem Persamaan Linear (SPL) Aljabar Linear Elementer
PDF
metode euler
Deret Taylor dan McLaurin
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)
DERET PANGKAT & METODE DERET PANGKAT
Penyelesaian sistem persamaan linear dengan
Penerapan Integral Tentu
Contoh soal dan penyelesaian metode biseksi
Sistem Persamaan Linear (SPL) Aljabar Linear Elementer
metode euler

What's hot (20)

DOCX
Persamaan Nonhomogen ; Metode Koefisien Tak ditentukan
DOCX
Transformasi Peubah Acak dan Distribusinya
PPTX
Ruang Hasil kali Dalam ( Aljabar Linear Elementer )
PDF
Persamaan diferensial
PDF
Iterasi gauss seidel
PPT
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
PPS
Bab 9. Teknik Pengintegralan ( Kalkulus 1 )
PPTX
integral fungsi kompleks
PDF
5 gradien
PPTX
Contoh Soal dan Penyelesaian Metode Biseksi Menggunakan Excel
PDF
Fsa dengan output
PDF
Analisis Algoritma - Strategi Algoritma Dynamic Programming
PPS
Fungsi Dua Peubah ( Kalkulus 2 )
PPTX
Regula falsi
PPT
Integral Garis
PPS
Bab 3. Limit dan Kekontinuan ( Kalkulus 1 )
PPTX
Turunan numerik
PDF
Determinan dan invers matriks
PPT
Graf (bagian 1)
DOCX
Makalah interpolasi kelompok 2
Persamaan Nonhomogen ; Metode Koefisien Tak ditentukan
Transformasi Peubah Acak dan Distribusinya
Ruang Hasil kali Dalam ( Aljabar Linear Elementer )
Persamaan diferensial
Iterasi gauss seidel
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
Bab 9. Teknik Pengintegralan ( Kalkulus 1 )
integral fungsi kompleks
5 gradien
Contoh Soal dan Penyelesaian Metode Biseksi Menggunakan Excel
Fsa dengan output
Analisis Algoritma - Strategi Algoritma Dynamic Programming
Fungsi Dua Peubah ( Kalkulus 2 )
Regula falsi
Integral Garis
Bab 3. Limit dan Kekontinuan ( Kalkulus 1 )
Turunan numerik
Determinan dan invers matriks
Graf (bagian 1)
Makalah interpolasi kelompok 2
Ad

Similar to metode iterasi Gauss seidel (20)

PPT
NUMERICAL METHODS -Iterative methods(indirect method)
PPT
Gauss Seidal method.ppt
PPT
Linear Systems Gauss Seidel
PDF
The Jacobi and Gauss-Seidel Iterative Methods.pdf
PPT
Amissions in India
PDF
Direct and indirect methods
PPT
Admission in india 2015
PPT
Top schools in faridabad
PPT
Metodos interactivos
PPT
Gauss sediel
PPTX
Interactives Methods
 
PPTX
Iterative method for linear systems and.
DOCX
Metodos jacobi y gauss seidel
DOCX
Metodos jacobi y gauss seidel
PPTX
Iterativos Methods
PPTX
Iterativos methods
PPTX
Solution of equations for methods iterativos
PPTX
Solution of equations for methods iterativos
PPTX
Chapter v
NUMERICAL METHODS -Iterative methods(indirect method)
Gauss Seidal method.ppt
Linear Systems Gauss Seidel
The Jacobi and Gauss-Seidel Iterative Methods.pdf
Amissions in India
Direct and indirect methods
Admission in india 2015
Top schools in faridabad
Metodos interactivos
Gauss sediel
Interactives Methods
 
Iterative method for linear systems and.
Metodos jacobi y gauss seidel
Metodos jacobi y gauss seidel
Iterativos Methods
Iterativos methods
Solution of equations for methods iterativos
Solution of equations for methods iterativos
Chapter v
Ad

Recently uploaded (20)

PPTX
Feature types and data preprocessing steps
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
introduction to high performance computing
PPTX
communication and presentation skills 01
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
Soil Improvement Techniques Note - Rabbi
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
Feature types and data preprocessing steps
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
introduction to high performance computing
communication and presentation skills 01
Exploratory_Data_Analysis_Fundamentals.pdf
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
distributed database system" (DDBS) is often used to refer to both the distri...
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Soil Improvement Techniques Note - Rabbi
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
"Array and Linked List in Data Structures with Types, Operations, Implementat...
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Information Storage and Retrieval Techniques Unit III
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...

metode iterasi Gauss seidel

  • 1. Iterative Techniques in Matrix Algebra Jacobi & Gauss-Seidel Iterative Techniques II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole, Cengage Learning
  • 2. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  • 3. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  • 4. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  • 5. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi & Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  • 6. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi & Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 3 / 38
  • 7. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Looking at the Jacobi Method A possible improvement to the Jacobi Algorithm can be seen by re-considering x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 4 / 38
  • 8. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Looking at the Jacobi Method A possible improvement to the Jacobi Algorithm can be seen by re-considering x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n The components of x(k−1) are used to compute all the components x(k) i of x(k). Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 4 / 38
  • 9. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Looking at the Jacobi Method A possible improvement to the Jacobi Algorithm can be seen by re-considering x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n The components of x(k−1) are used to compute all the components x(k) i of x(k). But, for i 1, the components x(k) 1 , . . . , x(k) i−1 of x(k) have already been computed and are expected to be better approximations to the actual solutions x1, . . . , xi−1 than are x(k−1) 1 , . . . , x(k−1) i−1 . Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 4 / 38
  • 10. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Instead of using x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n it seems reasonable, then, to compute x(k) i using these most recently calculated values. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 5 / 38
  • 11. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Instead of using x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n it seems reasonable, then, to compute x(k) i using these most recently calculated values. The Gauss-Seidel Iterative Technique x(k) i = 1 aii 2 4− Xi−1 j=1 (aijx(k) j ) − Xn j=i+1 (aijx(k−1) j ) + bi 3 5 for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 5 / 38
  • 12. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  • 13. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , starting with x = (0, 0, 0, 0)t Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  • 14. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , starting with x = (0, 0, 0, 0)t and iterating until kx(k) − x(k−1)k1 kx(k)k1 10−3 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  • 15. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , starting with x = (0, 0, 0, 0)t and iterating until kx(k) − x(k−1)k1 kx(k)k1 10−3 Note: The solution x = (1, 2, −1, 1)t was approximated by Jacobi’s method in an earlier example. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  • 16. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (1/3) For the Gauss-Seidel method we write the system, for each k = 1, 2, . . . as x(k) 1 = 1 10 x(k−1) 2 − 1 5 x(k−1) 3 + 3 5 x(k) 2 = 1 11 x(k) 1 + 1 11 x(k−1) 3 − 3 11 x(k−1) 4 + 25 11 x(k) 3 = − 1 5 x(k) 1 + 1 10 x(k) 2 + 1 10 x(k−1) 4 − 11 10 x(k) 4 = − 3 8 x(k) 2 + 1 8 x(k) 3 + 15 8 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 7 / 38
  • 17. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (2/3) When x(0) = (0, 0, 0, 0)t , we have x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t . Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 8 / 38
  • 18. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (2/3) When x(0) = (0, 0, 0, 0)t , we have x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t . Subsequent iterations give the values in the following table: k 0 1 2 3 4 5 x(k) 1 0.0000 0.6000 1.030 1.0065 1.0009 1.0001 x(k) 2 0.0000 2.3272 2.037 2.0036 2.0003 2.0000 x(k) 3 0.0000 −0.9873 −1.014 −1.0025 −1.0003 −1.0000 x(k) 4 0.0000 0.8789 0.984 0.9983 0.9999 1.0000 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 8 / 38
  • 19. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (3/3) Because kx(5) − x(4)k1 kx(5)k1 = 0.0008 2.000 = 4 × 10−4 x(5) is accepted as a reasonable approximation to the solution. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 9 / 38
  • 20. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (3/3) Because kx(5) − x(4)k1 kx(5)k1 = 0.0008 2.000 = 4 × 10−4 x(5) is accepted as a reasonable approximation to the solution. Note that, in an earlier example, Jacobi’s method required twice as many iterations for the same accuracy. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 9 / 38
  • 21. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations To write the Gauss-Seidel method in matrix form, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 10 / 38
  • 22. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations To write the Gauss-Seidel method in matrix form, multiply both sides of x(k) i = 1 aii 2 4− Xi−1 j=1 (aijx(k) j ) − Xn j=i+1 (aijx(k−1) j ) + bi 3 5 by aii and collect all kth iterate terms, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 10 / 38
  • 23. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations To write the Gauss-Seidel method in matrix form, multiply both sides of x(k) i = 1 aii 2 4− Xi−1 j=1 (aijx(k) j ) − Xn j=i+1 (aijx(k−1) j ) + bi 3 5 by aii and collect all kth iterate terms, to give ai1x(k) 1 + ai2x(k) 2 + · · · + aiix(k) i = −ai,i+1x(k−1) i+1 − · · · − ainx(k−1) n + bi for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 10 / 38
  • 24. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations (Cont’d) Writing all n equations gives (k) 1 = −a12x a11x (k−1) 2 − a13x (k−1) 3 − · · · − a1nx (k−1) n + b1 (k) 1 + a22x a21x (k) 2 = −a23x (k−1) 3 − · · · − a2nx (k−1) n + b2 ... an1x(k) 1 + an2x(k) 2 + · · · + annx(k) n = bn Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 11 / 38
  • 25. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations (Cont’d) Writing all n equations gives (k) 1 = −a12x a11x (k−1) 2 − a13x (k−1) 3 − · · · − a1nx (k−1) n + b1 (k) 1 + a22x a21x (k) 2 = −a23x (k−1) 3 − · · · − a2nx (k−1) n + b2 ... an1x(k) 1 + an2x(k) 2 + · · · + annx(k) n = bn With the definitions of D, L, and U given previously, we have the Gauss-Seidel method represented by (D − L)x(k) = Ux(k−1) + b Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 11 / 38
  • 26. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form (D − L)x(k) = Ux(k−1) + b Re-Writing the Equations (Cont’d) Solving for x(k) finally gives x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 12 / 38
  • 27. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form (D − L)x(k) = Ux(k−1) + b Re-Writing the Equations (Cont’d) Solving for x(k) finally gives x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel technique the form x(k) = Tgx(k−1) + cg Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 12 / 38
  • 28. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form (D − L)x(k) = Ux(k−1) + b Re-Writing the Equations (Cont’d) Solving for x(k) finally gives x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel technique the form x(k) = Tgx(k−1) + cg For the lower-triangular matrix D − L to be nonsingular, it is necessary and sufficient that aii6= 0, for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 12 / 38
  • 29. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 13 / 38
  • 30. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (1/2) To solve Ax = b given an initial approximation x(0): Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 14 / 38
  • 31. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (1/2) To solve Ax = b given an initial approximation x(0): INPUT the number of equations and unknowns n; the entries aij , 1 i, j n of the matrix A; the entries bi , 1 i n of b; the entries XOi , 1 i n of XO = x(0); tolerance TOL; maximum number of iterations N. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 14 / 38
  • 32. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (1/2) To solve Ax = b given an initial approximation x(0): INPUT the number of equations and unknowns n; the entries aij , 1 i, j n of the matrix A; the entries bi , 1 i n of b; the entries XOi , 1 i n of XO = x(0); tolerance TOL; maximum number of iterations N. OUTPUT the approximate solution x1, . . . , xn or a message that the number of iterations was exceeded. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 14 / 38
  • 33. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 34. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 35. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 36. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Step 5 Set k = k + 1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 37. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Step 5 Set k = k + 1 Step 6 For i = 1, . . . , n set XOi = xi Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 38. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Step 5 Set k = k + 1 Step 6 For i = 1, . . . , n set XOi = xi Step 7 OUTPUT (‘Maximum number of iterations exceeded’) STOP (The procedure was unsuccessful) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 39. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  • 40. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  • 41. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. To speed convergence, the equations should be arranged so that aii is as large as possible. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  • 42. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. To speed convergence, the equations should be arranged so that aii is as large as possible. Another possible stopping criterion in Step 4 is to iterate until kx(k) − x(k−1)k kx(k)k is smaller than some prescribed tolerance. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  • 43. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. To speed convergence, the equations should be arranged so that aii is as large as possible. Another possible stopping criterion in Step 4 is to iterate until kx(k) − x(k−1)k kx(k)k is smaller than some prescribed tolerance. For this purpose, any convenient norm can be used, the usual being the l1 norm. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  • 44. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 17 / 38
  • 45. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Introduction To study the convergence of general iteration techniques, we need to analyze the formula x(k) = Tx(k−1) + c, for each k = 1, 2, . . . where x(0) is arbitrary. The following lemma and the earlier Theorem on convergent matrices provide the key for this study. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 18 / 38
  • 46. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  • 47. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Proof (1/2) Because Tx = x is true precisely when (I − T)x = (1 − )x, we have as an eigenvalue of T precisely when 1 − is an eigenvalue of I − T. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  • 48. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Proof (1/2) Because Tx = x is true precisely when (I − T)x = (1 − )x, we have as an eigenvalue of T precisely when 1 − is an eigenvalue of I − T. But || (T) 1, so = 1 is not an eigenvalue of T, and 0 cannot be an eigenvalue of I − T. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  • 49. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Proof (1/2) Because Tx = x is true precisely when (I − T)x = (1 − )x, we have as an eigenvalue of T precisely when 1 − is an eigenvalue of I − T. But || (T) 1, so = 1 is not an eigenvalue of T, and 0 cannot be an eigenvalue of I − T. Hence, (I − T)−1 exists. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  • 50. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  • 51. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Then (I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  • 52. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Then (I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 and, since T is convergent, the Theorem on convergent matrices implies that lim m!1 (I − T)Sm = lim (I − Tm+1) = I m!1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  • 53. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Then (I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 and, since T is convergent, the Theorem on convergent matrices implies that lim m!1 (I − T)Sm = lim (I − Tm+1) = I m!1 Thus, (I − T)−1 = limm!1 Sm = I + T + T2 + · · · = P1j =0 Tj Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  • 54. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Theorem For any x(0) 2 IRn, the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c, for each k 1 converges to the unique solution of x = Tx + c if and only if (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 21 / 38
  • 55. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 56. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 57. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 58. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c = T2x(k−2) + (T + I)c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 59. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c = T2x(k−2) + (T + I)c ... = Tkx(0) + (Tk−1 + · · · + T + I)c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 60. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c = T2x(k−2) + (T + I)c ... = Tkx(0) + (Tk−1 + · · · + T + I)c Because (T) 1, the Theorem on convergent matrices implies that T is convergent, and lim k!1 Tkx(0) = 0 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 61. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  • 62. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac = 0 + (I − T)−1c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  • 63. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac = 0 + (I − T)−1c = (I − T)−1c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  • 64. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac = 0 + (I − T)−1c = (I − T)−1c Hence, the sequence {x(k)} converges to the vector x (I − T)−1c and x = Tx + c. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  • 65. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  • 66. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  • 67. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  • 68. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Define x(0) = x − z, and, for k 1, x(k) = Tx(k−1) + c. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  • 69. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Define x(0) = x − z, and, for k 1, x(k) = Tx(k−1) + c. Then {x(k)} converges to x. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  • 70. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 71. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 72. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 73. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) = ... Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 74. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) = ... = Tk x − x(0) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 75. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) = ... = Tk x − x(0) = Tkz Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 76. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  • 77. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) = lim k!1 x − x(k) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  • 78. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) = lim k!1 x − x(k) = 0 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  • 79. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) = lim k!1 x − x(k) = 0 But z 2 IRn was arbitrary, so by the theorem on convergent matrices, T is convergent and (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  • 80. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  • 81. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: (i) kx − x(k)k kTkkkx(0) − xk Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  • 82. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: (i) kx − x(k)k kTkkkx(0) − xk (ii) kx − x(k)k kTkk 1−kTkkx(1) − x(0)k Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  • 83. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: (i) kx − x(k)k kTkkkx(0) − xk (ii) kx − x(k)k kTkk 1−kTkkx(1) − x(0)k The proof of the following corollary is similar to that for the Corollary to the Fixed-Point Theorem for a single nonlinear equation. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  • 84. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 28 / 38
  • 85. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Using the Matrix Formulations We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written x(k) = Tjx(k−1) + cj and x(k) = Tgx(k−1) + cg Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 29 / 38
  • 86. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Using the Matrix Formulations We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written x(k) = Tjx(k−1) + cj and x(k) = Tgx(k−1) + cg using the matrices Tj = D−1(L + U) and Tg = (D − L)−1U respectively. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 29 / 38
  • 87. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Using the Matrix Formulations We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written x(k) = Tjx(k−1) + cj and x(k) = Tgx(k−1) + cg using the matrices Tj = D−1(L + U) and Tg = (D − L)−1U respectively. If (Tj ) or (Tg) is less than 1, then the corresponding sequence {x(k)}1k =0 will converge to the solution x of Ax = b. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 29 / 38
  • 88. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  • 89. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  • 90. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, then x = D−1(L + U)x + D−1b Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  • 91. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, then x = D−1(L + U)x + D−1b This implies that Dx = (L + U)x + b and (D − L − U)x = b Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  • 92. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, then x = D−1(L + U)x + D−1b This implies that Dx = (L + U)x + b and (D − L − U)x = b Since D − L − U = A, the solution x satisfies Ax = b. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  • 93. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods The following are easily verified sufficiency conditions for convergence of the Jacobi and Gauss-Seidel methods. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 31 / 38
  • 94. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods The following are easily verified sufficiency conditions for convergence of the Jacobi and Gauss-Seidel methods. Theorem If A is strictly diagonally dominant, then for any choice of x(0), both the Jacobi and Gauss-Seidel methods give sequences {x(k)}1k =0 that converge to the unique solution of Ax = b. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 31 / 38
  • 95. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Is Gauss-Seidel better than Jacobi? Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 32 / 38
  • 96. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Is Gauss-Seidel better than Jacobi? No general results exist to tell which of the two techniques, Jacobi or Gauss-Seidel, will be most successful for an arbitrary linear system. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 32 / 38
  • 97. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Is Gauss-Seidel better than Jacobi? No general results exist to tell which of the two techniques, Jacobi or Gauss-Seidel, will be most successful for an arbitrary linear system. In special cases, however, the answer is known, as is demonstrated in the following theorem. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 32 / 38
  • 98. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods (Stein-Rosenberg) Theorem If aij 0, for each i6= j and aii 0, for each i = 1, 2, . . . , n, then one and only one of the following statements holds: (i) 0 (Tg) (Tj ) 1 (ii) 1 (Tj ) (Tg) (iii) (Tj ) = (Tg) = 0 (iv) (Tj ) = (Tg) = 1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 33 / 38
  • 99. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods (Stein-Rosenberg) Theorem If aij 0, for each i6= j and aii 0, for each i = 1, 2, . . . , n, then one and only one of the following statements holds: (i) 0 (Tg) (Tj ) 1 (ii) 1 (Tj ) (Tg) (iii) (Tj ) = (Tg) = 0 (iv) (Tj ) = (Tg) = 1 For the proof of this result, see pp. 120–127. of Young, D. M., Iterative solution of large linear systems, Academic Press, New York, 1971, 570 pp. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 33 / 38
  • 100. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  • 101. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 that when one method gives convergence, then both give convergence, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  • 102. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 that when one method gives convergence, then both give convergence, and the Gauss-Seidel method converges faster than the Jacobi method. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  • 103. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 that when one method gives convergence, then both give convergence, and the Gauss-Seidel method converges faster than the Jacobi method. Part (ii), namely 1 (Tj ) (Tg) indicates that when one method diverges then both diverge, and the divergence is more pronounced for the Gauss-Seidel method. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  • 105. Eigenvalues Eigenvectors: Convergent Matrices Theorem The following statements are equivalent. (i) A is a convergent matrix. (ii) limn!1 kAnk = 0, for some natural norm. (iii) limn!1 kAnk = 0, for all natural norms. (iv) (A) 1. (v) limn!1 Anx = 0, for every x. The proof of this theorem can be found on p. 14 of Issacson, E. and H. B. Keller, Analysis of Numerical Methods, John Wiley Sons, New York, 1966, 541 pp. Return to General Iteration Methods — Introduction Return to General Iteration Methods — Lemma Return to General Iteration Methods — Theorem
  • 106. Fixed-Point Theorem Let g 2 C[a, b] be such that g(x) 2 [a, b], for all x in [a, b]. Suppose, in addition, that g0 exists on (a, b) and that a constant 0 k 1 exists with |g0(x)| k, for all x 2 (a, b). Then for any number p0 in [a, b], the sequence defined by pn = g(pn−1), n 1 converges to the unique fixed point p in [a, b]. Return to the Corrollary to the Fixed-Point Theorem
  • 107. Functional (Fixed-Point) Iteration Corrollary to the Fixed-Point Convergence Result If g satisfies the hypothesis of the Fixed-Point Theorem then |pn − p| kn 1 − k |p1 − p0| Return to the Corollary to the Convergence Theorem for General Iterative Methods