This document summarizes the propagation of error bounds due to active subspace reduction in computational models. It presents two algorithms for performing active subspace reduction: one that is gradient-free and reduces the response or state space, and one that is gradient-based and reduces the parameter space. It then develops a theorem for propagating error bounds across multiple reductions, both in the parameter and response spaces. Numerical experiments on an analytic function and a nuclear reactor pin cell model are used to validate the error bound approach.