This document introduces a generalized method for constructing sub-quadratic complexity multipliers for finite fields of characteristic 2. It begins by reintroducing the Winograd short convolution algorithm in the context of polynomial multiplication. It then presents a recursive construction technique that extends any d-point multiplier into an n=dk-point multiplier with sub-quadratic area and logarithmic delay complexity. Several new constructions are obtained using this technique, one of which is identical to the Karatsuba multiplier. The techniques aim to develop bit-parallel multipliers with better time and/or space complexity than the traditional quadratic complexity approaches.