Theorem 4 of
BASIC
FUNDAMENTAL
OF INTEGRAL
MAGCALAS, Rommel
22 May 2017
Today’s Session
▪ Review of the Past Lesson
▪ Magic Box (Motivation)
▪ Lesson for the day
▪ Application
▪ Evaluation
▪ Objective for today’s session
Magcalas, Rommel DemoTeaching
Objective for today’s session
Evaluate the anti-
derivatives of a function /
integral of a function using
substitution rule and table of
integrals
Magcalas, Rommel DemoTeaching
Review of the Past Lesson
▪ What is INTEGRAL CALCULUS
▪ BASIC FUNDAMENTAL OF INTEGRAL
(Theorem 1-3)
Magcalas, Rommel DemoTeaching
INTEGRAL CALCULUS
▪ Branch of calculus that deals
with the function to be
integrated.
∫ f(x) dx
∫ = integral sign/symbol
f(x) = integrand
dx = variable of integration
Magcalas, Rommel DemoTeaching
BASIC FUNDAMENTAL
OF INTEGRAL
▪ THEOREM 1 (Integral of any
variable integration)
∫ dx = x + C
Magcalas, Rommel DemoTeaching
THEOREM 1 (Integral of any variable integration)
∫ dx = x + C
1. ∫ dy
2. ∫ dz
3. ∫ dw
4. ∫ dk
5. ∫ dp
= y + c
= z + c
= w + c
= k + c
= p + c
Magcalas, Rommel DemoTeaching
BASIC FUNDAMENTAL
OF INTEGRAL
▪ THEOREM 1 (Integral of any variable
integration)
∫ dx = x + C
▪ THEOREM 2 (Integral of any
constant number in any
variable integration)
∫ adx = ax + C
Magcalas, Rommel DemoTeaching
THEOREM 2 (Integral of any constant number in any
variable integration)
∫ adx = ax + C
1. ∫ 2dx
2. ∫ 5dg
3. ∫ 12dk
4. ∫ 9dz
5. ∫ 7dw
= 2x + c
= 5g + c
= 12k + c
= 9z + c
= 7w + c
Magcalas, Rommel DemoTeaching
BASIC FUNDAMENTAL
OF INTEGRAL
▪ THEOREM 1 (Integral of any variable
integration)
∫ dx = x + C
▪ THEOREM 2 (Integral of any constant number in
any variable integration)
∫ adx = ax + C
▪ THEOREM 3 (Integral of any variable raise to a
constant number in a variable integration)
∫ xndx = xn+1 + C
n + 1
Note: n ≠ -1Magcalas, Rommel DemoTeaching
THEOREM 3 (Integral of any variable raise to a
constant number in a variable integration)
∫ xndx = xn+1 + C
n + 1
1. ∫ x3dx
2. ∫ w5dw
3. ∫ z9dz
4. ∫ k19dk
5. ∫ y32dy
= x3+1 + C = x4 + C
3 + 1 4
= w5+1 + C = w6 + C
5 + 1 6
= z9+1 + C = z10 + C
9 + 1 10
= k19+1 + C = k20 + C
19 + 1 20
= y32+1 + C = y33 + C
32 + 1 33
Magcalas, Rommel DemoTeaching
BASIC FUNDAMENTAL
OF INTEGRAL
▪ THEOREM 1 (Integral of any variable
integration)
∫ dx = x + C
▪ THEOREM 2 (Integral of any constant number in
any variable integration)
∫ adx = ax + C
▪ THEOREM 3 (Integral of any variable raise to a
constant number in a variable integration)
∫ xndx = xn+1 + C
n + 1
Note: n ≠ -1Magcalas, Rommel DemoTeaching
Magic Box
Magcalas, Rommel DemoTeaching
Magic Box
1. Pass the box to your seatmate
while the music is continuously
playing
2. Once the music stops, picked a
card inside it
3. Categorize the examples into
what Theorem it belongs
INSTRUCTION for this Game
Magcalas, Rommel DemoTeaching
Magic Box
Magcalas, Rommel DemoTeaching
BASIC FUNDAMENTAL
OF INTEGRAL
▪ THEOREM 1
∫ dx = x + C
▪ THEOREM 2
∫ adx = ax + C
▪ THEOREM 3
∫ xndx = xn+1 + C
n + 1
Note: n ≠ -1
THEOREM 4 (Integral of
1 over any variable in
a variable integration
or Integral of any
variable raise to
negative 1 in a
variable integration)
∫ 1 dx
x
= ∫ x-1 dxMagcalas, Rommel DemoTeaching
= ∫ x-1 dx
= ln │x│ + C
ABSOLUTE VALUE | |
▪ to remove any sign in front of a
number and think of all numbers as
positive (or zero).
∫ 1 dx
x
Magcalas, Rommel DemoTeaching
BASIC FUNDAMENTAL
OF INTEGRAL
▪ THEOREM 1
∫ dx = x + C
▪ THEOREM 2
∫ adx = ax + C
▪ THEOREM 3
∫ xndx = xn+1 + C
n + 1
Note: n ≠ -1
THEOREM 4 (Integral of 1
over any variable in a
variable integration or
Integral of any variable
raise to negative 1 in a
variable integration)
∫ 1 dx
x
= ∫ x-1 dx
= ln │x│ + CMagcalas, Rommel DemoTeaching
THEOREM 4 (Integral of 1 over any variable in a variable
integration or Integral of any variable raise to any negative
constant number in a variable integration)
∫ 1 dx = ln │x│ + C
x
1. ∫ 1 dx
q
2. ∫ 3 dy
y
3. ∫ 11 dw
w
4. ∫ 7 dx
x
5. ∫ 9 dz
z
= ln | q | + C
= ∫ 3 . 1 dy = 3 ln | y | + C
y
= ∫ 11 . 1 dw = 11 ln | w | + C
w
= ∫ 7 . 1 dx = 7 ln | x | + C
x
= ∫ 9 . 1 dz = 9 ln | z | + C
z
Magcalas, Rommel DemoTeaching
THEOREM 4 (Integral of 1 over any variable in a variable
integration or Integral of any variable raise to any negative
constant number in a variable integration)
∫ 1 dx = ln │x│ + C
x
1. ∫ 4 dx
3x
2. ∫ x2-2x +1 dx
x2
3. ∫ 1 dx
x + 2
4. ∫ 3x dx
x2
5. ∫ 8 + 2y – 10y-2 dy
y
= ∫ 4 . 1 dx = 4 ln | x | + C
3 x 3
= ∫x2 dx - ∫2x dx + ∫1 dx
x2 x2 x2
= x- ∫2 . 1 dx + x-2+1 dx
x -2+1
= x - 2 ln |x| - 1 + c
x
= ln │x + 2│+ C
= 3 ln │x│+ C
= 8 ln │y│+ 2y + 20 + C
y2Magcalas, Rommel DemoTeaching
APPLICATION:
Evaluate the following integrals:
1. ∫ 3x-1 dx
2. ∫ 5 -4y + 6y-2 dy
2y
3. ∫ 2y dy + 2 dy
y
Magcalas, Rommel DemoTeaching
EVALUATION:
Evaluate the following integral:
1. ∫ 3x-1 dx
2. ∫ 1 dx
3x
3. ∫ 2x-1 + 2 dx
4. ∫ 6z - 4z2 + z-1 dz
z3
Magcalas, Rommel DemoTeaching
ASSIGNMENT:
Evaluate:
1. ∫ 1 + x + x-1+x-2+x-3 dx
Magcalas, Rommel DemoTeaching
That’s all for today!
THANK YOU!!!
Magcalas, Rommel DemoTeaching

More Related Content

PPTX
Factoring the difference of two squares
PPTX
Multiplying Monomials
PPT
Parent functions and Transformations
PPTX
Class 2 Math I
PPT
Business Math Chapter 2
PPTX
Factoring Perfect Square Trinomial
PPT
4.2 vertex and intercept form
Factoring the difference of two squares
Multiplying Monomials
Parent functions and Transformations
Class 2 Math I
Business Math Chapter 2
Factoring Perfect Square Trinomial
4.2 vertex and intercept form

What's hot (20)

PDF
Factoring perfect-square-trinomials
PDF
Day 6 examples
PDF
Factoring Trinomials
PPT
Higher Maths 1.2.2 - Graphs and Transformations
KEY
Notes - Graphs of Polynomials
DOCX
Ejercicios de 1° grado
DOCX
Ejercicios de ecuaciones de 1° grado
PPT
Polynomial functionsandgraphs
PDF
Factoring quadratic-trinomials-of-the-form-ax2-
PDF
Factoring by the trial and-error method
PPTX
Sum and difference of two squares
PPT
5 1 quadratic transformations
PPTX
Factoring Perfect Square Trinomial
PPTX
2.5polynomials
PPTX
Teaching Graphs of Polynomial Functions
PPT
PPt on Functions
DOCX
Factoring perfect square trinomials
PPTX
PPTX
General Mathematics - Representation and Types of Functions
PPTX
Graph of functions
Factoring perfect-square-trinomials
Day 6 examples
Factoring Trinomials
Higher Maths 1.2.2 - Graphs and Transformations
Notes - Graphs of Polynomials
Ejercicios de 1° grado
Ejercicios de ecuaciones de 1° grado
Polynomial functionsandgraphs
Factoring quadratic-trinomials-of-the-form-ax2-
Factoring by the trial and-error method
Sum and difference of two squares
5 1 quadratic transformations
Factoring Perfect Square Trinomial
2.5polynomials
Teaching Graphs of Polynomial Functions
PPt on Functions
Factoring perfect square trinomials
General Mathematics - Representation and Types of Functions
Graph of functions
Ad

Similar to Theorem 4 of basic fundamental of integral (20)

PPTX
Lecture for Week4 integral calculus.pptx
PDF
Integral calculus
PDF
Lesson 1 Antiderivatives and the Power Formula.pdf
PDF
BCA_MATHEMATICS-I_Unit-V
PPT
AP Calculus Project
PPTX
Basic Integration Rules_Mugharbel
PPTX
Calculus II_Chapter I. - calculus II pptx
PDF
Calculus Integration.pdf
PDF
Integral Calculus Anti Derivatives reviewer
PPT
Calc 4.4b
PPTX
Integrals_Class12_Maths Power Point Presentation
PDF
integration in maths pdf mathematics integration
PPT
1508 calculus-fundamental theorem
PPT
Math22 Lecture1
PDF
The Fundamental theorem of calculus
DOCX
Integration - Mathematics - UoZ
PPTX
PDF
Evaluating definite integrals
Lecture for Week4 integral calculus.pptx
Integral calculus
Lesson 1 Antiderivatives and the Power Formula.pdf
BCA_MATHEMATICS-I_Unit-V
AP Calculus Project
Basic Integration Rules_Mugharbel
Calculus II_Chapter I. - calculus II pptx
Calculus Integration.pdf
Integral Calculus Anti Derivatives reviewer
Calc 4.4b
Integrals_Class12_Maths Power Point Presentation
integration in maths pdf mathematics integration
1508 calculus-fundamental theorem
Math22 Lecture1
The Fundamental theorem of calculus
Integration - Mathematics - UoZ
Evaluating definite integrals
Ad

Recently uploaded (20)

PDF
Soil Improvement Techniques Note - Rabbi
PPTX
Measurement Uncertainty and Measurement System analysis
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Computer organization and architecuture Digital Notes....pdf
PPTX
Petroleum Refining & Petrochemicals.pptx
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
PDF
Design Guidelines and solutions for Plastics parts
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PDF
Applications of Equal_Area_Criterion.pdf
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PPTX
mechattonicsand iotwith sensor and actuator
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PPTX
Building constraction Conveyance of water.pptx
PPTX
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
Soil Improvement Techniques Note - Rabbi
Measurement Uncertainty and Measurement System analysis
Information Storage and Retrieval Techniques Unit III
Computer organization and architecuture Digital Notes....pdf
Petroleum Refining & Petrochemicals.pptx
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
Design Guidelines and solutions for Plastics parts
"Array and Linked List in Data Structures with Types, Operations, Implementat...
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
Applications of Equal_Area_Criterion.pdf
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
mechattonicsand iotwith sensor and actuator
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
Management Information system : MIS-e-Business Systems.pptx
MLpara ingenieira CIVIL, meca Y AMBIENTAL
Building constraction Conveyance of water.pptx
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY

Theorem 4 of basic fundamental of integral

  • 1. Theorem 4 of BASIC FUNDAMENTAL OF INTEGRAL MAGCALAS, Rommel 22 May 2017
  • 2. Today’s Session ▪ Review of the Past Lesson ▪ Magic Box (Motivation) ▪ Lesson for the day ▪ Application ▪ Evaluation ▪ Objective for today’s session Magcalas, Rommel DemoTeaching
  • 3. Objective for today’s session Evaluate the anti- derivatives of a function / integral of a function using substitution rule and table of integrals Magcalas, Rommel DemoTeaching
  • 4. Review of the Past Lesson ▪ What is INTEGRAL CALCULUS ▪ BASIC FUNDAMENTAL OF INTEGRAL (Theorem 1-3) Magcalas, Rommel DemoTeaching
  • 5. INTEGRAL CALCULUS ▪ Branch of calculus that deals with the function to be integrated. ∫ f(x) dx ∫ = integral sign/symbol f(x) = integrand dx = variable of integration Magcalas, Rommel DemoTeaching
  • 6. BASIC FUNDAMENTAL OF INTEGRAL ▪ THEOREM 1 (Integral of any variable integration) ∫ dx = x + C Magcalas, Rommel DemoTeaching
  • 7. THEOREM 1 (Integral of any variable integration) ∫ dx = x + C 1. ∫ dy 2. ∫ dz 3. ∫ dw 4. ∫ dk 5. ∫ dp = y + c = z + c = w + c = k + c = p + c Magcalas, Rommel DemoTeaching
  • 8. BASIC FUNDAMENTAL OF INTEGRAL ▪ THEOREM 1 (Integral of any variable integration) ∫ dx = x + C ▪ THEOREM 2 (Integral of any constant number in any variable integration) ∫ adx = ax + C Magcalas, Rommel DemoTeaching
  • 9. THEOREM 2 (Integral of any constant number in any variable integration) ∫ adx = ax + C 1. ∫ 2dx 2. ∫ 5dg 3. ∫ 12dk 4. ∫ 9dz 5. ∫ 7dw = 2x + c = 5g + c = 12k + c = 9z + c = 7w + c Magcalas, Rommel DemoTeaching
  • 10. BASIC FUNDAMENTAL OF INTEGRAL ▪ THEOREM 1 (Integral of any variable integration) ∫ dx = x + C ▪ THEOREM 2 (Integral of any constant number in any variable integration) ∫ adx = ax + C ▪ THEOREM 3 (Integral of any variable raise to a constant number in a variable integration) ∫ xndx = xn+1 + C n + 1 Note: n ≠ -1Magcalas, Rommel DemoTeaching
  • 11. THEOREM 3 (Integral of any variable raise to a constant number in a variable integration) ∫ xndx = xn+1 + C n + 1 1. ∫ x3dx 2. ∫ w5dw 3. ∫ z9dz 4. ∫ k19dk 5. ∫ y32dy = x3+1 + C = x4 + C 3 + 1 4 = w5+1 + C = w6 + C 5 + 1 6 = z9+1 + C = z10 + C 9 + 1 10 = k19+1 + C = k20 + C 19 + 1 20 = y32+1 + C = y33 + C 32 + 1 33 Magcalas, Rommel DemoTeaching
  • 12. BASIC FUNDAMENTAL OF INTEGRAL ▪ THEOREM 1 (Integral of any variable integration) ∫ dx = x + C ▪ THEOREM 2 (Integral of any constant number in any variable integration) ∫ adx = ax + C ▪ THEOREM 3 (Integral of any variable raise to a constant number in a variable integration) ∫ xndx = xn+1 + C n + 1 Note: n ≠ -1Magcalas, Rommel DemoTeaching
  • 14. Magic Box 1. Pass the box to your seatmate while the music is continuously playing 2. Once the music stops, picked a card inside it 3. Categorize the examples into what Theorem it belongs INSTRUCTION for this Game Magcalas, Rommel DemoTeaching
  • 16. BASIC FUNDAMENTAL OF INTEGRAL ▪ THEOREM 1 ∫ dx = x + C ▪ THEOREM 2 ∫ adx = ax + C ▪ THEOREM 3 ∫ xndx = xn+1 + C n + 1 Note: n ≠ -1 THEOREM 4 (Integral of 1 over any variable in a variable integration or Integral of any variable raise to negative 1 in a variable integration) ∫ 1 dx x = ∫ x-1 dxMagcalas, Rommel DemoTeaching
  • 17. = ∫ x-1 dx = ln │x│ + C ABSOLUTE VALUE | | ▪ to remove any sign in front of a number and think of all numbers as positive (or zero). ∫ 1 dx x Magcalas, Rommel DemoTeaching
  • 18. BASIC FUNDAMENTAL OF INTEGRAL ▪ THEOREM 1 ∫ dx = x + C ▪ THEOREM 2 ∫ adx = ax + C ▪ THEOREM 3 ∫ xndx = xn+1 + C n + 1 Note: n ≠ -1 THEOREM 4 (Integral of 1 over any variable in a variable integration or Integral of any variable raise to negative 1 in a variable integration) ∫ 1 dx x = ∫ x-1 dx = ln │x│ + CMagcalas, Rommel DemoTeaching
  • 19. THEOREM 4 (Integral of 1 over any variable in a variable integration or Integral of any variable raise to any negative constant number in a variable integration) ∫ 1 dx = ln │x│ + C x 1. ∫ 1 dx q 2. ∫ 3 dy y 3. ∫ 11 dw w 4. ∫ 7 dx x 5. ∫ 9 dz z = ln | q | + C = ∫ 3 . 1 dy = 3 ln | y | + C y = ∫ 11 . 1 dw = 11 ln | w | + C w = ∫ 7 . 1 dx = 7 ln | x | + C x = ∫ 9 . 1 dz = 9 ln | z | + C z Magcalas, Rommel DemoTeaching
  • 20. THEOREM 4 (Integral of 1 over any variable in a variable integration or Integral of any variable raise to any negative constant number in a variable integration) ∫ 1 dx = ln │x│ + C x 1. ∫ 4 dx 3x 2. ∫ x2-2x +1 dx x2 3. ∫ 1 dx x + 2 4. ∫ 3x dx x2 5. ∫ 8 + 2y – 10y-2 dy y = ∫ 4 . 1 dx = 4 ln | x | + C 3 x 3 = ∫x2 dx - ∫2x dx + ∫1 dx x2 x2 x2 = x- ∫2 . 1 dx + x-2+1 dx x -2+1 = x - 2 ln |x| - 1 + c x = ln │x + 2│+ C = 3 ln │x│+ C = 8 ln │y│+ 2y + 20 + C y2Magcalas, Rommel DemoTeaching
  • 21. APPLICATION: Evaluate the following integrals: 1. ∫ 3x-1 dx 2. ∫ 5 -4y + 6y-2 dy 2y 3. ∫ 2y dy + 2 dy y Magcalas, Rommel DemoTeaching
  • 22. EVALUATION: Evaluate the following integral: 1. ∫ 3x-1 dx 2. ∫ 1 dx 3x 3. ∫ 2x-1 + 2 dx 4. ∫ 6z - 4z2 + z-1 dz z3 Magcalas, Rommel DemoTeaching
  • 23. ASSIGNMENT: Evaluate: 1. ∫ 1 + x + x-1+x-2+x-3 dx Magcalas, Rommel DemoTeaching
  • 24. That’s all for today! THANK YOU!!! Magcalas, Rommel DemoTeaching