create a website

Overcapacity Risk of China’s Coal Power Industry: A Comprehensive Assessment and Driving Factors. (2021). Wang, Yadong ; Xue, Xun.
In: Sustainability.
RePEc:gam:jsusta:v:13:y:2021:i:3:p:1426-:d:489546.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 38

References cited by this document

Cocites: 30

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Construction and Application of VR-AR Teaching System in Coal-Based Energy Education. (2022). Shi, Xutao ; Wang, Xiaojie ; Fang, Shangxin ; Zhang, Cun.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:23:p:16033-:d:989857.

    Full description at Econpapers || Download paper

  2. The Impact of Technology Innovation on Enterprise Capacity Utilization—Evidence from China’s Yangtze River Economic Belt. (2022). Qian, YU ; Liu, Jun ; Forrest, Jeffrey Yi-Lin ; Chang, Huihong.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:18:p:11507-:d:914414.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Carnovale, S.; Yeniyurt, S.; Rogers, D.S. Network Connectedness in Vertical and Horizontal Manufacturing Joint Venture Formations: A Power Perspective. J. Purch. Supply Manag. 2017, 23, 67–81. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Cigdem, O.; Demirel, H. Performance Analysis of Different Classification Algorithms Using Different Feature Selection Methods on Parkinson’s Disease Detection. J. Neurosci. Methods 2018, 3091, 81–90.
    Paper not yet in RePEc: Add citation now
  3. Coussement, K.; Lessmann, S.; Verstraeten, G. A Comparative Analysis of Data Preparation Algorithms for Customer Churn Prediction: A Case Study in the Telecommunication Industry. Decis. Support Syst. 2017, 95, 27–36. [CrossRef]

  4. Czibula, G.; Marian, Z.; Czibula, I.G. Software Defect Prediction Using Relational Association Rule Mining. Inf. Sci. 2014, 264, 260–278. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Dobbie, M.J.; Dail, D. Robustness and Sensitivity of Weighting and Aggregation in Constructing Composite Indices. Ecol. Indic. 2013, 29, 270–277.
    Paper not yet in RePEc: Add citation now
  6. Dobos, I.; Vörösmarty, G. Green Supplier Selection and Evaluation Using DEA-Type Composite Indicators. Int. J. Prod. Econ. 2014, 157, 273–278. [CrossRef]

  7. Doshi, M.; Chaturvedi, S. Correlation based feature selection (CFS) technique to predict student Perfromance. Int. J. Comput. Vis. 2014, 6, 197–206. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Du, W.; Li, M. Can Environmental Regulation Promote the Governance of Excess Capacity in China’s Energy Sector? the Market Exit of Zombie Enterprises. J. Clean Prod. 2019, 207, 306–316. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Feng, Y.; Wang, S.; Sha, Y.; Ding, Q.; Yuan, J. Coal Power Overcapacity in China: Province-Level Estimates and Policy Implications. Resour. Conserv. Recycl. 2018, 137, 89–100. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Fusillo, M. Excess Capacity and Entry Deterrence: The Case of Ocean Liner Shipping Markets. Marit. Econ. Logist. 2003, 5, 100–115. [CrossRef]

  11. Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
    Paper not yet in RePEc: Add citation now
  12. Han, G.; Wang, L. Capacity Utilization and the Safety Monitoring of Steel Industry in China from the Year 2000 to 2010. Reform 2012, 8, 31–41.
    Paper not yet in RePEc: Add citation now
  13. Kushal, T.R.B.; Illindala, M.S. Correlation-Based Feature Selection for Resilience Analysis of MVDC Shipboard Power System. Int. J. Electr. Power Energy Syst. 2020, 117, 105732.
    Paper not yet in RePEc: Add citation now
  14. Li, T.; Li, Y.; An, D.; Han, Y.; Xu, S.; Lu, Z.; Crittenden, J. Mining of the Association Rules between Industrialization Leveland Air Quality to Inform High-Quality Development in China. J. Environ. Manag. 2019, 246, 564–574. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  15. Lin, L.; Kahrl, F.; Liu, X. A Regional Analysis of Excess Capacity in China’s Power Systems. Resour. Conserv. Recycl. 2018, 129, 93–101. [CrossRef]

  16. Lin, Y.; Wu, H.; Xing, Y. “Wave Phenomenon” and Formation of Excess Capacity. Econ. Res. 2010, 10, 4–19.
    Paper not yet in RePEc: Add citation now
  17. Ming, Z.; Ping, Z.; Shunkun, Y.L.H. Overall Review of the Overcapacity Situation of China’s Thermal Power Industry: Status Quo, Policy Analysis and Suggestions. Renew. Sust. Energ. Rev. 2017, 76, 768–774. [CrossRef]
    Paper not yet in RePEc: Add citation now
  18. Nahar, J.; Kevin, T.; Tickle, S.; Chen, Y.P.P. Association Rule Mining to Detect Factors Which Contribute to Heart Disease in Males and Females. Expert Syst. Appl. 2013, 40, 1086–1093. [CrossRef] Sustainability 2021, 13, 1426 21 of 21
    Paper not yet in RePEc: Add citation now
  19. Neelawela, U.D.; Selvanathan, E.A.; Wagner, L.D. Global Measure of Electricity Security: A Composite Index Approach. Energy Econ. 2019, 81, 433–453. [CrossRef]

  20. Nishimori, A.; Ogawa, H. Do Firms Always Choose Excess Capacity. Econ. Bull. 2004, 12, 1–7.

  21. Pindyck, R.S. Irreversible Investment, Capacity Choice, and the Value of the Firm. Am. Econ. 1988, 969–985.

  22. Qin, Q.; Jiao, Y.; Gan, X.; Liu, Y. Environmental Efficiency and Market Segmentation: An Empirical Analysis of China’s Thermal Power Industry. J. Clean Prod. 2020, 242, 118560.
    Paper not yet in RePEc: Add citation now
  23. Ray, S.C. Nonparametric Measures of Scale Economies and Capacity Utilization: An Application to U.S. Manufacturing. Eur. J. Oper. Res. 2015, 245, 602–611. [CrossRef]

  24. Schlag, C.; Zeng, K. Horizontal Industry Relationships and Return Predictability. J. Empir. Financ. 2019, 53, 310–330.

  25. Shi, R.; Fan, X.; He, Y. Comprehensive Evaluation Index System for Wind Power Utilization Levels in Wind Farms in China. Renew. Sust. Energ. Rev. 2017, 69, 461–471. [CrossRef]

  26. Sun, W.; Dong, K.; Zhao, T. Market Demand Dynamic Induced Mechanism in China’s Steel Industry. Resour. Policy 2017, 51, 13–21. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Wang, D.; Liu, Y.; Wang, Y.; Shi, X.; Song, X. Allocation of Coal De-capacity Quota among Provinces in China: A Bi-Level Multi-Objective Combinatorial Optimization Approach. Energy Econ. 2020, 87, 104709. [CrossRef]

  28. Wang, D.; Wang, Y.; Song, X.; Liu, Y. Coal Overcapacity in China: Multiscale Analysis and Prediction. Energy Econ. 2018, 70, 244–257. [CrossRef] Sustainability 2021, 13, 1426 20 of 21

  29. Wang, Y.; Luo, G.; Guo, Y. Why Is There Overcapacity in China’s PV Industry in Its Early Growth Stage? Renew. Energy 2014, 72, 188–194. [CrossRef]

  30. Yang, G.; Fukuyama, H. Measuring the Chinese Regional Production Potential Using a Generalized Capacity Utilization Indicator. Omega 2018, 76, 112–127. [CrossRef]

  31. Yang, G.; Fukuyama, H.; Song, Y. Estimating Capacity Utilization of Chinese Manufacturing Industries. Socio-Econ. Plan. Sci. 2019, 67, 94–110. [CrossRef]

  32. Yuan, J.; Lei, Q.; Xiong, M.; Guo, J.; Hu, Z. The Prospective of Coal Power in China: Will It Reach a Plateau in the Coming Decade? Energy Policy 2016, 98, 495–504. [CrossRef]

  33. Yuan, J.; Li, P.; Wang, Y.; Liu, Q.; Shen, X.; Zhang, K.; Dong, L. Coal Power Overcapacity and Investment Bubble in China during 2015–2020. Energy Policy 2016, 97, 136–144. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Yuan, J.; Xu, Y.; Zhang, X. China’s 2020 Clean Energy Target: Consistency, Pathways and Policy Implications. Energy Policy 2014, 65, 692–700. [CrossRef]

  35. Zhang, H.; Zheng, Y.; Ozturk, U.A. The Impact of Subsidies on Overcapacity: A Comparison of Wind and Solar Energy Companies in China. Energy 2016, 94, 821–827. [CrossRef]

  36. Zhang, Y.; Nie, R.; Shi, R.; Zhang, M. Measuring the Capacity Utilization of the Coal Sector and Its Decoupling with Economic Growth in China’s Supply-Side Reform. Resources 2018, 129, 314–325. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. Zhao, C.; Zhang, W.; Wang, Y.; Liu, Q.; Guo, J.; Xiong, M. The Economics of Coal Power Generation in China. Energy Policy 2017, 105, 1–9. [CrossRef]

  38. Zhou, P.; Ang, B.W.; Poh, K.L. A Mathematical Programming Approach to Constructing Composite Indicators. Ecol. Econ. 2007, 62, 291–297. [CrossRef]

Cocites

Documents in RePEc which have cited the same bibliography

  1. Interpretable machine learning and explainable artificial intelligence. (2025). Urban, Timothy L ; Topuz, Kazim ; Bajaj, Akhilesh ; Coussement, Kristof.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:347:y:2025:i:2:d:10.1007_s10479-025-06577-w.

    Full description at Econpapers || Download paper

  2. Investigating the impact of undersampling and bagging: an empirical investigation for customer attrition modeling. (2025). Caigny, Arno ; Coussement, Kristof ; Meire, Matthijs ; Hoornaert, Steven.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:346:y:2025:i:3:d:10.1007_s10479-025-06516-9.

    Full description at Econpapers || Download paper

  3. Life event-based marketing using AI. (2025). Meire, Matthijs ; Hoornaert, Steven ; Coussement, Kristof ; de Caigny, Arno.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:193:y:2025:i:c:s0148296325001729.

    Full description at Econpapers || Download paper

  4. Profit-driven pre-processing in B2B customer churn modeling using fairness techniques. (2025). Bogaert, Matthias ; Janssens, Bram ; Rahman, Shimanto.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:189:y:2025:i:c:s0148296324006635.

    Full description at Econpapers || Download paper

  5. Development of fading channel patch based convolutional neural network models for customer churn prediction. (2024). Gupta, Gaurav.
    In: International Journal of System Assurance Engineering and Management.
    RePEc:spr:ijsaem:v:15:y:2024:i:1:d:10.1007_s13198-022-01759-2.

    Full description at Econpapers || Download paper

  6. Data analytics-based auditing: a case study of fraud detection in the banking context. (2024). Wamba, Samuel Fosso ; Kala, Jules Raymond ; Sando, Hyacinthe Djanan ; Ndassi, Arielle Ornela ; Tiwari, Sunil.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:340:y:2024:i:2:d:10.1007_s10479-024-06129-8.

    Full description at Econpapers || Download paper

  7. Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction. (2024). Liu, Zhenkun ; Niu, Xinsong ; Jiang, Ping ; Zhang, Lifang ; de Bock, Koen W ; Wang, Jianzhou.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006303.

    Full description at Econpapers || Download paper

  8. Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction. (2024). Gao, Yuyang ; Zhang, Ying ; Chen, Yinghao ; Abedin, Mohammad Zoynul ; Wang, Jianzhou ; Yang, Hufang ; Liu, Zhenkun.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:79:y:2024:i:c:s0969698924001504.

    Full description at Econpapers || Download paper

  9. Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach. (2024). Guo, Yihan ; Feng, YI ; Marra, Marianna ; Ignatius, Joshua ; Wang, Dujuan ; Cheng, T. C. E., ; Yin, Yunqiang.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:184:y:2024:i:c:s014829632400376x.

    Full description at Econpapers || Download paper

  10. Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda. (2024). de Bock, Koen W ; Verbeke, Wouter ; Delen, Dursun ; Choi, Tsan-Ming ; Martens, David ; Lessmann, Stefan ; Vairetti, Carla ; Maldonado, Sebastian ; Baesens, Bart ; Sowiski, Roman ; de Caigny, Arno ; Boute, Robert N ; Weber, Richard ; Kraus, Mathias ; Oskarsdottir, Maria ; Coussement, Kristof.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:249-272.

    Full description at Econpapers || Download paper

  11. A decision support framework to incorporate textual data for early student dropout prediction in higher education. (2023). Phan, Minh ; Coussement, Kristof ; de Caigny, Arno.
    In: Post-Print.
    RePEc:hal:journl:hal-04274684.

    Full description at Econpapers || Download paper

  12. Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda. (2023). Boute, Robert N ; Weber, Richard ; Kraus, Mathias ; Oskarsdottir, Maria ; Coussement, Kristof ; de Bock, Koen W ; Verbeke, Wouter ; Delen, Dursun ; Choi, Tsan-Ming ; Martens, David ; Lessmann, Stefan ; Vairetti, Carla ; Maldonado, Sebastian ; Baesens, Bart ; Slowiski, Roman ; de Caigny, Arno.
    In: Post-Print.
    RePEc:hal:journl:hal-04219546.

    Full description at Econpapers || Download paper

  13. Deep Churn Prediction Method for Telecommunication Industry. (2023). Gaber, Tarek ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; El-Gohary, Hatem ; El-Kenawy, El-Sayed M.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:5:p:4543-:d:1086814.

    Full description at Econpapers || Download paper

  14. Oil Demand Forecasting in Importing and Exporting Countries: AI-Based Analysis of Endogenous and Exogenous Factors. (2023). Zhu, Hui.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:18:p:13592-:d:1237713.

    Full description at Econpapers || Download paper

  15. Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art. (2023). Bogaert, Matthias ; Delaere, Lex.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:5:p:1137-:d:1079547.

    Full description at Econpapers || Download paper

  16. A novel deep learning model based on convolutional neural networks for employee churn prediction. (2022). Ozcan, Tuncay ; Ozmen, Ebru Pekel.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:41:y:2022:i:3:p:539-550.

    Full description at Econpapers || Download paper

  17. A novel customer churn prediction model for the telecommunication industry using data transformation methods and feature selection. (2022). Abedin, Mohammad Zoynul ; Rahman, Saifur M ; Sana, Joydeb Kumar.
    In: PLOS ONE.
    RePEc:plo:pone00:0278095.

    Full description at Econpapers || Download paper

  18. Customer determinants of used auto loan churn: comparing predictive performance using machine learning techniques. (2022). Patil, Vivek H ; Raju, Sudhakar ; Valluri, Chandrasekhar.
    In: Journal of Marketing Analytics.
    RePEc:pal:jmarka:v:10:y:2022:i:3:d:10.1057_s41270-021-00135-6.

    Full description at Econpapers || Download paper

  19. Bias in Algorithms: On the trade-off between accuracy and fairness. (2021). Janssen, Patrick ; Sadowski, Bert M.
    In: 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world.
    RePEc:zbw:itsb21:238032.

    Full description at Econpapers || Download paper

  20. Amalgamation of Customer Relationship Management and Data Analytics in Different Business Sectors—A Systematic Literature Review. (2021). Nayak, Soumyaranjan ; Barsocchi, Paolo ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; Bhoi, Akash Kumar.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:9:p:5279-:d:550856.

    Full description at Econpapers || Download paper

  21. Overcapacity Risk of China’s Coal Power Industry: A Comprehensive Assessment and Driving Factors. (2021). Wang, Yadong ; Xue, Xun.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:3:p:1426-:d:489546.

    Full description at Econpapers || Download paper

  22. An Empirical Study on Customer Churn Behaviours Prediction Using Arabic Twitter Mining Approach. (2021). Almuqren, Latifah ; Alrayes, Fatma S ; Cristea, Alexandra I.
    In: Future Internet.
    RePEc:gam:jftint:v:13:y:2021:i:7:p:175-:d:588849.

    Full description at Econpapers || Download paper

  23. Customer comeback: Empirical insights into the drivers and value of returning customers. (2021). Meire, Matthijs.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:127:y:2021:i:c:p:193-205.

    Full description at Econpapers || Download paper

  24. How training on multiple time slices improves performance in churn prediction. (2021). Thonemann, Ulrich W ; Gattermann-Itschert, Theresa.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:295:y:2021:i:2:p:664-674.

    Full description at Econpapers || Download paper

  25. Incorporating textual information in customer churn prediction models based on a convolutional neural network. (2020). Lessmann, Stefan ; Coussement, Kristof ; de Bock, Koen W ; de Caigny, Arno.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:36:y:2020:i:4:p:1563-1578.

    Full description at Econpapers || Download paper

  26. Incorporating textual information in customer churn prediction models based on a convolutional neural network. (2019). de Caigny, Arno ; Lessmann, Stefan ; Coussement, Kristof ; de Bock, Koen W.
    In: Post-Print.
    RePEc:hal:journl:hal-02275958.

    Full description at Econpapers || Download paper

  27. A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting. (2019). Chen, Shuixia ; Wang, Jian-Qiang ; Zhang, Hong-Yu.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:146:y:2019:i:c:p:41-54.

    Full description at Econpapers || Download paper

  28. Customer churn prediction in telecommunication industry using data certainty. (2019). Anwar, Sajid ; Loo, Jonathan ; Al-Obeidat, Feras ; Shah, Babar ; Adnan, Awais ; Amin, Adnan.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:94:y:2019:i:c:p:290-301.

    Full description at Econpapers || Download paper

  29. Targeting customers for profit: An ensemble learning framework to support marketing decision making. (2018). de Bock, Koen W ; Haupt, Johannes ; Lessmann, Stefan ; Coussement, Kristof.
    In: IRTG 1792 Discussion Papers.
    RePEc:zbw:irtgdp:2018012.

    Full description at Econpapers || Download paper

  30. A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. (2018). Coussement, Kristof ; de Bock, Koen W ; de Caigny, Arno.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:269:y:2018:i:2:p:760-772.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 04:41:17 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.