- Abbasimehr, H.; Shabani, M.; Yousefi, M. An optimized model using LSTM network for demand forecasting. Comput. Ind. Eng. 2020, 143, 106435. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ãevik, H.H.; Ãunkaş, M. Short-term load forecasting using fuzzy logic and ANFIS. Neural Comput. Appl. 2015, 26, 1355â1367. [CrossRef]
Paper not yet in RePEc: Add citation now
- Al-Fattah, S.M. Artificial intelligence approach for modeling and forecasting oil-price volatility. SPE Reserv. Eval. Eng. 2019, 22, 817â826. [CrossRef]
Paper not yet in RePEc: Add citation now
- Al-Fattah, S.M.; Aramco, S. Application of the artificial intelligence GANNATS model in forecasting crude oil demand for Saudi Arabia and China. J. Pet. Sci. Eng. 2021, 200, 108368. [CrossRef]
Paper not yet in RePEc: Add citation now
- Al-Musaylh, M.S.; Deo, R.C.; Adamowski, J.F.; Li, Y. Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia. Adv. Eng. Inform. 2018, 35, 1â16. [CrossRef]
Paper not yet in RePEc: Add citation now
- Alhendi, A.A.; Al-Sumaiti, A.S.; Elmay, F.K.; Wescaot, J.; Kavousi-Fard, A.; Heydarian-Forushani, E.; Alhelou, H.H. Artificial intelligence for waterâenergy nexus demand forecasting: A review. Int. J. Low-Carbon Technol. 2022, 17, 730â744. [CrossRef]
Paper not yet in RePEc: Add citation now
Anik, A.R.; Rahman, S. Commercial energy demand forecasting in Bangladesh. Energies 2021, 14, 6394. [CrossRef]
- Available online: https://www.degruyter.com/document/doi/10.1515/jbnst-2022-0031/html (accessed on 1 June 2023).
Paper not yet in RePEc: Add citation now
- Boamah, V. Forecasting the Demand of Oil in Ghana: A Statistical Approach. Manag. Sci. Bus. Decis. 2021, 1, 29â43. [CrossRef]
Paper not yet in RePEc: Add citation now
Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. Sustainability 2023, 15, 13592 18 of 19
Paper not yet in RePEc: Add citation now
- Brentan, B.M.; Luvizotto, E., Jr.; Herrera, M.; Izquierdo, J.; Pérez-GarcÃa, R. Hybrid regression model for near real-time urban water demand forecasting. J. Comput. Appl. Math. 2017, 309, 532â541. [CrossRef]
Paper not yet in RePEc: Add citation now
Chaudhry, A.A. A Panel Data Analysis of Electricity Demand in Pakistan. Lahore J. Econ. 2010, 15, 75â106. [CrossRef]
- Chen, R.; Rao, Z.; Liao, S. Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data. J. Cent. South Univ. 2019, 26, 2136â2148. [CrossRef]
Paper not yet in RePEc: Add citation now
Coussement, K.; Lessmann, S.; Verstraeten, G. A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry. Decis. Support Syst. 2017, 95, 27â36. [CrossRef]
- Dirican, C. The impacts of robotics, artificial intelligence on business and economics. Procedia Soc. Behav. Sci. 2015, 195, 564â573. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dorin, P.; Kim, J.; Wang, K.W. Vibration energy harvesting system with coupled bistable modules. Act. Passiv. Smart Struct. Integr. Syst. 2019, XIII, 81â94.
Paper not yet in RePEc: Add citation now
- Duan, J.; Hou, Z.; Fang, S.; Lu, W.; Hu, M.; Tian, X.; Wang, P.; Ma, W. A novel electricity consumption forecasting model based on kernel extreme learning machine-with generalized maximum correntropy criterion. Energy Rep. 2022, 8, 10113â10124. [CrossRef]
Paper not yet in RePEc: Add citation now
- Fatima, T.; Xia, E.; Ahad, M. Oil demand forecasting for China: A fresh evidence from structural time series analysis. Environ. Dev. Sustain. 2019, 21, 1205â1224. [CrossRef]
Paper not yet in RePEc: Add citation now
- Feizabadi, J. Machine learning demand forecasting and supply chain performance. Int. J. Logist. Res. Appl. 2022, 25, 119â142. [CrossRef]
Paper not yet in RePEc: Add citation now
Huang, J.; Tang, Y.; Chen, S. Energy demand forecasting: Combining cointegration analysis and artificial intelligence algorithm. Math. Probl. Eng. 2018, 2018, 5194810. [CrossRef]
- Huang, Y.; Li, S.; Wang, R.; Zhao, Z.; Huang, B.; Wei, B.; Zhu, G. Forecasting Oil Demand with the Development of Comprehensive Tourism. Chem. Technol. Fuels Oils 2021, 57, 299â310. [CrossRef]
Paper not yet in RePEc: Add citation now
- Johannesen, N.J.; Kolhe, M.; Goodwin, M. Relative evaluation of regression tools for urban area electrical energy demand forecasting. J. Clean. Prod. 2019, 218, 555â564. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kalimoldayev, M.; Drozdenko, A.; Koplyk, I.; Marinich, T.; Abdildayeva, A.; Zhukabayeva, T. Analysis of modern approaches for the prediction of electric energy consumption. Open Eng. 2020, 10, 350â361, Published by De Gruyter. Available online: https://www.degruyter.com/document/doi/10.1515/eng-2020-0028/html (accessed on 1 June 2023). [CrossRef]
Paper not yet in RePEc: Add citation now
- Khashei, M.; Bijari, M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft Comput. 2011, 11, 2664â2675. [CrossRef]
Paper not yet in RePEc: Add citation now
Kim, S. The effects of foreign direct investment, economic growth, industrial structure, renewable and nuclear energy, and urbanization on Korean greenhouse gas emissions. Sustainability 2020, 12, 1625. [CrossRef]
- Kochak, A.; Sharma, S. Demand forecasting using neural network for supply chain management. Int. J. Mech. Eng. Robot. Res. 2015, 4, 96â104.
Paper not yet in RePEc: Add citation now
- Kumar, A.; Shankar, R.; Alijohani, N. A big data driven framework for demand- driven forecasting with effects of marketing-mix variables. Ind. Mark. Manag. 2019, 90, 493â507. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lashgari, A.; Hosseinzadeh, H.; Khalilzadeh, M.; Milani, B.; Ahmadisharaf, A.; Rashidi, S. Transportation energy demand forecasting in Taiwan based on metaheuristic algorithms. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 2782â2800. [CrossRef]
Paper not yet in RePEc: Add citation now
Lin, S.J.; Lu, I.J.; Lewis, C. Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan. Energy Policy 2007, 35, 1948â1955. [CrossRef]
- Liu, J.; Wang, S.; Wei, N.; Chen, X.; Xie, H.; Wang, J. Natural gas consumption forecasting: A discussion on forecasting history and future challenges. J. Nat. Gas Sci. Eng. 2021, 90, 103930. [CrossRef] Disclaimer/Publisherâs Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Ma, E.; Yang, X. Financial Pressure, Energy Consumption and Carbon Emissions: A Quasi-Natural Experiment Based on the Educational Authority Reform. China Financ. Econ. Rev. 2022, 11, 44â65. Available online: https://www.degruyter.com/ document/doi/10.1515/cfer-2022-0022/html (accessed on 1 June 2023).
Paper not yet in RePEc: Add citation now
- Maltais, L.G.; Gosselin, L. Energy management of domestic hot water systems with model predictive control and demand forecast based on machine learning. Energy Convers. Manag. 2022, 15, 100254. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mediavilla, M.A.; Dietrich, F.; Palm, D. Review and analysis of artificial intelligence methods for demand forecasting in supply chain management. Procedia CIRP 2022, 107, 1126â1131. [CrossRef]
Paper not yet in RePEc: Add citation now
- Moroff, N.U.; Kurt, E.; Kamphues, J. Machine Learning and statistics: A Study for assessing innovative demand forecasting models. Procedia Comput. Sci. 2021, 180, 40â49. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mustapha, N.H.N.; Ismail, R. Factors affecting energy demand in developing countries: A dynamic panel analysis. Int. J. Energy Econ. Policy 2013, 3, 1â6.
Paper not yet in RePEc: Add citation now
- Nakhli, S.R.; Rafat, M.; Dastjerdi, R.B.; Rafei, M. Oil sanctions and their transmission channels in the Iranian economy: A DSGE model. Resour. Policy 2021, 70, 101963. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ogunsola, A.J.; Tipoy, C.K. Determinants of energy consumption: The case of African oil exporting countries. Cogent Econ. Financ. 2022, 10, 2058157. [CrossRef]
Paper not yet in RePEc: Add citation now
Ou, S.; He, X.; Ji, W.; Chen, W.; Sui, L.; Gan, Y.; Lu, Z.; Lin, Z.; Deng, S.; Bouchard, J.; et al. Machine learning model to project the impact of COVID-19 on US motor gasoline demand. Naure. Energy 2020, 5, 666â673.
- Parveen, N.; Zaidi, S.; Danish, M. Support vector regression model for predicting the sorption capacity of lead (II). Perspect. Sci. 2016, 8, 629â631. [CrossRef]
Paper not yet in RePEc: Add citation now
- Perea, R.G.; Poyato, E.C.; Montesinos, P.; DÃaz, J.A.R. Optimisation of water demand forecasting by artificial intelligence with short data sets. Biosyst. Eng. 2019, 177, 59â66. [CrossRef] Sustainability 2023, 15, 13592 19 of 19
Paper not yet in RePEc: Add citation now
- Rehman, S.A.U.; Cai, Y.; Fazal, R.; Das Walasai, G.; Mirjat, N.H. An integrated modeling approach for forecasting long-term energy demand in Pakistan. Energies 2017, 10, 1868. [CrossRef]
Paper not yet in RePEc: Add citation now
- RodrÃguez-Pérez, R.; Bajorath, J. Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery. J. Comput.-Aided Mol. Des. 2022, 36, 355â362. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Romero-Gelvez, J.I.; Villamizar, E.F.; Garcia-Bedoya, O.; Cuartas, J.A.H. Demand Forecasting for Inventory Management using Limited Data Sets: A Case Study from the Oil Industry. In Proceedings of the ICAI Workshops: At the Third International Conference on Applied Informatics 2020, Ota, Nigeria, 29â31 October 2020; pp. 111â119.
Paper not yet in RePEc: Add citation now
- Sánchez-Durán, R.; Luque, J.; Barbancho, J. Long-term demand forecasting in a scenario of energy transition. Energies 2019, 12, 3095. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sadiq, M.; Ou, J.P.; Duong, K.D.; Van, L.; Ngo, T.Q.; Bui, T.X. The influence of economic factors on the sustainable energy consumption: Evidence from China. Econ. Res.-Ekon. Istraživanja 2022, 36, 1751â1773. [CrossRef]
Paper not yet in RePEc: Add citation now
- Saidi, K.; Hammami, S. The impact of CO2 emissions and economic growth on energy consumption in 58 countries. Energy Rep. 2015, 1, 62â70. [CrossRef]
Paper not yet in RePEc: Add citation now
- Salim, R.; Rafiq, S.; Shafiei, S.; Yao, Y. Does urbanization increase pollutant emission and energy intensity? Evidence from some Asian developing economies. Appl. Econ. 2019, 51, 4008â4024. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sharma, R.; Singhal, P. Demand forecasting of engine oil for automotive and industrial lubricant manufacturing company using neural network. Mater. Today Proc. 2019, 18, 2308â2314. [CrossRef]
Paper not yet in RePEc: Add citation now
- Swaminathan, K.; Venkitasubramony, R. Demand forecasting for fashion products: A systematic review. Int. J. Forecast. 2023, in press. [CrossRef]
Paper not yet in RePEc: Add citation now
Toorajipour, R.; Sohrabpour, V.; Nazarpour, A.; Oghazi, P.; Fischl, M. Artificial intelligence in supply chain management: A systematic literature review. J. Bus. Res. 2021, 122, 502â517. [CrossRef]
- Twumasi, C.; Twumasi, J. Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana. Int. J. Forecast. 2022, 38, 1258â1277. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988â999. [CrossRef]
Paper not yet in RePEc: Add citation now
- von Graevenitz, K.; Rottner, E. Energy Use Patterns in German Manufacturing from 2003 to 2017. Jahrbücher Für Natl. Und Stat.
Paper not yet in RePEc: Add citation now
- Wakefield, K. A Guide to Machine Learning Algorithms and Their Application. Undated, SAS. Com. 2013. Available online: https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html (accessed on 1 June 2023).
Paper not yet in RePEc: Add citation now
- Wang, Q.; Zhang, F. What does the Chinaâs economic recovery after COVID-19 pandemic mean for the economic growth and energy consumption of other countries? J. Clean. Prod. 2021, 295, 126265. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, W.; Liang, Y. Regional Demand Forecasting of Refined Oil under Alternative Energy Marketâs Competition. J. Clean Energy Technol. 2019, 7, 56â59. [CrossRef]
Paper not yet in RePEc: Add citation now
Zhang, X.; Pellegrino, F.; Shen, J.; Copertaro, B.; Huang, P.; Saini, P.K.; Lovati, M. A preliminary simulation study about the impact of COVID-19 crisis on energy demand of a building mix at a district in Sweden. Appl. Energy 2020, 280, 115954. [CrossRef] [PubMed]