create a website

Oil Demand Forecasting in Importing and Exporting Countries: AI-Based Analysis of Endogenous and Exogenous Factors. (2023). Zhu, Hui.
In: Sustainability.
RePEc:gam:jsusta:v:15:y:2023:i:18:p:13592-:d:1237713.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 58

References cited by this document

Cocites: 58

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abbasimehr, H.; Shabani, M.; Yousefi, M. An optimized model using LSTM network for demand forecasting. Comput. Ind. Eng. 2020, 143, 106435. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Çevik, H.H.; Çunkaş, M. Short-term load forecasting using fuzzy logic and ANFIS. Neural Comput. Appl. 2015, 26, 1355–1367. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Al-Fattah, S.M. Artificial intelligence approach for modeling and forecasting oil-price volatility. SPE Reserv. Eval. Eng. 2019, 22, 817–826. [CrossRef]
    Paper not yet in RePEc: Add citation now
  4. Al-Fattah, S.M.; Aramco, S. Application of the artificial intelligence GANNATS model in forecasting crude oil demand for Saudi Arabia and China. J. Pet. Sci. Eng. 2021, 200, 108368. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Al-Musaylh, M.S.; Deo, R.C.; Adamowski, J.F.; Li, Y. Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia. Adv. Eng. Inform. 2018, 35, 1–16. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Alhendi, A.A.; Al-Sumaiti, A.S.; Elmay, F.K.; Wescaot, J.; Kavousi-Fard, A.; Heydarian-Forushani, E.; Alhelou, H.H. Artificial intelligence for water–energy nexus demand forecasting: A review. Int. J. Low-Carbon Technol. 2022, 17, 730–744. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Anik, A.R.; Rahman, S. Commercial energy demand forecasting in Bangladesh. Energies 2021, 14, 6394. [CrossRef]

  8. Available online: https://www.degruyter.com/document/doi/10.1515/jbnst-2022-0031/html (accessed on 1 June 2023).
    Paper not yet in RePEc: Add citation now
  9. Boamah, V. Forecasting the Demand of Oil in Ghana: A Statistical Approach. Manag. Sci. Bus. Decis. 2021, 1, 29–43. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [CrossRef]

  11. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. Sustainability 2023, 15, 13592 18 of 19
    Paper not yet in RePEc: Add citation now
  12. Brentan, B.M.; Luvizotto, E., Jr.; Herrera, M.; Izquierdo, J.; Pérez-García, R. Hybrid regression model for near real-time urban water demand forecasting. J. Comput. Appl. Math. 2017, 309, 532–541. [CrossRef]
    Paper not yet in RePEc: Add citation now
  13. Chaudhry, A.A. A Panel Data Analysis of Electricity Demand in Pakistan. Lahore J. Econ. 2010, 15, 75–106. [CrossRef]

  14. Chen, R.; Rao, Z.; Liao, S. Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data. J. Cent. South Univ. 2019, 26, 2136–2148. [CrossRef]
    Paper not yet in RePEc: Add citation now
  15. Coussement, K.; Lessmann, S.; Verstraeten, G. A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry. Decis. Support Syst. 2017, 95, 27–36. [CrossRef]

  16. Dirican, C. The impacts of robotics, artificial intelligence on business and economics. Procedia Soc. Behav. Sci. 2015, 195, 564–573. [CrossRef]
    Paper not yet in RePEc: Add citation now
  17. Dorin, P.; Kim, J.; Wang, K.W. Vibration energy harvesting system with coupled bistable modules. Act. Passiv. Smart Struct. Integr. Syst. 2019, XIII, 81–94.
    Paper not yet in RePEc: Add citation now
  18. Duan, J.; Hou, Z.; Fang, S.; Lu, W.; Hu, M.; Tian, X.; Wang, P.; Ma, W. A novel electricity consumption forecasting model based on kernel extreme learning machine-with generalized maximum correntropy criterion. Energy Rep. 2022, 8, 10113–10124. [CrossRef]
    Paper not yet in RePEc: Add citation now
  19. Fatima, T.; Xia, E.; Ahad, M. Oil demand forecasting for China: A fresh evidence from structural time series analysis. Environ. Dev. Sustain. 2019, 21, 1205–1224. [CrossRef]
    Paper not yet in RePEc: Add citation now
  20. Feizabadi, J. Machine learning demand forecasting and supply chain performance. Int. J. Logist. Res. Appl. 2022, 25, 119–142. [CrossRef]
    Paper not yet in RePEc: Add citation now
  21. Huang, J.; Tang, Y.; Chen, S. Energy demand forecasting: Combining cointegration analysis and artificial intelligence algorithm. Math. Probl. Eng. 2018, 2018, 5194810. [CrossRef]

  22. Huang, Y.; Li, S.; Wang, R.; Zhao, Z.; Huang, B.; Wei, B.; Zhu, G. Forecasting Oil Demand with the Development of Comprehensive Tourism. Chem. Technol. Fuels Oils 2021, 57, 299–310. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Johannesen, N.J.; Kolhe, M.; Goodwin, M. Relative evaluation of regression tools for urban area electrical energy demand forecasting. J. Clean. Prod. 2019, 218, 555–564. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Kalimoldayev, M.; Drozdenko, A.; Koplyk, I.; Marinich, T.; Abdildayeva, A.; Zhukabayeva, T. Analysis of modern approaches for the prediction of electric energy consumption. Open Eng. 2020, 10, 350–361, Published by De Gruyter. Available online: https://www.degruyter.com/document/doi/10.1515/eng-2020-0028/html (accessed on 1 June 2023). [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Khashei, M.; Bijari, M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft Comput. 2011, 11, 2664–2675. [CrossRef]
    Paper not yet in RePEc: Add citation now
  26. Kim, S. The effects of foreign direct investment, economic growth, industrial structure, renewable and nuclear energy, and urbanization on Korean greenhouse gas emissions. Sustainability 2020, 12, 1625. [CrossRef]

  27. Kochak, A.; Sharma, S. Demand forecasting using neural network for supply chain management. Int. J. Mech. Eng. Robot. Res. 2015, 4, 96–104.
    Paper not yet in RePEc: Add citation now
  28. Kumar, A.; Shankar, R.; Alijohani, N. A big data driven framework for demand- driven forecasting with effects of marketing-mix variables. Ind. Mark. Manag. 2019, 90, 493–507. [CrossRef]
    Paper not yet in RePEc: Add citation now
  29. Lashgari, A.; Hosseinzadeh, H.; Khalilzadeh, M.; Milani, B.; Ahmadisharaf, A.; Rashidi, S. Transportation energy demand forecasting in Taiwan based on metaheuristic algorithms. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 2782–2800. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Lin, S.J.; Lu, I.J.; Lewis, C. Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan. Energy Policy 2007, 35, 1948–1955. [CrossRef]

  31. Liu, J.; Wang, S.; Wei, N.; Chen, X.; Xie, H.; Wang, J. Natural gas consumption forecasting: A discussion on forecasting history and future challenges. J. Nat. Gas Sci. Eng. 2021, 90, 103930. [CrossRef] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
    Paper not yet in RePEc: Add citation now
  32. Ma, E.; Yang, X. Financial Pressure, Energy Consumption and Carbon Emissions: A Quasi-Natural Experiment Based on the Educational Authority Reform. China Financ. Econ. Rev. 2022, 11, 44–65. Available online: https://www.degruyter.com/ document/doi/10.1515/cfer-2022-0022/html (accessed on 1 June 2023).
    Paper not yet in RePEc: Add citation now
  33. Maltais, L.G.; Gosselin, L. Energy management of domestic hot water systems with model predictive control and demand forecast based on machine learning. Energy Convers. Manag. 2022, 15, 100254. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Mediavilla, M.A.; Dietrich, F.; Palm, D. Review and analysis of artificial intelligence methods for demand forecasting in supply chain management. Procedia CIRP 2022, 107, 1126–1131. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Moroff, N.U.; Kurt, E.; Kamphues, J. Machine Learning and statistics: A Study for assessing innovative demand forecasting models. Procedia Comput. Sci. 2021, 180, 40–49. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Mustapha, N.H.N.; Ismail, R. Factors affecting energy demand in developing countries: A dynamic panel analysis. Int. J. Energy Econ. Policy 2013, 3, 1–6.
    Paper not yet in RePEc: Add citation now
  37. Nakhli, S.R.; Rafat, M.; Dastjerdi, R.B.; Rafei, M. Oil sanctions and their transmission channels in the Iranian economy: A DSGE model. Resour. Policy 2021, 70, 101963. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Ogunsola, A.J.; Tipoy, C.K. Determinants of energy consumption: The case of African oil exporting countries. Cogent Econ. Financ. 2022, 10, 2058157. [CrossRef]
    Paper not yet in RePEc: Add citation now
  39. Ou, S.; He, X.; Ji, W.; Chen, W.; Sui, L.; Gan, Y.; Lu, Z.; Lin, Z.; Deng, S.; Bouchard, J.; et al. Machine learning model to project the impact of COVID-19 on US motor gasoline demand. Naure. Energy 2020, 5, 666–673.

  40. Parveen, N.; Zaidi, S.; Danish, M. Support vector regression model for predicting the sorption capacity of lead (II). Perspect. Sci. 2016, 8, 629–631. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Perea, R.G.; Poyato, E.C.; Montesinos, P.; Díaz, J.A.R. Optimisation of water demand forecasting by artificial intelligence with short data sets. Biosyst. Eng. 2019, 177, 59–66. [CrossRef] Sustainability 2023, 15, 13592 19 of 19
    Paper not yet in RePEc: Add citation now
  42. Rehman, S.A.U.; Cai, Y.; Fazal, R.; Das Walasai, G.; Mirjat, N.H. An integrated modeling approach for forecasting long-term energy demand in Pakistan. Energies 2017, 10, 1868. [CrossRef]
    Paper not yet in RePEc: Add citation now
  43. Rodríguez-Pérez, R.; Bajorath, J. Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery. J. Comput.-Aided Mol. Des. 2022, 36, 355–362. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  44. Romero-Gelvez, J.I.; Villamizar, E.F.; Garcia-Bedoya, O.; Cuartas, J.A.H. Demand Forecasting for Inventory Management using Limited Data Sets: A Case Study from the Oil Industry. In Proceedings of the ICAI Workshops: At the Third International Conference on Applied Informatics 2020, Ota, Nigeria, 29–31 October 2020; pp. 111–119.
    Paper not yet in RePEc: Add citation now
  45. Sánchez-Durán, R.; Luque, J.; Barbancho, J. Long-term demand forecasting in a scenario of energy transition. Energies 2019, 12, 3095. [CrossRef]
    Paper not yet in RePEc: Add citation now
  46. Sadiq, M.; Ou, J.P.; Duong, K.D.; Van, L.; Ngo, T.Q.; Bui, T.X. The influence of economic factors on the sustainable energy consumption: Evidence from China. Econ. Res.-Ekon. Istraživanja 2022, 36, 1751–1773. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Saidi, K.; Hammami, S. The impact of CO2 emissions and economic growth on energy consumption in 58 countries. Energy Rep. 2015, 1, 62–70. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Salim, R.; Rafiq, S.; Shafiei, S.; Yao, Y. Does urbanization increase pollutant emission and energy intensity? Evidence from some Asian developing economies. Appl. Econ. 2019, 51, 4008–4024. [CrossRef]
    Paper not yet in RePEc: Add citation now
  49. Sharma, R.; Singhal, P. Demand forecasting of engine oil for automotive and industrial lubricant manufacturing company using neural network. Mater. Today Proc. 2019, 18, 2308–2314. [CrossRef]
    Paper not yet in RePEc: Add citation now
  50. Swaminathan, K.; Venkitasubramony, R. Demand forecasting for fashion products: A systematic review. Int. J. Forecast. 2023, in press. [CrossRef]
    Paper not yet in RePEc: Add citation now
  51. Toorajipour, R.; Sohrabpour, V.; Nazarpour, A.; Oghazi, P.; Fischl, M. Artificial intelligence in supply chain management: A systematic literature review. J. Bus. Res. 2021, 122, 502–517. [CrossRef]

  52. Twumasi, C.; Twumasi, J. Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana. Int. J. Forecast. 2022, 38, 1258–1277. [CrossRef]
    Paper not yet in RePEc: Add citation now
  53. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef]
    Paper not yet in RePEc: Add citation now
  54. von Graevenitz, K.; Rottner, E. Energy Use Patterns in German Manufacturing from 2003 to 2017. Jahrbücher Für Natl. Und Stat.
    Paper not yet in RePEc: Add citation now
  55. Wakefield, K. A Guide to Machine Learning Algorithms and Their Application. Undated, SAS. Com. 2013. Available online: https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html (accessed on 1 June 2023).
    Paper not yet in RePEc: Add citation now
  56. Wang, Q.; Zhang, F. What does the China’s economic recovery after COVID-19 pandemic mean for the economic growth and energy consumption of other countries? J. Clean. Prod. 2021, 295, 126265. [CrossRef]
    Paper not yet in RePEc: Add citation now
  57. Zhang, W.; Liang, Y. Regional Demand Forecasting of Refined Oil under Alternative Energy Market’s Competition. J. Clean Energy Technol. 2019, 7, 56–59. [CrossRef]
    Paper not yet in RePEc: Add citation now
  58. Zhang, X.; Pellegrino, F.; Shen, J.; Copertaro, B.; Huang, P.; Saini, P.K.; Lovati, M. A preliminary simulation study about the impact of COVID-19 crisis on energy demand of a building mix at a district in Sweden. Appl. Energy 2020, 280, 115954. [CrossRef] [PubMed]

Cocites

Documents in RePEc which have cited the same bibliography

  1. Assessing geographical differences of the COVID-19 impact on fuel consumption: the case of Italy. (2023). Morelli, Caterina ; Maranzano, Paolo ; Denova, Matteo ; Borgoni, Riccardo.
    In: Letters in Spatial and Resource Sciences.
    RePEc:spr:lsprsc:v:16:y:2023:i:1:d:10.1007_s12076-023-00361-9.

    Full description at Econpapers || Download paper

  2. Oil Demand Forecasting in Importing and Exporting Countries: AI-Based Analysis of Endogenous and Exogenous Factors. (2023). Zhu, Hui.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:18:p:13592-:d:1237713.

    Full description at Econpapers || Download paper

  3. Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System. (2022). Cheresharov, Stoyan ; Hadzhikoleva, Stanka ; Yotov, Kostadin.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:17:p:11074-:d:907460.

    Full description at Econpapers || Download paper

  4. Handling Load Uncertainty during On-Peak Time via Dual ESS and LSTM with Load Data Augmentation. (2022). Kim, Jung-Su ; Hwang, Jin Sol ; Song, Hwachang.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:9:p:3001-:d:797751.

    Full description at Econpapers || Download paper

  5. A Multi-Step Time-Series Clustering-Based Seq2Seq LSTM Learning for a Single Household Electricity Load Forecasting. (2022). Masood, Zaki ; Choi, Yonghoon ; Gantassi, Rahma.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:7:p:2623-:d:786419.

    Full description at Econpapers || Download paper

  6. Towards a Rigorous Consideration of Occupant Behaviours of Residential Households for Effective Electrical Energy Savings: An Overview. (2022). Lazarova-Molnar, Sanja ; Bouktif, Salah ; Ouni, Ali.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:5:p:1741-:d:759035.

    Full description at Econpapers || Download paper

  7. Forecasting Crude Oil Consumption in Poland Based on LSTM Recurrent Neural Network. (2022). Manowska, Anna ; Bluszcz, Anna.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:13:p:4885-:d:854838.

    Full description at Econpapers || Download paper

  8. Detecting fake reviews through topic modelling. (2022). Kumar, Satish ; Kazancoglu, Yigit ; Birim, Ule Ozturk ; Mangla, Sachin Kumar ; Kahraman, Aysun.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:149:y:2022:i:c:p:884-900.

    Full description at Econpapers || Download paper

  9. Constituents of dynamic marketing capability: Strategic fit and heterogeneity in export performance. (2022). Nath, Prithwiraj ; Tzokas, Nikolaos ; Yip, Nick ; Hoque, Mohammad Tayeenul ; Ahammad, Mohammad Faisal.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:144:y:2022:i:c:p:1007-1023.

    Full description at Econpapers || Download paper

  10. Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market. (2022). Torres, J F ; Martinez-Alvarez, F ; Hadjout, D ; Troncoso, A ; Sebaa, A.
    In: Energy.
    RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033090.

    Full description at Econpapers || Download paper

  11. Development and validation of a second-order thermal network model for residential buildings. (2022). Jiang, Yilin ; Song, LI ; Wang, Junke ; Tang, Choon Yik.
    In: Applied Energy.
    RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014033.

    Full description at Econpapers || Download paper

  12. Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation. (2022). Kraft, Markus ; Hofmeister, Markus ; Hammacher, Jorg ; Rohrig, Gerd ; Dorr, Christoph ; Bhave, Amit ; Flegel, Volker ; Mosbach, Sebastian ; Blum, Martin.
    In: Applied Energy.
    RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011958.

    Full description at Econpapers || Download paper

  13. Policyholder cluster divergence based differential premium in diabetes insurance. (2021). Qin, Yifang ; Tang, Qing ; Bashir, Muhammad Farhan ; Ma, Benjiang.
    In: Managerial and Decision Economics.
    RePEc:wly:mgtdec:v:42:y:2021:i:7:p:1793-1807.

    Full description at Econpapers || Download paper

  14. An adaptive update model based on improved Long Short Term Memory for online prediction of vibration signal. (2021). Zhao, Zhen ; Li, Kun ; Tian, Huixin ; Ren, Daixu.
    In: Journal of Intelligent Manufacturing.
    RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01556-3.

    Full description at Econpapers || Download paper

  15. Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network. (2021). Bae, Sungwoo ; Chang, Munseok ; Yoo, Jaehyun.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:24:p:13783-:d:701865.

    Full description at Econpapers || Download paper

  16. Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid. (2021). Farooq, Umer ; Haider, Syed Irtaza ; Aslam, Shahzad ; Bukhsh, Rasool ; Ayub, Nasir ; Alvi, Muhammad Junaid ; Rukh, Gul ; Albogamy, Fahad R ; Azar, Ahmad Taher.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:22:p:12653-:d:680508.

    Full description at Econpapers || Download paper

  17. Performance Assessment for Short-Term Water Demand Forecasting Models on Distinctive Water Uses in Korea. (2021). Yum, Kyung-Taek ; Jun, Kyung-Soo ; Han, Kuk-Heon ; Koo, Kang-Min ; Kim, Jung-Sik ; Lee, Gyumin.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:11:p:6056-:d:563769.

    Full description at Econpapers || Download paper

  18. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. (2021). Bai, Yu-Ting ; Jin, Xue-Bo ; Wang, Xiao-Yi ; Zheng, Wei-Zhen ; Su, Ting-Li ; Lin, Seng ; Kong, Jian-Lei.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:6:p:1596-:d:516332.

    Full description at Econpapers || Download paper

  19. Day-Ahead Electric Load Forecast for a Ghanaian Health Facility Using Different Algorithms. (2021). Sawadogo, Windmanagda ; Schneiders, Thorsten ; Meilinger, Stefanie ; Rummeny, Silvan ; Chaaraoui, Samer ; Bebber, Matthias ; Kunstmann, Harald.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:2:p:409-:d:479449.

    Full description at Econpapers || Download paper

  20. Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction. (2021). Prava, Venkat ; Barta, Gergo ; Pasztor, Benedek.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:22:p:7794-:d:684578.

    Full description at Econpapers || Download paper

  21. Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption. (2021). Senchilo, Nikita Dmitrievich ; Ustinov, Denis Anatolievich.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:21:p:7098-:d:669182.

    Full description at Econpapers || Download paper

  22. Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings. (2021). Fakhri, Youssef ; Hadri, Sarah ; el Arroussi, Mohamed ; Bakhouya, Mohamed ; Najib, Mehdi.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:5831-:d:636032.

    Full description at Econpapers || Download paper

  23. Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis. (2021). Javed, Umar ; Husev, Oleksandr ; Shabbir, Noman ; Jawad, Muhammad ; Kutt, Lauri ; Ijaz, Khalid ; Ansari, Ejaz A.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:17:p:5510-:d:628657.

    Full description at Econpapers || Download paper

  24. A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV. (2021). Steens, Thomas ; Grottke, Matthias ; von Maydell, Karsten ; Telle, Jan-Simon ; di Modica, Gian-Luca ; Agert, Carsten ; Engel, Bernd ; Hanke, Benedikt.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:12:p:3576-:d:575802.

    Full description at Econpapers || Download paper

  25. Artificial intelligence techniques for enabling Big Data services in distribution networks: A review. (2021). Barja-Martinez, Sara ; Villafafila-Robles, Roberto ; Lloret-Gallego, Pau ; Aragues-Pealba, Monica ; Munne-Collado, Ingrid ; Bullich-Massague, Eduard.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007413.

    Full description at Econpapers || Download paper

  26. Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power. (2021). , Yosca ; Tan, Sek F ; Lee, Hyun-Jin.
    In: Renewable Energy.
    RePEc:eee:renene:v:178:y:2021:i:c:p:1006-1019.

    Full description at Econpapers || Download paper

  27. Energy consumption prediction model with deep inception residual network inspiration and LSTM. (2021). Salam, Abdulwahed ; el Hibaoui, Abdelaaziz.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:190:y:2021:i:c:p:97-109.

    Full description at Econpapers || Download paper

  28. An improved self-organizing incremental neural network model for short-term time-series load prediction. (2021). Wong, Yee Wan ; Rajkumar, Rajprasad Kumar ; Chong, Lee Wai ; Begam, Kasim Mumtaj.
    In: Applied Energy.
    RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003949.

    Full description at Econpapers || Download paper

  29. Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network. (2021). Sharma, Vinay ; Fekri, Mohammad Navid ; Grolinger, Katarina ; Patel, Harsh.
    In: Applied Energy.
    RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315804.

    Full description at Econpapers || Download paper

  30. The massive attack of COVID‐19 in India is a big concern for Bangladesh: The key focus should be given on the interconnection between the countries. (2021). Daria, Sohel ; Shahriar, Mohammad ; Islam, Md Rabiul ; Asaduzzaman, MD.
    In: International Journal of Health Planning and Management.
    RePEc:bla:ijhplm:v:36:y:2021:i:5:p:1947-1949.

    Full description at Econpapers || Download paper

  31. Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network. (2020). Petroanu, Dana-Mihaela ; Pirjan, Alexandru.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2020:i:1:p:104-:d:467643.

    Full description at Econpapers || Download paper

  32. A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus. (2020). Solyali, Davut.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:9:p:3612-:d:352230.

    Full description at Econpapers || Download paper

  33. A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid. (2020). Baysal, Mustafa ; Yaprakdal, Fatma ; Yilmaz, Berkay M ; Anvari-Moghaddam, Amjad.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:4:p:1653-:d:324095.

    Full description at Econpapers || Download paper

  34. Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs. (2020). Dadarlat, Vasile Teodor ; Cioara, Tudor ; Antal, Marcel ; Anghel, Ionut ; Salomie, Ioan ; Pop, Claudia ; Iancu, Bogdan ; Vesa, Andreea Valeria.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:4:p:1417-:d:320667.

    Full description at Econpapers || Download paper

  35. Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms. (2020). Zakeri, Sahar ; Shoaran, Maryam ; Mohammadi, Fazel ; Mohammadi-Ivatloo, Behnam ; Moradzadeh, Arash.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:17:p:7076-:d:406243.

    Full description at Econpapers || Download paper

  36. Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management. (2020). Hwang, Seung-June ; Kim, Jongsoo ; Noh, Ji Seong ; Park, Hyun-Ji.
    In: Mathematics.
    RePEc:gam:jmathe:v:8:y:2020:i:4:p:565-:d:344368.

    Full description at Econpapers || Download paper

  37. Time Series Clustering of Electricity Demand for Industrial Areas on Smart Grid. (2020). Kim, Yunsun ; Son, Heung-Gu.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:9:p:2377-:d:355978.

    Full description at Econpapers || Download paper

  38. Towards Assessing the Electricity Demand in Brazil: Data-Driven Analysis and Ensemble Learning Models. (2020). Casaca, Wallace ; Dias, Mauricio Araujo ; Colnago, Marilaine ; Leme, Joo Vitor.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:6:p:1407-:d:333831.

    Full description at Econpapers || Download paper

  39. An Intelligent Model to Predict Energy Performances of Residential Buildings Based on Deep Neural Networks. (2020). Young, William A ; Younessinaki, Roohollah ; Weckman, Gary R ; Sadeghi, Azadeh.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:3:p:571-:d:312867.

    Full description at Econpapers || Download paper

  40. Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting. (2020). Bouktif, Salah ; Serhani, Mohamed Adel ; Ouni, Ali ; Fiaz, Ali.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:2:p:391-:d:308290.

    Full description at Econpapers || Download paper

  41. Applying Deep Learning to the Heat Production Planning Problem in a District Heating System. (2020). Yoon, Seok Mann ; Song, Sang Hwa ; Kim, Kwanho ; Lee, Jae Seung.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:24:p:6641-:d:463123.

    Full description at Econpapers || Download paper

  42. Forecasting Electricity Consumption in Commercial Buildings Using a Machine Learning Approach. (2020). Otto, Marc-Oliver ; Hwang, Junhwa ; Suh, Dongjun.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:22:p:5885-:d:443383.

    Full description at Econpapers || Download paper

  43. Optimal ESS Scheduling for Peak Shaving of Building Energy Using Accuracy-Enhanced Load Forecast. (2020). Kim, Jung-Su ; Hwang, Jin Sol ; Fitri, Ismi Rosyiana ; Song, Hwachang.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5633-:d:435920.

    Full description at Econpapers || Download paper

  44. Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption. (2020). Cho, Sung-Bae ; Bu, Seok-Jun.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:18:p:4722-:d:411730.

    Full description at Econpapers || Download paper

  45. A Study on the Development of Machine-Learning Based Load Transfer Detection Algorithm for Distribution Planning. (2020). Kim, Jun-Hyeok ; Lee, Byung-Sung.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:17:p:4358-:d:403158.

    Full description at Econpapers || Download paper

  46. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. (2020). Wang, Yanan ; Kang, LE ; Pang, Jinbo ; Peng, Fei ; Zhou, Yanting.
    In: Applied Energy.
    RePEc:eee:appene:v:260:y:2020:i:c:s0306261919318562.

    Full description at Econpapers || Download paper

  47. Short-term power prediction of photovoltaic power station based on long short-term memory-back-propagation. (2019). Kuang, Liang ; Zhu, Erxi ; Pi, Dechang ; Hua, Chi.
    In: International Journal of Distributed Sensor Networks.
    RePEc:sae:intdis:v:15:y:2019:i:10:p:1550147719883134.

    Full description at Econpapers || Download paper

  48. Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities. (2019). Wadud, Zahid ; Mujeeb, Sana ; Javaid, Nadeem ; Afzal, Muhammad Khalil ; Ilahi, Manzoor ; Ishmanov, Farruh.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:4:p:987-:d:205948.

    Full description at Econpapers || Download paper

  49. Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance. (2019). Haider, Syed Irtaza ; Alhussein, Musaed ; Aurangzeb, Khursheed.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:8:p:1487-:d:224240.

    Full description at Econpapers || Download paper

  50. Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting. (2019). Bouktif, Salah ; Serhani, Mohamed Adel ; Ouni, Ali ; Fiaz, Ali.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:1:p:149-:d:194483.

    Full description at Econpapers || Download paper

  51. Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation. (2019). Wi, Young-Min ; Acharya, Shree Krishna ; Lee, Jaehee.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:18:p:3560-:d:268046.

    Full description at Econpapers || Download paper

  52. Long-Term Demand Forecasting in a Scenario of Energy Transition. (2019). Sanchez-Duran, Rafael ; Barbancho, Julio ; Luque, Joaquin.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:16:p:3095-:d:256899.

    Full description at Econpapers || Download paper

  53. Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches. (2019). Yang, Zhile ; Guo, Yuanjun ; Zhou, Yimin ; Wei, Yanjie ; Chang, Yan ; Feng, Shengzhong ; Mourshed, Monjur ; Zhu, Juncheng.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:14:p:2692-:d:248158.

    Full description at Econpapers || Download paper

  54. District Heating Load Prediction Algorithm Based on Feature Fusion LSTM Model. (2019). Wang, Zhipan ; Pan, YU ; Lin, Tao ; Song, Jiancai ; Xue, Guixiang ; Qi, Chengying.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:11:p:2122-:d:236771.

    Full description at Econpapers || Download paper

  55. A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network. (2018). Zhan, Panpan ; Ma, Jian ; Zhang, Chunhong ; Tian, Chujie.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3493-:d:190634.

    Full description at Econpapers || Download paper

  56. Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting. (2018). Shin, Yong-June ; Kim, Seon Hyeog ; Lee, Gyul ; Kwon, Gu-Young.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3433-:d:188862.

    Full description at Econpapers || Download paper

  57. Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain. (2018). Carutasu, George ; Cruau, George ; Petroanu, Dana-Mihaela ; Pirjan, Alexandru.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:10:p:2623-:d:173257.

    Full description at Econpapers || Download paper

  58. Too much cocited documents. This list is not complete

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-01 08:36:04 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.