- Al-Weshah, G.A. ; Al-Manasrah, E. ; Al-Qatawneh, M. Customer relationship management systems and organizational performance: quantitative evidence from the Jordanian telecommunication industry. 2019 J. Market. Commun.. -
Paper not yet in RePEc: Add citation now
- Aslam, J.A. ; Popa, R.A. ; Rivest, R.L. On estimating the size and confidence of a statistical audit. 2007 En : EVT 2007 - 2007 USENIX/ACCURATE Electronic Voting Technology Workshop. :
Paper not yet in RePEc: Add citation now
- Avrizal, R. ; Wibowo, A. ; Yuniarti, A.S. ; Sandy, D.A. ; Prihandani, K. Analysis comparison of the classification data mining method to predictthe decisions of potential customer insurance. 2018 Int. J. Comput. Tech.. 5 15-20
Paper not yet in RePEc: Add citation now
- Basuki, A. Customer classification using learning vector quantization neural network. 2016 J. Telecommun. Electron. Comput. Eng.. 8 131-135
Paper not yet in RePEc: Add citation now
- Berloco, C. ; Argiento, R. ; Montagna, S. Forecasting short-term defaults of firms in a commercial network via Bayesian spatial and spatio-temporal methods. 2022 Int. J. Forecast.. -
Paper not yet in RePEc: Add citation now
- Breiman, L. Bagging predictors. 1996 Mach. Learn.. 24 123-140
Paper not yet in RePEc: Add citation now
- Breiman, L. Random forests. 2001 Mach. Learn.. 45 5-32
Paper not yet in RePEc: Add citation now
- Breiman, L. ; Friedman, J. ; Stone, C. ; Olshen, R. Classification and Regression Trees (Wadsworth Statistics/Probability). 1984 CRC Press: New York
Paper not yet in RePEc: Add citation now
- Chaudhuri, N. ; Gupta, G. ; Vamsi, V. ; Bose, I. On the platform but will they buy? Predicting customers' purchase behavior using deep learning. 2021 Decis. Support Syst.. 149 -
Paper not yet in RePEc: Add citation now
- Chen, S. ; Wang, X. ; Zhang, H. ; Wang, J. Customer purchase prediction from the perspective of imbalanced data: a machine learning framework based on factorization machine. 2021 Expert Syst. Appl.. 173 -
Paper not yet in RePEc: Add citation now
Chen, S.-S. ; Choubey, B. ; Singh, V. A neural network based price sensitive recommender model to predict customer choices based on price effect. 2021 J. Retailing Consum. Serv.. 61 -
- Chen, T. ; Guestrin, C. XGBoost: a scalable tree boosting system. 2016 En : Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :
Paper not yet in RePEc: Add citation now
- Chen, T.-Y. ; Liu, Y.-C. ; Chen, Y.-M. A method of potential customer searching from opinions of network villagers in virtual communities. 2016 Online Inf. Rev.. 40 146-167
Paper not yet in RePEc: Add citation now
- Chen, W.C. ; Hsu, C.C. ; Hsu, J.N. Optimal selection of potential customer range through the union sequential pattern by using a response model. 2011 Expert Syst. Appl.. 38 7451-7461
Paper not yet in RePEc: Add citation now
- Chen, Y. ; Li, Y. ; Wu, M. ; Lu, F. ; Hou, M. ; Yin, Y. Differentiating Crohn's disease from intestinal tuberculosis using a fusion correlation neural network. 2022 Knowl. Base Syst.. 244 -
Paper not yet in RePEc: Add citation now
Chou, P. ; Chuang, H.H.-C. ; Chou, Y.-C. ; Liang, T.-P. Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning. 2022 Eur. J. Oper. Res.. 296 635-651
- Choudhury, A.M. ; Nur, K. A machine learning approach to identify potential customer based on purchase behavior. 2019 En : . ICREST:
Paper not yet in RePEc: Add citation now
Coussement, K. ; Harrigan, P. ; Benoit, D.F. Improving direct mail targeting through customer response modeling. 2015 Expert Syst. Appl.. 42 8403-8412
Coussement, K. ; Lessmann, S. ; Verstraeten, G. A comparative analysis of data preparation algorithms for customer churn prediction: a case study in the telecommunication industry. 2017 Decis. Support Syst.. 95 27-36
- Cui, Y. ; Tobossi, R. ; Vigouroux, O. Modelling Customer Online Behaviours with Neural Networks: Applications to Conversion Prediction and Advertising Retargeting. 2018 :
Paper not yet in RePEc: Add citation now
- Das, T.K. A customer classification prediction model based on machine learning techniques. 2016 Proc. 2015 Int. Conf. Appl. Theor. Comput. Commun. Technol. iCATccT. 2015 321-326
Paper not yet in RePEc: Add citation now
De Bock, K.W. ; De Caigny, A. Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling. 2021 Decis. Support Syst.. 150 -
De Caigny, A. ; Coussement, K. ; De Bock, K.W. A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. 2018 Eur. J. Oper. Res.. 269 760-772
De Caigny, A. ; Coussement, K. ; De Bock, K.W. ; Lessmann, S. Incorporating textual information in customer churn prediction models based on a convolutional neural network. 2020 Int. J. Forecast.. 36 1563-1578
- DeLong, E.R. ; DeLong, D.M. ; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. 1988 Biometrics. 44 837-845
Paper not yet in RePEc: Add citation now
- Domingos, P. ; Pazzani, M. On the optimality of the simple bayesian classifier under zero-one loss. 1997 Mach. Learn.. 29 103-130
Paper not yet in RePEc: Add citation now
Esmeli, R. ; Bader-El-Den, M. ; Abdullahi, H. An analyses of the effect of using contextual and loyalty features on early purchase prediction of shoppers in e-commerce domain. 2022 J. Bus. Res.. 147 420-434
Fader, P.S. ; Hardie, B.G.S. Probability models for customer-base analysis. 2009 J. Interact. Market.. 23 61-69
- Fumera, G. ; Roli, F. ; Serrau, A. Dynamics of variance reduction in bagging and other techniques based on randomisation. 2005 En : Lecture Notes in Computer Science. :
Paper not yet in RePEc: Add citation now
- Gamage, T.C. ; Gnanapala, A. ; Ashill, N.J. Understanding social customer relationship management adoption: qualitative insights. 2021 J. Strat. Market.. -
Paper not yet in RePEc: Add citation now
- Ganesh, J. ; Arnold, M.J. ; Reynolds, K.E. Understanding the customer base of service providers: an examination of the differences between switchers and stayers. 2000 J. Market.. 64 65-87
Paper not yet in RePEc: Add citation now
- Gengler, C.E. ; Popkowski Leszczyc, P.T.L. Using customer satisfaction research for relationship marketing: a direct marketing approach. 1997 J. Direct Mark.. 11 23-29
Paper not yet in RePEc: Add citation now
Höppner, S. ; Stripling, E. ; Baesens, B. ; Broucke, S. vanden ; Verdonck, T. Profit driven decision trees for churn prediction. 2020 Eur. J. Oper. Res.. 284 920-933
- Hossain, M.S. ; Rahman, M.F. Customer sentiment analysis and prediction of insurance products' reviews using machine learning approaches. 2022 FIIB Bus. Rev.. 12 386-402
Paper not yet in RePEc: Add citation now
Hossain, M.S. ; Rahman, M.F. Detection of potential customers' empathy behavior towards customers' reviews. 2022 J. Retailing Consum. Serv.. 65 -
- Hu, Q. ; Xie, S. ; Zhang, J. ; Zhu, Q. ; Guo, S. ; Yu, P.S. Hetero sales: utilizing heterogeneous social networks to identify the next enterprise customer. 2016 25th Int. World Wide Web Conf. WWW. 2016 41-50
Paper not yet in RePEc: Add citation now
- Jaiswal, D.P. ; Kumar, S. ; Mukherjee, P. Customer transaction prediction system. 2020 Procedia Comput. Sci.. 168 49-56
Paper not yet in RePEc: Add citation now
- Jamal, Z. ; Bucklin, R.E. Improving the diagnosis and prediction of customer churn: a heterogeneous hazard modeling approach. 1987 J. Interact. Market.. 20 16-29
Paper not yet in RePEc: Add citation now
Jiang, P. ; Liu, Z. ; Abedin, M.Z. ; Wang, J. ; Yang, W. ; Dong, Q. Profit-driven weighted classifier with interpretable ability for customer churn prediction. 2024 Omega. 125 -
- Jiang, P. ; Liu, Z. ; Zhang, L. ; Wang, J. Hybrid model for profit-driven churn prediction based on cost minimization and return maximization. 2023 Expert Syst. Appl.. 228 -
Paper not yet in RePEc: Add citation now
- Ke, G. ; Meng, Q. ; Finley, T. ; Wang, T. ; Chen, W. ; Ma, W. ; Ye, Q. ; Liu, T.Y. LightGBM: a highly efficient gradient boosting decision tree. 2017 En : Advances in Neural Information Processing Systems. :
Paper not yet in RePEc: Add citation now
- Keramati, A. ; Jafari-Marandi, R. ; Aliannejadi, M. ; Ahmadian, I. ; Mozaffari, M. ; Abbasi, U. Improved churn prediction in telecommunication industry using data mining techniques. 2014 Appl. Soft Comput. J.. 24 994-1012
Paper not yet in RePEc: Add citation now
Kim, J. ; Ji, H. ; Oh, S. ; Hwang, S. ; Park, E. ; del Pobil, A.P. A deep hybrid learning model for customer repurchase behavior. 2021 J. Retailing Consum. Serv.. 59 -
- Kotsianti, S.B. ; Kanellopoulos, D. Combining bagging, boosting and dagging for classification problems. 2007 En : Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). :
Paper not yet in RePEc: Add citation now
- Kozodoi, N. ; Lessmann, S. ; Papakonstantinou, K. ; Gatsoulis, Y. ; Baesens, B. A multi-objective approach for profit-driven feature selection in credit scoring. 2019 Decis. Support Syst.. 120 106-117
Paper not yet in RePEc: Add citation now
- Lei, S. ; Zhu, D. Web potential customer classification based on SVM. 2012 En : . ICICEE:
Paper not yet in RePEc: Add citation now
- Lessmann, S. ; Haupt, J. ; Coussement, K. ; De Bock, K.W. Targeting customers for profit: an ensemble learning framework to support marketing decision-making. 2021 Inf. Sci. (Ny). 557 286-301
Paper not yet in RePEc: Add citation now
Li, B. ; Liao, M. ; Yuan, J. ; Zhang, J. Green consumption behavior prediction based on fan-shaped search mechanism fruit fly algorithm optimized neural network. 2023 J. Retailing Consum. Serv.. 75 -
- Li, J. ; Pan, S. ; Huang, L. ; Zhu, X. A machine learning based method for customer behavior prediction. 2019 Tech. Gaz.. 26 1670-1676
Paper not yet in RePEc: Add citation now
- Li, Y. Customer identification of potential energy substitution based on big data method. 2019 En : Proceedings of the 2019 International Conference on Computer, Network, Communication and Information Systems (CNCI 2019). Atlantis Press: Paris, France
Paper not yet in RePEc: Add citation now
Liu, C.-H. ; Gan, B. ; Ko, W.-H. ; Teng, C.-C. Comparison of localized and foreign restaurant brands for consumer behavior prediction. 2022 J. Retailing Consum. Serv.. 65 -
Liu, Z. ; Jiang, P. ; De Bock, K.W. ; Wang, J. ; Zhang, L. ; Niu, X. Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction. 2024 Technol. Forecast. Soc. Change. 198 -
- Liu, Z. ; Jiang, P. ; Wang, J. ; Du, Z. ; Niu, X. ; Zhang, L. Hospitality order cancellation prediction from a profit-driven perspective. 2023 Int. J. Contemp. Hospit. Manag.. 35 2084-2112
Paper not yet in RePEc: Add citation now
- Liu, Z. ; Wang, X. ; Li, Y. ; Yao, L. ; An, J. ; Bai, L. ; Lim, E.-P. Face to purchase: predicting consumer choices with structured facial and behavioral traits embedding. 2022 Knowl. Base Syst.. 235 -
Paper not yet in RePEc: Add citation now
- Lu, X. ; He, S. ; Lian, S. ; Ba, S. ; Wu, J. Is user-generated content always helpful? The effects of online forum browsing on consumers' travel purchase decisions. 2020 Decis. Support Syst.. 137 -
Paper not yet in RePEc: Add citation now
- Lundberg, S.M. ; Erion, G. ; Chen, H. ; DeGrave, A. ; Prutkin, J.M. ; Nair, B. ; Katz, R. ; Himmelfarb, J. ; Bansal, N. ; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. 2020 Nat. Mach. Intell.. 2 56-67
Paper not yet in RePEc: Add citation now
- Lundberg, S.M. ; Lee, S.I. A unified approach to interpreting model predictions. 2017 En : Proceedings of the 31st International Conference on Neural Information Processing Systems. :
Paper not yet in RePEc: Add citation now
- Lundberg, S.M. ; Nair, B. ; Vavilala, M.S. ; Horibe, M. ; Eisses, M.J. ; Adams, T. ; Liston, D.E. ; Low, D.K.W. ; Newman, S.F. ; Kim, J. ; Lee, S.I. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. 2018 Nat. Biomed. Eng.. 2 749-760
Paper not yet in RePEc: Add citation now
Maldonado, S. ; Domínguez, G. ; Olaya, D. ; Verbeke, W. Profit-driven churn prediction for the mutual fund industry: a multisegment approach. 2021 Omega. 100 -
- Maldonado, S. ; Flores, Á. ; Verbraken, T. ; Baesens, B. ; Weber, R. Profit-based feature selection using support vector machines - general framework and an application for customer retention. 2015 Appl. Soft Comput. J.. 35 740-748
Paper not yet in RePEc: Add citation now
Maldonado, S. ; López, J. ; Vairetti, C. Profit-based churn prediction based on minimax probability machines. 2020 Eur. J. Oper. Res.. 284 273-284
Martínez, A. ; Schmuck, C. ; Pereverzyev, S. ; Pirker, C. ; Haltmeier, M. A machine learning framework for customer purchase prediction in the non-contractual setting. 2020 Eur. J. Oper. Res.. 281 588-596
- Moeyersoms, J. ; Martens, D. Including high-cardinality attributes in predictive models: a case study in churn prediction in the energy sector. 2015 Decis. Support Syst.. -
Paper not yet in RePEc: Add citation now
Nilashi, M. ; Ahmadi, H. ; Arji, G. ; Alsalem, K.O. ; Samad, S. ; Ghabban, F. ; Alzahrani, A.O. ; Ahani, A. ; Alarood, A.A. Big social data and customer decision making in vegetarian restaurants: a combined machine learning method. 2021 J. Retailing Consum. Serv.. 62 -
- Palaniappan, S. ; Mustapha, A. ; Foozy, C.F.M. ; Atan, R. Customer profiling using classification approach for bank telemarketing. 2017 Int. J. Informatics Vis.. 1 214-217
Paper not yet in RePEc: Add citation now
- Papouskova, M. ; Hajek, P. Two-stage consumer credit risk modelling using heterogeneous ensemble learning. 2019 Decis. Support Syst.. 118 33-45
Paper not yet in RePEc: Add citation now
Pashchenko, Y. ; Rahman, M.F. ; Hossain, M.S. ; Uddin, M.K. ; Islam, T. Emotional and the normative aspects of customers' reviews. 2022 J. Retailing Consum. Serv.. 68 -
- Prokhorenkova, L. ; Gusev, G. ; Vorobev, A. ; Dorogush, A.V. ; Gulin, A. Catboost: unbiased boosting with categorical features. 2018 En : Advances in Neural Information Processing Systems. :
Paper not yet in RePEc: Add citation now
Rahim, M.A. ; Mushafiq, M. ; Khan, S. ; Arain, Z.A. RFM-based repurchase behavior for customer classification and segmentation. 2021 J. Retailing Consum. Serv.. 61 -
Risselada, H. ; Verhoef, P.C. ; Bijmolt, T.H.A. Staying power of churn prediction models. 2010 J. Interact. Market.. 24 198-208
- Rozo, B.J.G. ; Crook, J. ; Andreeva, G. The role of web browsing in credit risk prediction. 2022 Decis. Support Syst.. 113879 -
Paper not yet in RePEc: Add citation now
- Schapire, R.E. The strength of weak learnability. 1990 Mach. Learn.. -
Paper not yet in RePEc: Add citation now
- Scholz, M. ; Schnurbus, J. ; Haupt, H. ; Dorner, V. ; Landherr, A. ; Probst, F. Dynamic effects of user- and marketer-generated content on consumer purchase behavior: modeling the hierarchical structure of social media websites. 2018 Decis. Support Syst.. 113 43-55
Paper not yet in RePEc: Add citation now
- Shah, M. ; Skandan, K.A. ; Shivani Sweta, S. ; Gaur, G. ; Prajwala, T.R. Customer purchase intention prediction using text analytical models. 2022 En : 2022 IEEE 7th International Conference for Convergence in Technology, I2CT 2022. IEEE:
Paper not yet in RePEc: Add citation now
- Stripling, E. ; vanden Broucke, S. ; Antonio, K. ; Baesens, B. ; Snoeck, M. Profit maximizing logistic model for customer churn prediction using genetic algorithms. 2018 Swarm Evol. Comput.. 40 116-130
Paper not yet in RePEc: Add citation now
- Sundarkumar, G.G. ; Ravi, V. A novel hybrid undersampling method for mining unbalanced datasets in banking and insurance. 2015 Eng. Appl. Artif. Intell.. 37 368-377
Paper not yet in RePEc: Add citation now
- Tanuwijaya, S. ; Alamsyah, A. ; Ariyanti, M. Mobile customer behaviour predictive analysis for targeting netflix potential customer. 2021 2021 9th Int. Conf. Inf. Commun. Technol. ICoICT. 2021 348-352
Paper not yet in RePEc: Add citation now
- Thomas, J.S. ; Chen, C. ; Iacobucci, D. Email marketing as a tool for strategic persuasion. 2022 J. Interact. Market.. 57 377-392
Paper not yet in RePEc: Add citation now
- Tibshirani, R. Regression shrinkage and selection via the lasso. 1996 J. R. Stat. Soc. Ser. B. 58 267-288
Paper not yet in RePEc: Add citation now
Trinh, G. ; Wright, M.J. Predicting future consumer purchases in grocery retailing with the condensed Poisson lognormal model. 2022 J. Retailing Consum. Serv.. 64 -
Van den Poel, D. ; Larivière, B. Customer attrition analysis for financial services using proportional hazard models. 2004 Eur. J. Oper. Res.. 157 196-217
Verbraken, T. ; Bravo, C. ; Weber, R. ; Baesens, B. Development and application of consumer credit scoring models using profit-based classification measures. 2014 Eur. J. Oper. Res.. 238 505-513
- Verbraken, T. ; Verbeke, W. ; Baesens, B. A novel profit maximizing metric for measuring classification performance of customer churn prediction models. 2013 IEEE Trans. Knowl. Data Eng.. 25 961-973
Paper not yet in RePEc: Add citation now
- von Helversen, B. ; Abramczuk, K. ; Kopeć, W. ; Nielek, R. Influence of consumer reviews on online purchasing decisions in older and younger adults. 2018 Decis. Support Syst.. 113 1-10
Paper not yet in RePEc: Add citation now
- Wen, Y.T. ; Yeh, P.W. ; Tsai, T.H. ; Peng, W.C. ; Shuai, H.H. Customer purchase behavior prediction from payment datasets. 2018 WSDM 2018 - Proc. 11th ACM Int. Conf. Web Search Data Min. 2018-Febua. 628-636
Paper not yet in RePEc: Add citation now
- Wu, J. ; Padgett, D. A direct comparative framework of customer satisfaction: an application to Internet search engines. 2004 J. Interact. Market.. 18 32-50
Paper not yet in RePEc: Add citation now
- Xia, Y. ; Zhao, J. ; He, L. ; Li, Y. ; Niu, M. A novel tree-based dynamic heterogeneous ensemble method for credit scoring. 2020 Expert Syst. Appl.. -
Paper not yet in RePEc: Add citation now
- Xu, Z. ; Dang, Y. ; Wang, Q. Potential buyer identification and purchase likelihood quantification by mining user-generated content on social media. 2022 Expert Syst. Appl.. 187 -
Paper not yet in RePEc: Add citation now
- YAN, S. Building a customer identification model with SPSS. DEStech trans. 2019 Soc. Sci. Educ. Hum. Sci.. 117-121
Paper not yet in RePEc: Add citation now
- Yeo, J. ; Hwang, S.W. ; Kim, S. ; Koh, E. ; Lipka, N. Conversion prediction from clickstream: modeling market prediction and customer predictability. 2020 IEEE Trans. Knowl. Data Eng.. 32 246-259
Paper not yet in RePEc: Add citation now
- Zhang, Y. Prediction of customer propensity based on machine learning. 2021 Proc. - 2021 Asia-Pacific Conf. Commun. Technol. Comput. Sci. ACCTCS. 2021 5-9
Paper not yet in RePEc: Add citation now
- Zhou, J. ; Wang, C. ; Ren, F. ; Chen, G. Inferring multi-stage risk for online consumer credit services: an integrated scheme using data augmentation and model enhancement. 2021 Decis. Support Syst.. 149 -
Paper not yet in RePEc: Add citation now