create a website

Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction. (2024). Gao, Yuyang ; Zhang, Ying ; Chen, Yinghao ; Abedin, Mohammad Zoynul ; Wang, Jianzhou ; Yang, Hufang ; Liu, Zhenkun.
In: Journal of Retailing and Consumer Services.
RePEc:eee:joreco:v:79:y:2024:i:c:s0969698924001504.

Full description at Econpapers || Download paper

Cited: 4

Citations received by this document

Cites: 92

References cited by this document

Cocites: 44

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Improving customer retention in taxi industry using travel data analytics: A churn prediction study. (2025). Loureiro, A. L. D., ; Miguaeis, V L ; Costa, Lvaro A ; Ferreira, Michel.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:85:y:2025:i:c:s0969698925000670.

    Full description at Econpapers || Download paper

  2. Integrating game theory and data-driven optimization models for online retailers with reusable packaging adoption. (2025). Xu, Xianhao ; Li, Zhiwen ; Yang, Bingnan ; Yue, Ruiting.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:84:y:2025:i:c:s0969698925000013.

    Full description at Econpapers || Download paper

  3. MLP-Carbon: A new paradigm integrating multi-frequency and multi-scale techniques for accurate carbon price forecasting. (2025). Tian, Zhirui ; Sun, Wenpu ; Wu, Chenye.
    In: Applied Energy.
    RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000601.

    Full description at Econpapers || Download paper

  4. Boosting Sports Card Sales: Leveraging Visual Display and Machine Learning in Online Retail. (2024). Yang, Yutao ; Lan, Tian.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:81:y:2024:i:c:s096969892400287x.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Al-Weshah, G.A. ; Al-Manasrah, E. ; Al-Qatawneh, M. Customer relationship management systems and organizational performance: quantitative evidence from the Jordanian telecommunication industry. 2019 J. Market. Commun.. -
    Paper not yet in RePEc: Add citation now
  2. Aslam, J.A. ; Popa, R.A. ; Rivest, R.L. On estimating the size and confidence of a statistical audit. 2007 En : EVT 2007 - 2007 USENIX/ACCURATE Electronic Voting Technology Workshop. :
    Paper not yet in RePEc: Add citation now
  3. Avrizal, R. ; Wibowo, A. ; Yuniarti, A.S. ; Sandy, D.A. ; Prihandani, K. Analysis comparison of the classification data mining method to predictthe decisions of potential customer insurance. 2018 Int. J. Comput. Tech.. 5 15-20
    Paper not yet in RePEc: Add citation now
  4. Basuki, A. Customer classification using learning vector quantization neural network. 2016 J. Telecommun. Electron. Comput. Eng.. 8 131-135
    Paper not yet in RePEc: Add citation now
  5. Berloco, C. ; Argiento, R. ; Montagna, S. Forecasting short-term defaults of firms in a commercial network via Bayesian spatial and spatio-temporal methods. 2022 Int. J. Forecast.. -
    Paper not yet in RePEc: Add citation now
  6. Breiman, L. Bagging predictors. 1996 Mach. Learn.. 24 123-140
    Paper not yet in RePEc: Add citation now
  7. Breiman, L. Random forests. 2001 Mach. Learn.. 45 5-32
    Paper not yet in RePEc: Add citation now
  8. Breiman, L. ; Friedman, J. ; Stone, C. ; Olshen, R. Classification and Regression Trees (Wadsworth Statistics/Probability). 1984 CRC Press: New York
    Paper not yet in RePEc: Add citation now
  9. Chaudhuri, N. ; Gupta, G. ; Vamsi, V. ; Bose, I. On the platform but will they buy? Predicting customers' purchase behavior using deep learning. 2021 Decis. Support Syst.. 149 -
    Paper not yet in RePEc: Add citation now
  10. Chen, S. ; Wang, X. ; Zhang, H. ; Wang, J. Customer purchase prediction from the perspective of imbalanced data: a machine learning framework based on factorization machine. 2021 Expert Syst. Appl.. 173 -
    Paper not yet in RePEc: Add citation now
  11. Chen, S.-S. ; Choubey, B. ; Singh, V. A neural network based price sensitive recommender model to predict customer choices based on price effect. 2021 J. Retailing Consum. Serv.. 61 -

  12. Chen, T. ; Guestrin, C. XGBoost: a scalable tree boosting system. 2016 En : Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :
    Paper not yet in RePEc: Add citation now
  13. Chen, T.-Y. ; Liu, Y.-C. ; Chen, Y.-M. A method of potential customer searching from opinions of network villagers in virtual communities. 2016 Online Inf. Rev.. 40 146-167
    Paper not yet in RePEc: Add citation now
  14. Chen, W.C. ; Hsu, C.C. ; Hsu, J.N. Optimal selection of potential customer range through the union sequential pattern by using a response model. 2011 Expert Syst. Appl.. 38 7451-7461
    Paper not yet in RePEc: Add citation now
  15. Chen, Y. ; Li, Y. ; Wu, M. ; Lu, F. ; Hou, M. ; Yin, Y. Differentiating Crohn's disease from intestinal tuberculosis using a fusion correlation neural network. 2022 Knowl. Base Syst.. 244 -
    Paper not yet in RePEc: Add citation now
  16. Chou, P. ; Chuang, H.H.-C. ; Chou, Y.-C. ; Liang, T.-P. Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning. 2022 Eur. J. Oper. Res.. 296 635-651

  17. Choudhury, A.M. ; Nur, K. A machine learning approach to identify potential customer based on purchase behavior. 2019 En : . ICREST:
    Paper not yet in RePEc: Add citation now
  18. Coussement, K. ; Harrigan, P. ; Benoit, D.F. Improving direct mail targeting through customer response modeling. 2015 Expert Syst. Appl.. 42 8403-8412

  19. Coussement, K. ; Lessmann, S. ; Verstraeten, G. A comparative analysis of data preparation algorithms for customer churn prediction: a case study in the telecommunication industry. 2017 Decis. Support Syst.. 95 27-36

  20. Cui, Y. ; Tobossi, R. ; Vigouroux, O. Modelling Customer Online Behaviours with Neural Networks: Applications to Conversion Prediction and Advertising Retargeting. 2018 :
    Paper not yet in RePEc: Add citation now
  21. Das, T.K. A customer classification prediction model based on machine learning techniques. 2016 Proc. 2015 Int. Conf. Appl. Theor. Comput. Commun. Technol. iCATccT. 2015 321-326
    Paper not yet in RePEc: Add citation now
  22. De Bock, K.W. ; De Caigny, A. Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling. 2021 Decis. Support Syst.. 150 -

  23. De Caigny, A. ; Coussement, K. ; De Bock, K.W. A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. 2018 Eur. J. Oper. Res.. 269 760-772

  24. De Caigny, A. ; Coussement, K. ; De Bock, K.W. ; Lessmann, S. Incorporating textual information in customer churn prediction models based on a convolutional neural network. 2020 Int. J. Forecast.. 36 1563-1578

  25. DeLong, E.R. ; DeLong, D.M. ; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. 1988 Biometrics. 44 837-845
    Paper not yet in RePEc: Add citation now
  26. Domingos, P. ; Pazzani, M. On the optimality of the simple bayesian classifier under zero-one loss. 1997 Mach. Learn.. 29 103-130
    Paper not yet in RePEc: Add citation now
  27. Esmeli, R. ; Bader-El-Den, M. ; Abdullahi, H. An analyses of the effect of using contextual and loyalty features on early purchase prediction of shoppers in e-commerce domain. 2022 J. Bus. Res.. 147 420-434

  28. Fader, P.S. ; Hardie, B.G.S. Probability models for customer-base analysis. 2009 J. Interact. Market.. 23 61-69

  29. Fumera, G. ; Roli, F. ; Serrau, A. Dynamics of variance reduction in bagging and other techniques based on randomisation. 2005 En : Lecture Notes in Computer Science. :
    Paper not yet in RePEc: Add citation now
  30. Gamage, T.C. ; Gnanapala, A. ; Ashill, N.J. Understanding social customer relationship management adoption: qualitative insights. 2021 J. Strat. Market.. -
    Paper not yet in RePEc: Add citation now
  31. Ganesh, J. ; Arnold, M.J. ; Reynolds, K.E. Understanding the customer base of service providers: an examination of the differences between switchers and stayers. 2000 J. Market.. 64 65-87
    Paper not yet in RePEc: Add citation now
  32. Gengler, C.E. ; Popkowski Leszczyc, P.T.L. Using customer satisfaction research for relationship marketing: a direct marketing approach. 1997 J. Direct Mark.. 11 23-29
    Paper not yet in RePEc: Add citation now
  33. Höppner, S. ; Stripling, E. ; Baesens, B. ; Broucke, S. vanden ; Verdonck, T. Profit driven decision trees for churn prediction. 2020 Eur. J. Oper. Res.. 284 920-933

  34. Hossain, M.S. ; Rahman, M.F. Customer sentiment analysis and prediction of insurance products' reviews using machine learning approaches. 2022 FIIB Bus. Rev.. 12 386-402
    Paper not yet in RePEc: Add citation now
  35. Hossain, M.S. ; Rahman, M.F. Detection of potential customers' empathy behavior towards customers' reviews. 2022 J. Retailing Consum. Serv.. 65 -

  36. Hu, Q. ; Xie, S. ; Zhang, J. ; Zhu, Q. ; Guo, S. ; Yu, P.S. Hetero sales: utilizing heterogeneous social networks to identify the next enterprise customer. 2016 25th Int. World Wide Web Conf. WWW. 2016 41-50
    Paper not yet in RePEc: Add citation now
  37. Jaiswal, D.P. ; Kumar, S. ; Mukherjee, P. Customer transaction prediction system. 2020 Procedia Comput. Sci.. 168 49-56
    Paper not yet in RePEc: Add citation now
  38. Jamal, Z. ; Bucklin, R.E. Improving the diagnosis and prediction of customer churn: a heterogeneous hazard modeling approach. 1987 J. Interact. Market.. 20 16-29
    Paper not yet in RePEc: Add citation now
  39. Jiang, P. ; Liu, Z. ; Abedin, M.Z. ; Wang, J. ; Yang, W. ; Dong, Q. Profit-driven weighted classifier with interpretable ability for customer churn prediction. 2024 Omega. 125 -

  40. Jiang, P. ; Liu, Z. ; Zhang, L. ; Wang, J. Hybrid model for profit-driven churn prediction based on cost minimization and return maximization. 2023 Expert Syst. Appl.. 228 -
    Paper not yet in RePEc: Add citation now
  41. Ke, G. ; Meng, Q. ; Finley, T. ; Wang, T. ; Chen, W. ; Ma, W. ; Ye, Q. ; Liu, T.Y. LightGBM: a highly efficient gradient boosting decision tree. 2017 En : Advances in Neural Information Processing Systems. :
    Paper not yet in RePEc: Add citation now
  42. Keramati, A. ; Jafari-Marandi, R. ; Aliannejadi, M. ; Ahmadian, I. ; Mozaffari, M. ; Abbasi, U. Improved churn prediction in telecommunication industry using data mining techniques. 2014 Appl. Soft Comput. J.. 24 994-1012
    Paper not yet in RePEc: Add citation now
  43. Kim, J. ; Ji, H. ; Oh, S. ; Hwang, S. ; Park, E. ; del Pobil, A.P. A deep hybrid learning model for customer repurchase behavior. 2021 J. Retailing Consum. Serv.. 59 -

  44. Kotsianti, S.B. ; Kanellopoulos, D. Combining bagging, boosting and dagging for classification problems. 2007 En : Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). :
    Paper not yet in RePEc: Add citation now
  45. Kozodoi, N. ; Lessmann, S. ; Papakonstantinou, K. ; Gatsoulis, Y. ; Baesens, B. A multi-objective approach for profit-driven feature selection in credit scoring. 2019 Decis. Support Syst.. 120 106-117
    Paper not yet in RePEc: Add citation now
  46. Lei, S. ; Zhu, D. Web potential customer classification based on SVM. 2012 En : . ICICEE:
    Paper not yet in RePEc: Add citation now
  47. Lessmann, S. ; Haupt, J. ; Coussement, K. ; De Bock, K.W. Targeting customers for profit: an ensemble learning framework to support marketing decision-making. 2021 Inf. Sci. (Ny). 557 286-301
    Paper not yet in RePEc: Add citation now
  48. Li, B. ; Liao, M. ; Yuan, J. ; Zhang, J. Green consumption behavior prediction based on fan-shaped search mechanism fruit fly algorithm optimized neural network. 2023 J. Retailing Consum. Serv.. 75 -

  49. Li, J. ; Pan, S. ; Huang, L. ; Zhu, X. A machine learning based method for customer behavior prediction. 2019 Tech. Gaz.. 26 1670-1676
    Paper not yet in RePEc: Add citation now
  50. Li, Y. Customer identification of potential energy substitution based on big data method. 2019 En : Proceedings of the 2019 International Conference on Computer, Network, Communication and Information Systems (CNCI 2019). Atlantis Press: Paris, France
    Paper not yet in RePEc: Add citation now
  51. Liu, C.-H. ; Gan, B. ; Ko, W.-H. ; Teng, C.-C. Comparison of localized and foreign restaurant brands for consumer behavior prediction. 2022 J. Retailing Consum. Serv.. 65 -

  52. Liu, Z. ; Jiang, P. ; De Bock, K.W. ; Wang, J. ; Zhang, L. ; Niu, X. Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction. 2024 Technol. Forecast. Soc. Change. 198 -

  53. Liu, Z. ; Jiang, P. ; Wang, J. ; Du, Z. ; Niu, X. ; Zhang, L. Hospitality order cancellation prediction from a profit-driven perspective. 2023 Int. J. Contemp. Hospit. Manag.. 35 2084-2112
    Paper not yet in RePEc: Add citation now
  54. Liu, Z. ; Wang, X. ; Li, Y. ; Yao, L. ; An, J. ; Bai, L. ; Lim, E.-P. Face to purchase: predicting consumer choices with structured facial and behavioral traits embedding. 2022 Knowl. Base Syst.. 235 -
    Paper not yet in RePEc: Add citation now
  55. Lu, X. ; He, S. ; Lian, S. ; Ba, S. ; Wu, J. Is user-generated content always helpful? The effects of online forum browsing on consumers' travel purchase decisions. 2020 Decis. Support Syst.. 137 -
    Paper not yet in RePEc: Add citation now
  56. Lundberg, S.M. ; Erion, G. ; Chen, H. ; DeGrave, A. ; Prutkin, J.M. ; Nair, B. ; Katz, R. ; Himmelfarb, J. ; Bansal, N. ; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. 2020 Nat. Mach. Intell.. 2 56-67
    Paper not yet in RePEc: Add citation now
  57. Lundberg, S.M. ; Lee, S.I. A unified approach to interpreting model predictions. 2017 En : Proceedings of the 31st International Conference on Neural Information Processing Systems. :
    Paper not yet in RePEc: Add citation now
  58. Lundberg, S.M. ; Nair, B. ; Vavilala, M.S. ; Horibe, M. ; Eisses, M.J. ; Adams, T. ; Liston, D.E. ; Low, D.K.W. ; Newman, S.F. ; Kim, J. ; Lee, S.I. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. 2018 Nat. Biomed. Eng.. 2 749-760
    Paper not yet in RePEc: Add citation now
  59. Maldonado, S. ; Domínguez, G. ; Olaya, D. ; Verbeke, W. Profit-driven churn prediction for the mutual fund industry: a multisegment approach. 2021 Omega. 100 -

  60. Maldonado, S. ; Flores, Á. ; Verbraken, T. ; Baesens, B. ; Weber, R. Profit-based feature selection using support vector machines - general framework and an application for customer retention. 2015 Appl. Soft Comput. J.. 35 740-748
    Paper not yet in RePEc: Add citation now
  61. Maldonado, S. ; López, J. ; Vairetti, C. Profit-based churn prediction based on minimax probability machines. 2020 Eur. J. Oper. Res.. 284 273-284

  62. Martínez, A. ; Schmuck, C. ; Pereverzyev, S. ; Pirker, C. ; Haltmeier, M. A machine learning framework for customer purchase prediction in the non-contractual setting. 2020 Eur. J. Oper. Res.. 281 588-596

  63. Moeyersoms, J. ; Martens, D. Including high-cardinality attributes in predictive models: a case study in churn prediction in the energy sector. 2015 Decis. Support Syst.. -
    Paper not yet in RePEc: Add citation now
  64. Nilashi, M. ; Ahmadi, H. ; Arji, G. ; Alsalem, K.O. ; Samad, S. ; Ghabban, F. ; Alzahrani, A.O. ; Ahani, A. ; Alarood, A.A. Big social data and customer decision making in vegetarian restaurants: a combined machine learning method. 2021 J. Retailing Consum. Serv.. 62 -

  65. Palaniappan, S. ; Mustapha, A. ; Foozy, C.F.M. ; Atan, R. Customer profiling using classification approach for bank telemarketing. 2017 Int. J. Informatics Vis.. 1 214-217
    Paper not yet in RePEc: Add citation now
  66. Papouskova, M. ; Hajek, P. Two-stage consumer credit risk modelling using heterogeneous ensemble learning. 2019 Decis. Support Syst.. 118 33-45
    Paper not yet in RePEc: Add citation now
  67. Pashchenko, Y. ; Rahman, M.F. ; Hossain, M.S. ; Uddin, M.K. ; Islam, T. Emotional and the normative aspects of customers' reviews. 2022 J. Retailing Consum. Serv.. 68 -

  68. Prokhorenkova, L. ; Gusev, G. ; Vorobev, A. ; Dorogush, A.V. ; Gulin, A. Catboost: unbiased boosting with categorical features. 2018 En : Advances in Neural Information Processing Systems. :
    Paper not yet in RePEc: Add citation now
  69. Rahim, M.A. ; Mushafiq, M. ; Khan, S. ; Arain, Z.A. RFM-based repurchase behavior for customer classification and segmentation. 2021 J. Retailing Consum. Serv.. 61 -

  70. Risselada, H. ; Verhoef, P.C. ; Bijmolt, T.H.A. Staying power of churn prediction models. 2010 J. Interact. Market.. 24 198-208

  71. Rozo, B.J.G. ; Crook, J. ; Andreeva, G. The role of web browsing in credit risk prediction. 2022 Decis. Support Syst.. 113879 -
    Paper not yet in RePEc: Add citation now
  72. Schapire, R.E. The strength of weak learnability. 1990 Mach. Learn.. -
    Paper not yet in RePEc: Add citation now
  73. Scholz, M. ; Schnurbus, J. ; Haupt, H. ; Dorner, V. ; Landherr, A. ; Probst, F. Dynamic effects of user- and marketer-generated content on consumer purchase behavior: modeling the hierarchical structure of social media websites. 2018 Decis. Support Syst.. 113 43-55
    Paper not yet in RePEc: Add citation now
  74. Shah, M. ; Skandan, K.A. ; Shivani Sweta, S. ; Gaur, G. ; Prajwala, T.R. Customer purchase intention prediction using text analytical models. 2022 En : 2022 IEEE 7th International Conference for Convergence in Technology, I2CT 2022. IEEE:
    Paper not yet in RePEc: Add citation now
  75. Stripling, E. ; vanden Broucke, S. ; Antonio, K. ; Baesens, B. ; Snoeck, M. Profit maximizing logistic model for customer churn prediction using genetic algorithms. 2018 Swarm Evol. Comput.. 40 116-130
    Paper not yet in RePEc: Add citation now
  76. Sundarkumar, G.G. ; Ravi, V. A novel hybrid undersampling method for mining unbalanced datasets in banking and insurance. 2015 Eng. Appl. Artif. Intell.. 37 368-377
    Paper not yet in RePEc: Add citation now
  77. Tanuwijaya, S. ; Alamsyah, A. ; Ariyanti, M. Mobile customer behaviour predictive analysis for targeting netflix potential customer. 2021 2021 9th Int. Conf. Inf. Commun. Technol. ICoICT. 2021 348-352
    Paper not yet in RePEc: Add citation now
  78. Thomas, J.S. ; Chen, C. ; Iacobucci, D. Email marketing as a tool for strategic persuasion. 2022 J. Interact. Market.. 57 377-392
    Paper not yet in RePEc: Add citation now
  79. Tibshirani, R. Regression shrinkage and selection via the lasso. 1996 J. R. Stat. Soc. Ser. B. 58 267-288
    Paper not yet in RePEc: Add citation now
  80. Trinh, G. ; Wright, M.J. Predicting future consumer purchases in grocery retailing with the condensed Poisson lognormal model. 2022 J. Retailing Consum. Serv.. 64 -

  81. Van den Poel, D. ; Larivière, B. Customer attrition analysis for financial services using proportional hazard models. 2004 Eur. J. Oper. Res.. 157 196-217

  82. Verbraken, T. ; Bravo, C. ; Weber, R. ; Baesens, B. Development and application of consumer credit scoring models using profit-based classification measures. 2014 Eur. J. Oper. Res.. 238 505-513

  83. Verbraken, T. ; Verbeke, W. ; Baesens, B. A novel profit maximizing metric for measuring classification performance of customer churn prediction models. 2013 IEEE Trans. Knowl. Data Eng.. 25 961-973
    Paper not yet in RePEc: Add citation now
  84. von Helversen, B. ; Abramczuk, K. ; Kopeć, W. ; Nielek, R. Influence of consumer reviews on online purchasing decisions in older and younger adults. 2018 Decis. Support Syst.. 113 1-10
    Paper not yet in RePEc: Add citation now
  85. Wen, Y.T. ; Yeh, P.W. ; Tsai, T.H. ; Peng, W.C. ; Shuai, H.H. Customer purchase behavior prediction from payment datasets. 2018 WSDM 2018 - Proc. 11th ACM Int. Conf. Web Search Data Min. 2018-Febua. 628-636
    Paper not yet in RePEc: Add citation now
  86. Wu, J. ; Padgett, D. A direct comparative framework of customer satisfaction: an application to Internet search engines. 2004 J. Interact. Market.. 18 32-50
    Paper not yet in RePEc: Add citation now
  87. Xia, Y. ; Zhao, J. ; He, L. ; Li, Y. ; Niu, M. A novel tree-based dynamic heterogeneous ensemble method for credit scoring. 2020 Expert Syst. Appl.. -
    Paper not yet in RePEc: Add citation now
  88. Xu, Z. ; Dang, Y. ; Wang, Q. Potential buyer identification and purchase likelihood quantification by mining user-generated content on social media. 2022 Expert Syst. Appl.. 187 -
    Paper not yet in RePEc: Add citation now
  89. YAN, S. Building a customer identification model with SPSS. DEStech trans. 2019 Soc. Sci. Educ. Hum. Sci.. 117-121
    Paper not yet in RePEc: Add citation now
  90. Yeo, J. ; Hwang, S.W. ; Kim, S. ; Koh, E. ; Lipka, N. Conversion prediction from clickstream: modeling market prediction and customer predictability. 2020 IEEE Trans. Knowl. Data Eng.. 32 246-259
    Paper not yet in RePEc: Add citation now
  91. Zhang, Y. Prediction of customer propensity based on machine learning. 2021 Proc. - 2021 Asia-Pacific Conf. Commun. Technol. Comput. Sci. ACCTCS. 2021 5-9
    Paper not yet in RePEc: Add citation now
  92. Zhou, J. ; Wang, C. ; Ren, F. ; Chen, G. Inferring multi-stage risk for online consumer credit services: an integrated scheme using data augmentation and model enhancement. 2021 Decis. Support Syst.. 149 -
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Recurrent double-conditional factor model. (2025). Fieberg, Christian ; Liedtke, Gerrit ; Poddig, Thorsten.
    In: OR Spectrum: Quantitative Approaches in Management.
    RePEc:spr:orspec:v:47:y:2025:i:1:d:10.1007_s00291-024-00771-1.

    Full description at Econpapers || Download paper

  2. Interpretable machine learning and explainable artificial intelligence. (2025). Urban, Timothy L ; Topuz, Kazim ; Bajaj, Akhilesh ; Coussement, Kristof.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:347:y:2025:i:2:d:10.1007_s10479-025-06577-w.

    Full description at Econpapers || Download paper

  3. Investigating the impact of undersampling and bagging: an empirical investigation for customer attrition modeling. (2025). Caigny, Arno ; Coussement, Kristof ; Meire, Matthijs ; Hoornaert, Steven.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:346:y:2025:i:3:d:10.1007_s10479-025-06516-9.

    Full description at Econpapers || Download paper

  4. Life event-based marketing using AI. (2025). Meire, Matthijs ; Hoornaert, Steven ; Coussement, Kristof ; de Caigny, Arno.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:193:y:2025:i:c:s0148296325001729.

    Full description at Econpapers || Download paper

  5. Profit-driven pre-processing in B2B customer churn modeling using fairness techniques. (2025). Bogaert, Matthias ; Janssens, Bram ; Rahman, Shimanto.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:189:y:2025:i:c:s0148296324006635.

    Full description at Econpapers || Download paper

  6. A Comprehensive Review: Applicability of Deep Neural Networks in Business Decision Making and Market Prediction Investment. (2025). Trinh, Viet.
    In: Papers.
    RePEc:arx:papers:2502.00151.

    Full description at Econpapers || Download paper

  7. Customer purchase prediction in electronic markets from clickstream data using the Oracle meta-classifier. (2024). Ehsani, Fatemeh ; Hosseini, Monireh.
    In: Operational Research.
    RePEc:spr:operea:v:24:y:2024:i:1:d:10.1007_s12351-023-00813-6.

    Full description at Econpapers || Download paper

  8. Development of fading channel patch based convolutional neural network models for customer churn prediction. (2024). Gupta, Gaurav.
    In: International Journal of System Assurance Engineering and Management.
    RePEc:spr:ijsaem:v:15:y:2024:i:1:d:10.1007_s13198-022-01759-2.

    Full description at Econpapers || Download paper

  9. Data analytics-based auditing: a case study of fraud detection in the banking context. (2024). Wamba, Samuel Fosso ; Kala, Jules Raymond ; Sando, Hyacinthe Djanan ; Ndassi, Arielle Ornela ; Tiwari, Sunil.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:340:y:2024:i:2:d:10.1007_s10479-024-06129-8.

    Full description at Econpapers || Download paper

  10. Forecasting commodity prices: empirical evidence using deep learning tools. (2024). Ftiti, Zied ; Louhichi, Wael ; Boubaker, Sahbi ; Tissaoui, Kais ; ben Ameur, Hachmi.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05076-6.

    Full description at Econpapers || Download paper

  11. Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction. (2024). Liu, Zhenkun ; Niu, Xinsong ; Jiang, Ping ; Zhang, Lifang ; de Bock, Koen W ; Wang, Jianzhou.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006303.

    Full description at Econpapers || Download paper

  12. Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction. (2024). Gao, Yuyang ; Zhang, Ying ; Chen, Yinghao ; Abedin, Mohammad Zoynul ; Wang, Jianzhou ; Yang, Hufang ; Liu, Zhenkun.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:79:y:2024:i:c:s0969698924001504.

    Full description at Econpapers || Download paper

  13. Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach. (2024). Guo, Yihan ; Feng, YI ; Marra, Marianna ; Ignatius, Joshua ; Wang, Dujuan ; Cheng, T. C. E., ; Yin, Yunqiang.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:184:y:2024:i:c:s014829632400376x.

    Full description at Econpapers || Download paper

  14. Interpretable generalized additive neural networks. (2024). Weinzierl, Sven ; Zschech, Patrick ; Kraus, Mathias ; Tschernutter, Daniel.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:303-316.

    Full description at Econpapers || Download paper

  15. Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda. (2024). de Bock, Koen W ; Verbeke, Wouter ; Delen, Dursun ; Choi, Tsan-Ming ; Martens, David ; Lessmann, Stefan ; Vairetti, Carla ; Maldonado, Sebastian ; Baesens, Bart ; Sowiski, Roman ; de Caigny, Arno ; Boute, Robert N ; Weber, Richard ; Kraus, Mathias ; Oskarsdottir, Maria ; Coussement, Kristof.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:249-272.

    Full description at Econpapers || Download paper

  16. How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach. (2023). Singh, Vinay ; Nanavati, Brijesh ; Kar, Arpan Kumar ; Gupta, Agam.
    In: Information Systems Frontiers.
    RePEc:spr:infosf:v:25:y:2023:i:4:d:10.1007_s10796-022-10314-0.

    Full description at Econpapers || Download paper

  17. A decision support framework to incorporate textual data for early student dropout prediction in higher education. (2023). Phan, Minh ; Coussement, Kristof ; de Caigny, Arno.
    In: Post-Print.
    RePEc:hal:journl:hal-04274684.

    Full description at Econpapers || Download paper

  18. Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda. (2023). Boute, Robert N ; Weber, Richard ; Kraus, Mathias ; Oskarsdottir, Maria ; Coussement, Kristof ; de Bock, Koen W ; Verbeke, Wouter ; Delen, Dursun ; Choi, Tsan-Ming ; Martens, David ; Lessmann, Stefan ; Vairetti, Carla ; Maldonado, Sebastian ; Baesens, Bart ; Slowiski, Roman ; de Caigny, Arno.
    In: Post-Print.
    RePEc:hal:journl:hal-04219546.

    Full description at Econpapers || Download paper

  19. Deep Churn Prediction Method for Telecommunication Industry. (2023). Gaber, Tarek ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; El-Gohary, Hatem ; El-Kenawy, El-Sayed M.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:5:p:4543-:d:1086814.

    Full description at Econpapers || Download paper

  20. Oil Demand Forecasting in Importing and Exporting Countries: AI-Based Analysis of Endogenous and Exogenous Factors. (2023). Zhu, Hui.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:18:p:13592-:d:1237713.

    Full description at Econpapers || Download paper

  21. Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art. (2023). Bogaert, Matthias ; Delaere, Lex.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:5:p:1137-:d:1079547.

    Full description at Econpapers || Download paper

  22. Price-aware enhanced dynamic recommendation based on deep learning. (2023). Guo, Wenhao ; Li, Minqiang ; Tian, Jin.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:75:y:2023:i:c:s0969698923002473.

    Full description at Econpapers || Download paper

  23. Is the system reliability profitable for retailing and consumer service of a dynamical system under cross-price elasticity of demand?. (2023). Jana, Tapas Kumar ; Seok, Hyesung ; Sarkar, Biswajit ; Dey, Bikash Koli.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:75:y:2023:i:c:s0969698923001868.

    Full description at Econpapers || Download paper

  24. Examining the gamified effect of the blindbox design: The moderating role of price. (2023). Feng, Yuanyue ; Miao, Xiaoyu ; Yang, Congcong ; Niu, Ben.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:74:y:2023:i:c:s0969698923001704.

    Full description at Econpapers || Download paper

  25. A novel deep learning model based on convolutional neural networks for employee churn prediction. (2022). Ozcan, Tuncay ; Ozmen, Ebru Pekel.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:41:y:2022:i:3:p:539-550.

    Full description at Econpapers || Download paper

  26. A novel customer churn prediction model for the telecommunication industry using data transformation methods and feature selection. (2022). Abedin, Mohammad Zoynul ; Rahman, Saifur M ; Sana, Joydeb Kumar.
    In: PLOS ONE.
    RePEc:plo:pone00:0278095.

    Full description at Econpapers || Download paper

  27. Customer determinants of used auto loan churn: comparing predictive performance using machine learning techniques. (2022). Patil, Vivek H ; Raju, Sudhakar ; Valluri, Chandrasekhar.
    In: Journal of Marketing Analytics.
    RePEc:pal:jmarka:v:10:y:2022:i:3:d:10.1057_s41270-021-00135-6.

    Full description at Econpapers || Download paper

  28. Consequences of personalized product recommendations and price promotions in online grocery shopping. (2022). Laukkanen, Tommi ; Luongo, Milena ; Hallikainen, Heli ; Dhir, Amandeep.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:69:y:2022:i:c:s0969698922001813.

    Full description at Econpapers || Download paper

  29. Economic corollaries of personalized recommendations. (2022). Lee, Wonjae ; Molaie, Mir Majid.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:68:y:2022:i:c:s0969698922000960.

    Full description at Econpapers || Download paper

  30. Bias in Algorithms: On the trade-off between accuracy and fairness. (2021). Janssen, Patrick ; Sadowski, Bert M.
    In: 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world.
    RePEc:zbw:itsb21:238032.

    Full description at Econpapers || Download paper

  31. Amalgamation of Customer Relationship Management and Data Analytics in Different Business Sectors—A Systematic Literature Review. (2021). Nayak, Soumyaranjan ; Barsocchi, Paolo ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; Bhoi, Akash Kumar.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:9:p:5279-:d:550856.

    Full description at Econpapers || Download paper

  32. Overcapacity Risk of China’s Coal Power Industry: A Comprehensive Assessment and Driving Factors. (2021). Wang, Yadong ; Xue, Xun.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:3:p:1426-:d:489546.

    Full description at Econpapers || Download paper

  33. An Empirical Study on Customer Churn Behaviours Prediction Using Arabic Twitter Mining Approach. (2021). Almuqren, Latifah ; Alrayes, Fatma S ; Cristea, Alexandra I.
    In: Future Internet.
    RePEc:gam:jftint:v:13:y:2021:i:7:p:175-:d:588849.

    Full description at Econpapers || Download paper

  34. Customer comeback: Empirical insights into the drivers and value of returning customers. (2021). Meire, Matthijs.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:127:y:2021:i:c:p:193-205.

    Full description at Econpapers || Download paper

  35. How training on multiple time slices improves performance in churn prediction. (2021). Thonemann, Ulrich W ; Gattermann-Itschert, Theresa.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:295:y:2021:i:2:p:664-674.

    Full description at Econpapers || Download paper

  36. Leveraging fine-grained transaction data for customer life event predictions. (2020). de Caigny, Arno ; Coussement, Kristof ; de Bock, Koen.
    In: Post-Print.
    RePEc:hal:journl:hal-02507998.

    Full description at Econpapers || Download paper

  37. Incorporating textual information in customer churn prediction models based on a convolutional neural network. (2020). Lessmann, Stefan ; Coussement, Kristof ; de Bock, Koen W ; de Caigny, Arno.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:36:y:2020:i:4:p:1563-1578.

    Full description at Econpapers || Download paper

  38. Conversion Uplift in E-Commerce: A Systematic Benchmark of Modeling Strategies. (2019). Lessmann, Stefan ; Gubela, Robin ; Gebert, Fabian ; Beque, Artem.
    In: International Journal of Information Technology & Decision Making (IJITDM).
    RePEc:wsi:ijitdm:v:18:y:2019:i:03:n:s0219622019500172.

    Full description at Econpapers || Download paper

  39. Incorporating textual information in customer churn prediction models based on a convolutional neural network. (2019). de Caigny, Arno ; Lessmann, Stefan ; Coussement, Kristof ; de Bock, Koen W.
    In: Post-Print.
    RePEc:hal:journl:hal-02275958.

    Full description at Econpapers || Download paper

  40. A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting. (2019). Chen, Shuixia ; Wang, Jian-Qiang ; Zhang, Hong-Yu.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:146:y:2019:i:c:p:41-54.

    Full description at Econpapers || Download paper

  41. Customer churn prediction in telecommunication industry using data certainty. (2019). Anwar, Sajid ; Loo, Jonathan ; Al-Obeidat, Feras ; Shah, Babar ; Adnan, Awais ; Amin, Adnan.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:94:y:2019:i:c:p:290-301.

    Full description at Econpapers || Download paper

  42. Conversion uplift in e-commerce: A systematic benchmark of modeling strategies. (2018). Gebert, Fabian ; Beque, Artem ; Lessmann, Stefan ; Gubela, Robin.
    In: IRTG 1792 Discussion Papers.
    RePEc:zbw:irtgdp:2018062.

    Full description at Econpapers || Download paper

  43. Targeting customers for profit: An ensemble learning framework to support marketing decision making. (2018). de Bock, Koen W ; Haupt, Johannes ; Lessmann, Stefan ; Coussement, Kristof.
    In: IRTG 1792 Discussion Papers.
    RePEc:zbw:irtgdp:2018012.

    Full description at Econpapers || Download paper

  44. A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. (2018). Coussement, Kristof ; de Bock, Koen W ; de Caigny, Arno.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:269:y:2018:i:2:p:760-772.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-30 20:11:54 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.