SlideShare una empresa de Scribd logo
Software matemático “derive 5”
Antes de comenzar, aprenderemos a descargar este software, que nos resultará de suma utilidad
para realizar la actividad propuesta y muchas otras que se puedan presentar.
Si no dispones del mismo en tu computadora, lo conveniente es descargarlo gratuitamente.
Una vez finalizada la instalación, en la caja de búsqueda del botón inicio, ingresas la palabra
derive, y aparecerá el programa. Puedes generar un acceso directo para que sea más sencillo
ubicarlo cuando necesites usarlo.
Este software tiene muchísimas funciones, que puedes explorar. Hoy veremos las que son
necesarias para desarrollar la tarea indicada.

Una vez abierto el programa, lo primero que observamos es la “pantalla de álgebra”.
Para realizar el inciso 1 de la actividad, tendrás que acceder a la “pantalla gráfica”, para lo cual
debes acceder a “ventana> nueva ventana 2d”. Recorda, que también se pueden realizar gráficas
en tres dimensiones.
Una vez que hayas abierto la ventana en 2d, debes ingresar las funciones en la “barra de edición o
de autor”

Las cuatro operaciones básicas se ingresan: suma +, resta -, multiplicación *, división /, la coma se
reemplaza por un punto; y si queremos indicar un exponente, utilizamos ^ seguido del exponente
deseado. Esto último, es muy útil para establecer expresiones racionales., o también la función
sqrt para raíces cuadradas.
Para poder utilizar las ventanas a la par, tenés que ir a “ventana > mosaico vertical (o mosaico
horizontal)”. La pantalla se visualiza de la siguiente forma:

Una vez ingresada la función, tenés que ir a la vista gráfica, y clickear el botón

.

PARA TENER EN CUENTA: Cuando se grafican funciones racionales de índice impar, debes: Desde
el comando “definir > preferencias de simplificación > rama compleja > any > si”
Para realizar el punto 2 de la actividad, necesitamos conocer más herramientas de la pantalla
algebraica:
* Para calcular el dominio: Recordamos que debes tener en cuenta las restricciones.
Seleccionas la parte de la función que necesitas, y con la tecla f3 se copiará en la barra de edición.
Así podrás plantear la desigualdad para ver cuáles son los valores que no pertenecen al dominio
de la función. Luego, debes presionar (con la expresión seleccionada) “resolver > expresion >
resolver”.
* Para calcular el conjunto de positividad y negatividad: Planteamos la inecuación con la función
cuando es mayor o menor que cero: f(x)>0 y luego, “resolver > expresion > resolver”.
* Para el corte con los ejes: Realizamos el mismo procedimiento:
- Para calcular el corte con el eje x, igualamos la función a cero, y luego (con la expresión
seleccionada) “resolver > expresión > resolver”.
Otra opción, es ir a “simplificar > factorizar > factorizar”.
- Para calcular el corte con el eje y: con la función seleccionada, en la pantalla algebraica
seleccionamos “simplificar > sustituir variable > elegimos valor cero, para la variable x >
simplificar”. Luego debemos repetir el procedimiento “resolver > expresión > resolver”.
*Cálculo de asíntotas: Ingresamos la función, y luego en la vista algebraica seleccionamos “cálculo
> límite > y seleccionamos la variable y el punto para el cuál queremos calcular el mismo”.
*Paridad: Pare ello, antes tengo que definir la función. Debemos: “definir > función >
seleccionamos el nombre y la definimos”. Luego, en la barra de entrada, ingresamos el nombre de
la función, seguido de un punto.

Ejemplo: f(5), y luego clickeamos:
simétrico y repetimos la operación.

(introducir y simplificar). Volvemos a ingresar el punto

Conclusiones:
-Si los valores hallados son los mismos, la función es par.
-Si tienen el mismo módulo pero distinto signo, es impar.
-Si los valores son distintos, la función no guarda paridad.
* Máximos y/o mínimos: Tenemos que derivar la función. Para ello, ingresamos la misma, y luego
en la vista algebraica clickeamos
(en este caso debe ser uno).

(hallar una derivada). Seleccionamos la variable y el orden
Al resultado obtenido, lo igualamos a cero; y luego “resolver > expresión > resolver”. Obtendremos
varios puntos, que tenemos que analizar en la derivada segunda; es decir que tenemos que volver
a derivar la expresión, y evaluarla en los puntos dados.
Para evaluarla, podemos realizar el mismo procedimiento que para cuando realizamos el corte con
los ejes (sustituir variable por el valor).
*crecimiento y decrecimiento: Planteamos la desigualdad de la derivada de la función, mayor o
menor que cero:
. Luego “resolver > expresión > resolver”.
*Puntos de inflexión: Primero, tenemos que igualar a cero la derivada segunda: f¨(x)=0.Los puntos
hallados, debemos evaluarlos en la derivada tercera, para lo cual empleamos cualquier
mecanismo de los nombrado anteriormente.

Más contenido relacionado

DOCX
Software matemático
PDF
Yonel Ñaupa Inversa de una Matriz
PPTX
Funciones en excel
PDF
Informe escrito de pseint
PPS
Uso Del Software Funciones Para Windows
PDF
Ejercicios 2 Graficos
DOCX
PPT
manual dfd
Software matemático
Yonel Ñaupa Inversa de una Matriz
Funciones en excel
Informe escrito de pseint
Uso Del Software Funciones Para Windows
Ejercicios 2 Graficos
manual dfd

La actualidad más candente (7)

PDF
Diagramas de flujo
PDF
Diagramas de flujo
PPTX
Clase8popu
PPTX
Variables, tipos de datos, operadores
PDF
PDF
MANUAL DE DFD
PDF
Diagramas de flujo
Diagramas de flujo
Clase8popu
Variables, tipos de datos, operadores
MANUAL DE DFD
Publicidad

Similar a Derive 5 (20)

DOCX
Practicas derive 6
PPT
Tutorial de derive 6
PPT
Tutorial de derive 6
PDF
Análisis de funciones con Geogebra
PDF
Operaciones algebraica basicas
PPTX
Funciones y gráficas en matlab
PPT
Algebra (I Bimestre)
PDF
Derive 3 (comandos c-diferencial)
PPTX
Graphmatica
PPT
Máxima ejercicio
PPT
Máxima ejercicio
PDF
Funciones ejemplos
PDF
Funciones
PPTX
Calculo diferencial
DOCX
Tutorial
PDF
Derive 2 (op-basicas)
PDF
Funciones S 7.pdf Funciones S 7Funciones S 7Funciones S 7
DOCX
Refuerzo. 20 12-2014
PPT
Máxima ejercicio
RTF
Matematica
Practicas derive 6
Tutorial de derive 6
Tutorial de derive 6
Análisis de funciones con Geogebra
Operaciones algebraica basicas
Funciones y gráficas en matlab
Algebra (I Bimestre)
Derive 3 (comandos c-diferencial)
Graphmatica
Máxima ejercicio
Máxima ejercicio
Funciones ejemplos
Funciones
Calculo diferencial
Tutorial
Derive 2 (op-basicas)
Funciones S 7.pdf Funciones S 7Funciones S 7Funciones S 7
Refuerzo. 20 12-2014
Máxima ejercicio
Matematica
Publicidad

Derive 5

  • 1. Software matemático “derive 5” Antes de comenzar, aprenderemos a descargar este software, que nos resultará de suma utilidad para realizar la actividad propuesta y muchas otras que se puedan presentar. Si no dispones del mismo en tu computadora, lo conveniente es descargarlo gratuitamente. Una vez finalizada la instalación, en la caja de búsqueda del botón inicio, ingresas la palabra derive, y aparecerá el programa. Puedes generar un acceso directo para que sea más sencillo ubicarlo cuando necesites usarlo. Este software tiene muchísimas funciones, que puedes explorar. Hoy veremos las que son necesarias para desarrollar la tarea indicada. Una vez abierto el programa, lo primero que observamos es la “pantalla de álgebra”.
  • 2. Para realizar el inciso 1 de la actividad, tendrás que acceder a la “pantalla gráfica”, para lo cual debes acceder a “ventana> nueva ventana 2d”. Recorda, que también se pueden realizar gráficas en tres dimensiones. Una vez que hayas abierto la ventana en 2d, debes ingresar las funciones en la “barra de edición o de autor” Las cuatro operaciones básicas se ingresan: suma +, resta -, multiplicación *, división /, la coma se reemplaza por un punto; y si queremos indicar un exponente, utilizamos ^ seguido del exponente deseado. Esto último, es muy útil para establecer expresiones racionales., o también la función sqrt para raíces cuadradas. Para poder utilizar las ventanas a la par, tenés que ir a “ventana > mosaico vertical (o mosaico horizontal)”. La pantalla se visualiza de la siguiente forma: Una vez ingresada la función, tenés que ir a la vista gráfica, y clickear el botón . PARA TENER EN CUENTA: Cuando se grafican funciones racionales de índice impar, debes: Desde el comando “definir > preferencias de simplificación > rama compleja > any > si”
  • 3. Para realizar el punto 2 de la actividad, necesitamos conocer más herramientas de la pantalla algebraica: * Para calcular el dominio: Recordamos que debes tener en cuenta las restricciones. Seleccionas la parte de la función que necesitas, y con la tecla f3 se copiará en la barra de edición. Así podrás plantear la desigualdad para ver cuáles son los valores que no pertenecen al dominio de la función. Luego, debes presionar (con la expresión seleccionada) “resolver > expresion > resolver”. * Para calcular el conjunto de positividad y negatividad: Planteamos la inecuación con la función cuando es mayor o menor que cero: f(x)>0 y luego, “resolver > expresion > resolver”. * Para el corte con los ejes: Realizamos el mismo procedimiento: - Para calcular el corte con el eje x, igualamos la función a cero, y luego (con la expresión seleccionada) “resolver > expresión > resolver”. Otra opción, es ir a “simplificar > factorizar > factorizar”. - Para calcular el corte con el eje y: con la función seleccionada, en la pantalla algebraica seleccionamos “simplificar > sustituir variable > elegimos valor cero, para la variable x > simplificar”. Luego debemos repetir el procedimiento “resolver > expresión > resolver”. *Cálculo de asíntotas: Ingresamos la función, y luego en la vista algebraica seleccionamos “cálculo > límite > y seleccionamos la variable y el punto para el cuál queremos calcular el mismo”. *Paridad: Pare ello, antes tengo que definir la función. Debemos: “definir > función > seleccionamos el nombre y la definimos”. Luego, en la barra de entrada, ingresamos el nombre de la función, seguido de un punto. Ejemplo: f(5), y luego clickeamos: simétrico y repetimos la operación. (introducir y simplificar). Volvemos a ingresar el punto Conclusiones: -Si los valores hallados son los mismos, la función es par. -Si tienen el mismo módulo pero distinto signo, es impar. -Si los valores son distintos, la función no guarda paridad. * Máximos y/o mínimos: Tenemos que derivar la función. Para ello, ingresamos la misma, y luego en la vista algebraica clickeamos (en este caso debe ser uno). (hallar una derivada). Seleccionamos la variable y el orden
  • 4. Al resultado obtenido, lo igualamos a cero; y luego “resolver > expresión > resolver”. Obtendremos varios puntos, que tenemos que analizar en la derivada segunda; es decir que tenemos que volver a derivar la expresión, y evaluarla en los puntos dados. Para evaluarla, podemos realizar el mismo procedimiento que para cuando realizamos el corte con los ejes (sustituir variable por el valor). *crecimiento y decrecimiento: Planteamos la desigualdad de la derivada de la función, mayor o menor que cero: . Luego “resolver > expresión > resolver”. *Puntos de inflexión: Primero, tenemos que igualar a cero la derivada segunda: f¨(x)=0.Los puntos hallados, debemos evaluarlos en la derivada tercera, para lo cual empleamos cualquier mecanismo de los nombrado anteriormente.