2
Most read
4
Most read
11
Most read
Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
Multiple Choice Questions
Unit- I
Ordinary Differential Equations of Higher Order
Q.
No.
Question Options Answer
1
Roots of the auxiliary equation of the
differential equation
t
e
y
dt
dy
dt
y
d 3
2
2
4
9
6 


a)  
2
,
3
b
b)  
3
,
3
c)  
3
,
2
d)  
2
,
2
2
Particular integral of
  x
y
D
D 2
sin
4
4
2



a) 8
/
2
cos x
a
b) 4
/
2
cos x
c) 8
/
cosx
d) x
cos
3
General solution of
 
dt
d
D
y
D 

 ;
0
1
2 2
a)   2
/
2
1
t
e
tc
c
y 


d
b) 2
/
1
t
e
c
y 
c)   2
/
2
1
t
e
tc
c
y 

d)   2
/
2
1
t
e
tc
c
y 

4 Particular integral of 2
2
2
x
y
dx
y
d


a)  
2
2

x
c
b)  
2
2

x
c)  
2
2

 x
d)  
3
2

 x
5
Particular integral   ax
y
a
D sin
2
2


a) x
a
x
cos
2

a
b) x
a
x
cos
2
Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
c) x
a
x
sin
2

d) x
a
x
cot
2

6
The order and degree of the differential
equation 0
6
8
2
4
3
3
















dx
dy
x
dx
y
d
a) (3,5)
d
b) (4, 3)
c) (4, 5)
d) (3, 4)
7 Solution of 0
2
2
2
3
3



dx
dy
dx
y
d
dx
y
d
a) 0,-1,-1
a
b) 0, 1, 1
c) 0, 0, 1
d) 1, 1, 1
8
The order and degree of the differential
equation 0
1
3
2
2









dx
dy
dx
y
d
a) (3, 2)
b
b) (2, 2)
c) (2, 5)
d) (3, 4)
9
Particular integral of
  )
(
'
'
2
x
f
e
y
D x

 

a) )
(x
f
e x

a
b) )
(x
f
e x


c) )
(
' x
f
e x

d) )
(x
f
ex
10
The differential equation whose set of
independent solution is  
x
x
x
e
x
xe
e 2
,
,
a) 0
'
3
'
'
3
'
'
' 


 y
y
y
y
d
b) 0
'
3
'
'
3
'
'
' 


 y
y
y
y
c) 0
'
3
'
'
3
'
'
' 


 y
y
y
y
d) 0
'
3
'
'
3
'
'
' 


 y
y
y
y
11
P.I. of x
y
dx
y
d
2
sin
4
2
2


a) x
x 2
cos

c
b) 4
/
x

c) 4
/
2
cos x
x

d) 4
/
2
cos x
x
Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
12
Solve
0
,
1
,
0
)
0
(
;
tan
sec2
2
2



 x
dx
dy
y
y
y
dx
y
d
a) x
y 1
cos

b
b) x
y 1
sin

c) x
y 1
tan

d) x
y 1
sec

13
Form a differential equation if its
general solution is x
a
y sin

a) x
y
dx
dy
cot

a
b) x
y
dx
dy
cot


c) x
dx
dy
cot

d) y
dx
dy

14 P.I. of 0
2
2
2
3
3



dx
dy
dx
y
d
dx
y
d
a) 0
a
b) x
e
c) x
sin
d) x
cos
15
Form a differential equation if its
general solution is x
x
Be
Ae
y 


a) 0
2
2

 y
dx
y
d
b
b) 0
2
2

 y
dx
y
d
c) 0
2
2
2

 y
dx
y
d
d) 0
2
2
2

 y
dx
y
d
16
Solve   2
2
/
,
1
)
0
(
;
0
2
2



 
y
y
y
dx
y
d
a) x
x
y sin
3
cos 

C
b) x
x
y sin
3
cos 

c) x
x
y sin
2
cos 

d) x
x
y sin
2
cos 

Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
17
Degree of equation
3
2
2
2
1 















dx
dy
dx
y
d
is
a) 2
a
b) 4
c) 6
d) 1
18
P.I. of   x
e
y
D
D 2
2
3
4
4 


a) 1/19
c
b)1 /20
c)1/21
d)1/22
19
Method of Variation of Parameters
a)  

 2
1
1
c
dx
v
u
uv
u
R
B
a
b)  


 2
1
1
c
dx
v
u
uv
u
R
B
c)  


 2
1
1
c
dx
v
u
uv
u
R
B
d)  

 2
1
1
c
dx
v
u
uv
u
R
B
20 Normal form is given by
a) S
Iv
dx
v
d


2
2
b
b) S
Iv
dx
v
d


2
2
c) S
v
dx
v
d


2
2
d) 0
2
2


 S
Iv
dx
v
d
21 Solve 0

 dx
y
dy
x
a) cx
y 
a
b) 0

 cx
y
c) cx
y 
d)  2
cx
y 
22
By Changing the Independent Variable
a) Q
dx
dz







2
a
Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
b) Q
dx
dz







3
c) Q
dx
dz








2
d) Q
dx
dz








3
23 Q
y
D
f 
)
( then P.I. is
a) P
D
f
I
P
)
(
'
1
.
. 
d
b) P
D
f
I
P
)
(
1
.
. 
c) Q
D
f
I
P
)
(
'
1
.
. 
d) Q
D
f
I
P
)
(
1
.
. 
24
Homogeneous Linear Differential
Equations can be reduce to linear
differential equations with constant
coefficients by the substitution
a) x
e
z 
b
b) z
e
x 
c) z
e
x 

d) z
e
x log

25
By variation of parameters, complete
solution of given differential equation is
given by
a)
c
b)
c)
d)
26
In Solution by Changing the
Independent Variable, We choose z
such that
a) (dz/dx)2=-Q
b) (dz/dx)2=Q
c) (dz/dx)=Q
d) (dz/dx)3=Q
Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
27 Which statement is wrong
a) 



 dx
Q
e
e
Q
D
I
P x
x 


1
.
.
b) ax
ax
e
a
f
e
D
f
I
P
)
(
1
)
(
1
.
. 

c) 



 dx
Q
e
e
Q
D
I
P x
x 


1
.
.
d) None
d
28
Equation x
e
y
dx
dy
x
dx
y
d
x 

 2
4
2
2
2
is called
a) Linear differential
equation
b) Ordinary linear
differential
equation
c) Cauchy’s
homogeneous
linear differential
equation of nth
order.
d)
Legendre’s Linear
Differential
Equation
c
29
Equation
is called
a) Linear differential
equation
b) Ordinary linear
differential
equation
c) Cauchy’s
homogeneous
linear differential
equation of nth
order.
d)
Legendre’s Linear
d
Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
Differential
Equation
30
Linear Differential Equation of Second
Order can be solve by
a) Variation of parameters
b) By changing dependent variable
c) By changing independent
variables
d) All
d
31 If then in method of
variation of parameters. a)
b)
c)
d)
c
32
x
x
x
y
dx
dy
x
dx
y
d 3
2
2
2
cos
cos
sin
cot
.
3 



,
choose z such that
a)
c
b)
c)
d)
33 In equation, choose z such that a)
b)
c)
d)
d
Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
34 Normal form is given by a)
b)
c)
d)
c
35 Integrating Factor of the differential
equation
a) x3
b) x2
c) x
d) 1
36 The PI of the equation a. x/2a. sinax
b. – x/2a. cosax
c. – x/2a. sinax
d. x/2a. cosax
d
37 The general solution or complete solution
of a differential equation is the solution in
which the number of
a) Particular integral is equal to the
order of differential equation
b) Complementary function is equal
to
the order of differential equation
c) Arbitrary constants is equal to the
degree of differential equation
d) Arbitrary constants is equal to the
order of differential equation
38 is the general
solution of the differential equation of
order
a) 3
b) 2
c) 1
d) 0
Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
39
The general form of a linear differential
equation of the first order is
c)
c
40 For   0
3
5

 y
D
D d
41 P.I. of a)
b)
c)
d)
c
42 Solution of of a)
b)
c)
d)
c
43 Solution of a) a
Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
b)
c)
d)
44. P.I. of a)
b)
c)
d)
b
45. Value of P.I. a)
b)
c)
d)
d
46.
Degree of
2
2
2
/
3
2
1
dx
y
d
dx
dy



















4
3
2
1
2
47 If the differential equation
has two equal roots then the values
of are
a)
b)
c)
d)
48 If , then I= e)
49 Value of A by variation of parameters in
y c sec
a)
b)
c)
d)
d
Engineering Mathematics-II KAS203T
Compiled By: Dr. Deepa Chauhan
50 In , we can
choose Q as
a)
b)
c)
d)
c
51 Normal form Method is applicable to solve
second order ODE, if
a)
b)
c) Both
d) none
c
52 y
x
dt
dy
y
x
dt
dx
3
5
;
2
3 


 a)
b)
c)
d)
a
53 ODE of
x
x
y
dx
dy
x
dx
y
d
x
dx
y
d
x 



 log
3 2
2
2
3
3
3
a)
b)
c)
d)
c

More Related Content

PPTX
ARTIFICIAL INTELLIGENCE.pptx
PPT
Sensation & Perception
PDF
Credit card fraud detection through machine learning
PDF
Integral calculus formula sheet
PPTX
Importance of mathematics in our daily life
PDF
Partial Differential Equation - Notes
PPTX
Introduction to Statistics and Probability
PPTX
Technology in the Teaching Learning Process
ARTIFICIAL INTELLIGENCE.pptx
Sensation & Perception
Credit card fraud detection through machine learning
Integral calculus formula sheet
Importance of mathematics in our daily life
Partial Differential Equation - Notes
Introduction to Statistics and Probability
Technology in the Teaching Learning Process

What's hot (20)

PDF
Mcq differential and ordinary differential equation
PPTX
Ordinary differential equation
PDF
Solve ODE - BVP through the Least Squares Method
PPTX
Higher order ODE with applications
PPTX
Ordinary differential equations
PPTX
DIFFERENTIAL EQUATIONS
PDF
Integral calculus
PDF
Multiple Choice Questions - Numerical Methods
PPTX
Partial differential equation & its application.
DOC
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
PPT
Introduction to differential equation
PDF
Finite Difference Method
PPTX
Differential Equations
PPTX
Gradient , Directional Derivative , Divergence , Curl
PPTX
Multiple ppt
PPT
numerical methods
PPTX
Partial differential equations
PPTX
Bisection method
PPTX
First order linear differential equation
PPT
CONVERGENCE.ppt
Mcq differential and ordinary differential equation
Ordinary differential equation
Solve ODE - BVP through the Least Squares Method
Higher order ODE with applications
Ordinary differential equations
DIFFERENTIAL EQUATIONS
Integral calculus
Multiple Choice Questions - Numerical Methods
Partial differential equation & its application.
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
Introduction to differential equation
Finite Difference Method
Differential Equations
Gradient , Directional Derivative , Divergence , Curl
Multiple ppt
numerical methods
Partial differential equations
Bisection method
First order linear differential equation
CONVERGENCE.ppt
Ad

Similar to MCQs Ordinary Differential Equations (20)

PDF
Algebra II Practice Test.pdfAlgebra II Practice Test.pdf
PDF
10th-science-mcqs.pdf very good bed pppp
PDF
BITSAT 2018 Question Bank - Maths
PPTX
Binomial Theorem 2
PDF
Integral calculus formula sheet 0
PDF
Integral calculus formula sheet
PDF
02 definite Intergration Ex. Module-5.pdf
PDF
(Www.entrance exam.net)-sail placement sample paper 5
DOC
12th mcq
DOC
12th mcq
PDF
Engineering Mathematics 2 questions & answers
PDF
Engineering Mathematics 2 questions & answers(2)
PDF
Class 9th Mcq for Preparing Exams , Maths
PDF
CBSE - Grade 9 - Mathematics - Number System - Multiple Choice Questions - Wo...
PPTX
First Quarter Quiz 1 on Quadratic Equation.pptx
PDF
Algebra1
PDF
Bt0063 mathematics fot it
DOCX
1 Week 2 Homework for MTH 125 Name_______________
DOCX
1 Week 2 Homework for MTH 125 Name_______________
Algebra II Practice Test.pdfAlgebra II Practice Test.pdf
10th-science-mcqs.pdf very good bed pppp
BITSAT 2018 Question Bank - Maths
Binomial Theorem 2
Integral calculus formula sheet 0
Integral calculus formula sheet
02 definite Intergration Ex. Module-5.pdf
(Www.entrance exam.net)-sail placement sample paper 5
12th mcq
12th mcq
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answers(2)
Class 9th Mcq for Preparing Exams , Maths
CBSE - Grade 9 - Mathematics - Number System - Multiple Choice Questions - Wo...
First Quarter Quiz 1 on Quadratic Equation.pptx
Algebra1
Bt0063 mathematics fot it
1 Week 2 Homework for MTH 125 Name_______________
1 Week 2 Homework for MTH 125 Name_______________
Ad

More from DrDeepaChauhan (6)

PDF
Numerical integration
PDF
Unbalanced Transportation Problem
PDF
Transportation Problems-Maximum Profit
PDF
Optimal Solution by MODI Method
PDF
Transportation Problem- Initial Basic Feasible Solution
PDF
Beta & Gamma Functions
Numerical integration
Unbalanced Transportation Problem
Transportation Problems-Maximum Profit
Optimal Solution by MODI Method
Transportation Problem- Initial Basic Feasible Solution
Beta & Gamma Functions

Recently uploaded (20)

PPTX
Current and future trends in Computer Vision.pptx
PDF
737-MAX_SRG.pdf student reference guides
PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PPT
Total quality management ppt for engineering students
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PDF
Visual Aids for Exploratory Data Analysis.pdf
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
Improvement effect of pyrolyzed agro-food biochar on the properties of.pdf
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Current and future trends in Computer Vision.pptx
737-MAX_SRG.pdf student reference guides
Management Information system : MIS-e-Business Systems.pptx
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Total quality management ppt for engineering students
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
Visual Aids for Exploratory Data Analysis.pdf
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Improvement effect of pyrolyzed agro-food biochar on the properties of.pdf
Exploratory_Data_Analysis_Fundamentals.pdf
Information Storage and Retrieval Techniques Unit III
distributed database system" (DDBS) is often used to refer to both the distri...
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
Fundamentals of safety and accident prevention -final (1).pptx
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...

MCQs Ordinary Differential Equations

  • 1. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan Multiple Choice Questions Unit- I Ordinary Differential Equations of Higher Order Q. No. Question Options Answer 1 Roots of the auxiliary equation of the differential equation t e y dt dy dt y d 3 2 2 4 9 6    a)   2 , 3 b b)   3 , 3 c)   3 , 2 d)   2 , 2 2 Particular integral of   x y D D 2 sin 4 4 2    a) 8 / 2 cos x a b) 4 / 2 cos x c) 8 / cosx d) x cos 3 General solution of   dt d D y D    ; 0 1 2 2 a)   2 / 2 1 t e tc c y    d b) 2 / 1 t e c y  c)   2 / 2 1 t e tc c y   d)   2 / 2 1 t e tc c y   4 Particular integral of 2 2 2 x y dx y d   a)   2 2  x c b)   2 2  x c)   2 2   x d)   3 2   x 5 Particular integral   ax y a D sin 2 2   a) x a x cos 2  a b) x a x cos 2
  • 2. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan c) x a x sin 2  d) x a x cot 2  6 The order and degree of the differential equation 0 6 8 2 4 3 3                 dx dy x dx y d a) (3,5) d b) (4, 3) c) (4, 5) d) (3, 4) 7 Solution of 0 2 2 2 3 3    dx dy dx y d dx y d a) 0,-1,-1 a b) 0, 1, 1 c) 0, 0, 1 d) 1, 1, 1 8 The order and degree of the differential equation 0 1 3 2 2          dx dy dx y d a) (3, 2) b b) (2, 2) c) (2, 5) d) (3, 4) 9 Particular integral of   ) ( ' ' 2 x f e y D x     a) ) (x f e x  a b) ) (x f e x   c) ) ( ' x f e x  d) ) (x f ex 10 The differential equation whose set of independent solution is   x x x e x xe e 2 , , a) 0 ' 3 ' ' 3 ' ' '     y y y y d b) 0 ' 3 ' ' 3 ' ' '     y y y y c) 0 ' 3 ' ' 3 ' ' '     y y y y d) 0 ' 3 ' ' 3 ' ' '     y y y y 11 P.I. of x y dx y d 2 sin 4 2 2   a) x x 2 cos  c b) 4 / x  c) 4 / 2 cos x x  d) 4 / 2 cos x x
  • 3. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan 12 Solve 0 , 1 , 0 ) 0 ( ; tan sec2 2 2     x dx dy y y y dx y d a) x y 1 cos  b b) x y 1 sin  c) x y 1 tan  d) x y 1 sec  13 Form a differential equation if its general solution is x a y sin  a) x y dx dy cot  a b) x y dx dy cot   c) x dx dy cot  d) y dx dy  14 P.I. of 0 2 2 2 3 3    dx dy dx y d dx y d a) 0 a b) x e c) x sin d) x cos 15 Form a differential equation if its general solution is x x Be Ae y    a) 0 2 2   y dx y d b b) 0 2 2   y dx y d c) 0 2 2 2   y dx y d d) 0 2 2 2   y dx y d 16 Solve   2 2 / , 1 ) 0 ( ; 0 2 2      y y y dx y d a) x x y sin 3 cos   C b) x x y sin 3 cos   c) x x y sin 2 cos   d) x x y sin 2 cos  
  • 4. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan 17 Degree of equation 3 2 2 2 1                 dx dy dx y d is a) 2 a b) 4 c) 6 d) 1 18 P.I. of   x e y D D 2 2 3 4 4    a) 1/19 c b)1 /20 c)1/21 d)1/22 19 Method of Variation of Parameters a)     2 1 1 c dx v u uv u R B a b)      2 1 1 c dx v u uv u R B c)      2 1 1 c dx v u uv u R B d)     2 1 1 c dx v u uv u R B 20 Normal form is given by a) S Iv dx v d   2 2 b b) S Iv dx v d   2 2 c) S v dx v d   2 2 d) 0 2 2    S Iv dx v d 21 Solve 0   dx y dy x a) cx y  a b) 0   cx y c) cx y  d)  2 cx y  22 By Changing the Independent Variable a) Q dx dz        2 a
  • 5. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan b) Q dx dz        3 c) Q dx dz         2 d) Q dx dz         3 23 Q y D f  ) ( then P.I. is a) P D f I P ) ( ' 1 . .  d b) P D f I P ) ( 1 . .  c) Q D f I P ) ( ' 1 . .  d) Q D f I P ) ( 1 . .  24 Homogeneous Linear Differential Equations can be reduce to linear differential equations with constant coefficients by the substitution a) x e z  b b) z e x  c) z e x   d) z e x log  25 By variation of parameters, complete solution of given differential equation is given by a) c b) c) d) 26 In Solution by Changing the Independent Variable, We choose z such that a) (dz/dx)2=-Q b) (dz/dx)2=Q c) (dz/dx)=Q d) (dz/dx)3=Q
  • 6. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan 27 Which statement is wrong a)      dx Q e e Q D I P x x    1 . . b) ax ax e a f e D f I P ) ( 1 ) ( 1 . .   c)      dx Q e e Q D I P x x    1 . . d) None d 28 Equation x e y dx dy x dx y d x    2 4 2 2 2 is called a) Linear differential equation b) Ordinary linear differential equation c) Cauchy’s homogeneous linear differential equation of nth order. d) Legendre’s Linear Differential Equation c 29 Equation is called a) Linear differential equation b) Ordinary linear differential equation c) Cauchy’s homogeneous linear differential equation of nth order. d) Legendre’s Linear d
  • 7. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan Differential Equation 30 Linear Differential Equation of Second Order can be solve by a) Variation of parameters b) By changing dependent variable c) By changing independent variables d) All d 31 If then in method of variation of parameters. a) b) c) d) c 32 x x x y dx dy x dx y d 3 2 2 2 cos cos sin cot . 3     , choose z such that a) c b) c) d) 33 In equation, choose z such that a) b) c) d) d
  • 8. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan 34 Normal form is given by a) b) c) d) c 35 Integrating Factor of the differential equation a) x3 b) x2 c) x d) 1 36 The PI of the equation a. x/2a. sinax b. – x/2a. cosax c. – x/2a. sinax d. x/2a. cosax d 37 The general solution or complete solution of a differential equation is the solution in which the number of a) Particular integral is equal to the order of differential equation b) Complementary function is equal to the order of differential equation c) Arbitrary constants is equal to the degree of differential equation d) Arbitrary constants is equal to the order of differential equation 38 is the general solution of the differential equation of order a) 3 b) 2 c) 1 d) 0
  • 9. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan 39 The general form of a linear differential equation of the first order is c) c 40 For   0 3 5   y D D d 41 P.I. of a) b) c) d) c 42 Solution of of a) b) c) d) c 43 Solution of a) a
  • 10. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan b) c) d) 44. P.I. of a) b) c) d) b 45. Value of P.I. a) b) c) d) d 46. Degree of 2 2 2 / 3 2 1 dx y d dx dy                    4 3 2 1 2 47 If the differential equation has two equal roots then the values of are a) b) c) d) 48 If , then I= e) 49 Value of A by variation of parameters in y c sec a) b) c) d) d
  • 11. Engineering Mathematics-II KAS203T Compiled By: Dr. Deepa Chauhan 50 In , we can choose Q as a) b) c) d) c 51 Normal form Method is applicable to solve second order ODE, if a) b) c) Both d) none c 52 y x dt dy y x dt dx 3 5 ; 2 3     a) b) c) d) a 53 ODE of x x y dx dy x dx y d x dx y d x      log 3 2 2 2 3 3 3 a) b) c) d) c