Program linear digunakan untuk mengalokasikan sumber daya terbatas secara optimal dengan menentukan nilai maksimum atau minimum dari fungsi objektif menggunakan metode titik pojok atau garis selidik untuk memenuhi kendala-kendala.
1. Program Linear
Bab I
BAB I
BAB II
BAB III
BAB IV
BAB V
BAB VI
A. Program Linear dan Model
Matematika
B. Nilai Optimum suatu Fungsi
Objektif
RINGKASAN
LATIHAN
DAFTAR ISI
2. Program linear digunakan untuk menyelesaikan model matematika
yang memiliki tujuan yang hendak dicapai
A. Program
Linear dan
Model
Matematika
BAB I
Program Linear
Bab I
A. Program Linear dan Model Matematika
Model Matematika :
perumusan dari
persoalan-persoalan
dalam kehidupan nyata
ke dalam bentuk
matematika
SPLDV
(Sistem Persamaan Linear Dua Variabel)
πππ + πππ = ππ
πππ + πππ = ππ
ππ, ππ, ππ, ππ, ππ, ππ β π ππ, ππ, ππ, ππ β π
SPtLDV
(Sistem Pertidaksamaan Linear Dua Variabel)
πππ + πππ β€ ππ
πππ + πππ β€ ππ
ππ, ππ, ππ, ππ, ππ, ππ β π ππ, ππ, ππ, ππ β π
Tanda β€ dapat diganti dengan β₯, >, dan <
Program linear adalah metode untuk menyelesaikan permasalahan
berupa sumber daya yang terbatas untuk mencapai suatu tujuan yang
optimum (maksimum atau minimum)
Bentuk
LATIHAN
RINGKASAN
B. Nilai
Optimum
suatu
Fungsi
Objektif
DAFTAR ISI
3. Contoh Soal Program Linear
Seorang pengusaha mebel memiliki data sebagai berikut.
Buatlah model matematika untuk masalah tersebut, jika keuntungan
bersih yang diharapkan sebesar-besarnya.
Lemari Meja Persediaan
Biaya Rp 40.000,00 Rp 30.000,00 Rp 1.200.000,00
Bahan 9 3 270
Keuntungan Rp 30.500,00 Rp 15.000,00
A. Program
Linear dan
Model
Matematika
BAB I
LATIHAN
RINGKASAN
B. Nilai
Optimum
suatu
Fungsi
Objektif
DAFTAR ISI
4. Penyelesaian:
Misalnya jumlah lemari yang diproduksi π₯ buah dan meja yang diproduksi π¦
buah. Biaya yang diperlukan adalah 40.000π₯ + 30.000π¦. Bahan yang
diperlukan adalah 9π₯ + 3π¦.
Karena modal yang dimiliki adalah Rp1.200.000,00 dan bahan yang tersedia
adalah 270 lembar, maka harus dipenuhi pertidaksamaan:
40.000π₯ + 30.000π¦ β€ 1.200.000 βΉ 4π₯ + 3π¦ β€ 120
9π₯ + 3π¦ β€ 270 βΉ 3π₯ + π¦ β€ 90
Dengan mengingat bahwa π₯ dan π¦ menyatakan banyaknya barang, maka π₯
dan π¦ tidak mungkin bernilai negatif dan harus merupakan bilangan cacah.
Dengan demikian π₯ dan π¦ memenuhi pertidaksamaan π₯ β₯ 0, π¦ β₯ 0 dan
π₯, π¦ β πΆ. Keuntungan bersih 30.500π₯ + 15.000π¦.
Jadi, model matematika untuk persoalan di atas adalah mencari nilai
maksimum dari 30.500π₯ + 15.000π¦ yang memenuhi
4π₯ + 3π¦ β€ 120
3π₯ + π¦ β€ 90
π₯ β₯ 0
π¦ β₯ 0
dengan π₯, π¦ β πΆ
A. Program
Linear dan
Model
Matematika
BAB I
LATIHAN
RINGKASAN
B. Nilai
Optimum
suatu
Fungsi
Objektif
DAFTAR ISI
5. B. Nilai Optimum suatu Fungsi Objektif
Program Linear
Kendala
Fungsi Objektif (ππ₯ + ππ¦)
Terdiri dari
Metode untuk menentukan nilai optimum suatu fungsi objektif
adalah metode uji titik pojok dan garis selidik
Metode Uji Titik pojok:
Menghitung nilai-nilai ππ₯ + ππ¦
untuk setiap titik pojok pada
daerah himpunan
penyelesaian.
β’ Nilai terbesar adalah nilai maksimum
β’ Nilai terkecil adalah nilai minimum
A. Program
Linear dan
Model
Matematika
BAB I
LATIHAN
RINGKASAN
B. Nilai
Optimum
suatu
Fungsi
Objektif
DAFTAR ISI
6. Contoh soal penyelesaian program linear
menggunakan metode uji titik pojok
2π₯ + π¦ β€ 10
6π₯ + 2π¦ β€ 30
π₯ β₯ 0
π¦ β₯ 0
dengan π₯, π¦ β πΆ
Tentukan nilai maksimum dari 17.500π₯ + 8.000π¦ dengan model
matematika program linear berikut.
Penyelesaian:
Mula-mula kita tentukan himpunan
penyelesaian model matematika
tersebut, sehingga didapat daerah
himpunan penyelesaian sistem
pertidaksamaan linear tersebut
diperlihatkan oleh daerah yang diraster
seperti pada gambar di samping.
A. Program
Linear dan
Model
Matematika
BAB I
LATIHAN
RINGKASAN
B. Nilai
Optimum
suatu
Fungsi
Objektif
DAFTAR ISI
7. Titik-titik pojok yang terletak pada daerah himpunan penyelesaiannya
adalah titik O(0, 0), A(5, 0), dan B(0, 10), titik A adalah titik potong
antara garis 2x + y = 10 dengan garis 6x + 2y = 30. Nilai fungsi objektif
17.500x + 8.000y untuk setiap koordinat titik pojok dapat dilihat pada
tabel di bawah ini.
Titik Pojok (π, π) Bentuk 17.500π₯ + 8.000π¦
π(0,0) 0
π΄(5,0) 87.500
π΅(0,10) 80.000
Dari tabel tersebut tampak bahwa nilai maksimum dari fungsi objektif
sama dengan 87.500 yang dicapai di titik A(5, 0). Hasil-hasil tersebut
dapat ditafsirkan bahwa keuntungan bersih setiap hari sebesar-
besarnya adalah Rp87.500,00. Hal ini tercapai kalau setiap hari
diproduksi lemari sebanyak 5 buah dan meja 0 buah.
A. Program
Linear dan
Model
Matematika
BAB I
LATIHAN
RINGKASAN
B. Nilai
Optimum
suatu
Fungsi
Objektif
DAFTAR ISI
8. Metode Garis Selidik
1. Tetapkan persamaan garis selidik
ππ₯ + ππ¦ = π π β π . Ambil nilai π
tertentu misalnya, untuk π = 0
diperoleh ππ₯ + ππ¦ = 0, kemudian
lukis garis tersebut.
2. Buatlah garis-garis yang sejajar
dengan garis ππ₯ + ππ¦ = 0.
Langkah-langkah:
A. Program
Linear dan
Model
Matematika
BAB I
LATIHAN
RINGKASAN
B. Nilai
Optimum
suatu
Fungsi
Objektif
DAFTAR ISI
9. Jika garis ππ₯ + ππ¦ = π1 terletak
paling jauh dari titik pangkal
dan melalui titik π΄(π₯1, π¦1)
dimana titik π΄(π₯1, π¦1) terletak
pada daerah himpunan
penyelesaian, maka titik
π΄(π₯1, π¦1) merupakan titik yang
menjadikan fungsi objektif ππ₯ +
ππ¦ maksimum.
Jika garis ππ₯ + ππ¦ = π2 terletak
paling dekat dari titik pangkal
dan melalui titik πΆ(π₯2, π¦2)
dimana titik πΆ(π₯2, π¦2) terletak
pada daerah himpunan
penyelesaian, maka titik
πΆ(π₯2, π¦2) merupakan titik yang
menjadikan fungsi objektif ππ₯ +
ππ¦ minimum.
Nilai Optimum dengan Metode Garis Selidik
A. Program
Linear dan
Model
Matematika
BAB I
LATIHAN
RINGKASAN
B. Nilai
Optimum
suatu
Fungsi
Objektif
DAFTAR ISI
10. Contoh soal penyelesaian program linear menggunakan metode
garis selidik
Tentukan nilai maksimum fungsi objektif 2π₯ + 3π¦ pada SPtLDV berikut.
2π₯ + 4π¦ β€ 36
4π₯ + 2π¦ β€ 24
π₯ β₯ 0
π¦ β₯ 0
dengan π₯, π¦ β π
Penyelesaian:
Himpunan penyelesaian SPtLDV
terlihat pada gambar di samping.
Kita lukis garis selidik 2x + 3y = k,
untuk k = 6 diperoleh garis 2x + 3y =
6. Garis yang sejajar dengan garis 2x
+ 3y = 6 dan terletak paling jauh dari
titik pangkal adalah garis yang
melalui titik B(2, 8).
Jadi, titik B(2, 8) adalah titik pada daerah himpunan penyelesaian yang
menyebabkan fungsi objektif 2x + 3y maksimum. Nilai maksimumnya adalah
2 Γ 2 + 3 Γ 8 = 28.
A. Program
Linear dan
Model
Matematika
BAB I
LATIHAN
RINGKASAN
B. Nilai
Optimum
suatu
Fungsi
Objektif
DAFTAR ISI
11. ο± Program linear adalah metode matematika dalam mengalokasikan
sumber daya yang terbatas untuk mencapai suatu tujuan yang
optimum
RINGKASAN
ο± Program linear terdiri atas 2 bagian, yaitu fungsi objektif dan
kendala.
ο± Nilai optimum suatu fungsi objektif dapat dicari dengan dua
metode berikut.
ο Metode uji titik pojok
ο Metode garis selidik
LATIHAN
RINGKASAN
A. Program
Linear dan
Model
Matematika
BAB I
B. Nilai
Optimum
suatu
Fungsi
Objektif
DAFTAR ISI
12. 1. Tentukan nilai optimum (nilai maksimum atau nilai minimum) fungsi
objektif setiap model matematika berikut.
2π₯ + π¦ β€ 36
π₯ + π¦ β€ 24
π₯ β₯ 0
π¦ β₯ 0
dengan π₯, π¦ β π
LATIHAN
2. Sebuah perusahaan memproduksi kebaya A dan B. Kedua jenis kebaya
itu dalam pembuatannya harus menggunakan mesin bordir I dan mesin
bordir II. Kebaya A memerlukan waktu 4 menit pada mesin I dan 6 menit
pada mesin II, sedangkan kebaya B memerlukan 3 menit pada mesin I
dan 2 menit pada mesin II. Mesin I dan mesin II setiap harinya masing-
masing bekerja selama 24 jam dan 6 jam. Bila kebaya A memberikan
keuntungan Rp110.000,00 dan kebaya B keuntungan Rp130.000,00 dan
semua kebaya yang diproduksi habis terjual, dengan menggunakan garis
selidik tentukan keuntungan maksimum yang bisa diraih perusahaan
tersebut.
LATIHAN
RINGKASAN
A. Program
Linear dan
Model
Matematika
B. Nilai
Optimum
suatu
Fungsi
Objektif
BAB I
DAFTAR ISI